第四章电极溶液界面结构与性质介绍
- 格式:ppt
- 大小:787.50 KB
- 文档页数:83
4熔盐的双电层结构4.1界面双电层当金属电极(包括其他各类电极)与电解质接触时,由于电极与电解质之间的物理化学性质差别甚大,处在界面的粒子(离子、络合离子及溶剂分子)既受到溶液内部力的作用,又受到电极的作用力;而溶液内部粒子在任何方向,任何部位所受到的作用力都是相同的,在电极界面上的作用力则是不同的,所以在电极与溶液界面上将出现游离电荷(电子或离子)的重新分配或者增多,或者减少,因此,任何两相的界面都会出现双电层,并都有一定的电位差,如图4—1所示。
3种双电层(1)离子双电层当金属和电解质接触时,两种电性相反的电荷分配在电极和溶液界面的两侧构成双电层,若金属的表面带正电,则溶液中以负离子与之组成双电层,反之,金属表面带负电时,溶液中将以正离子与之组成双电层。
这种双电层称为离子双电层,它所产生的电位差就是离子双层的电位差。
这种双电层的特点是每一层中都有一层电荷,但符号相反,如图4—3(a)所示。
(2)偶极双电层有些体系,尽管上述的离子双电层不存在,但金属与溶液的界面上仍然会有电位差。
例如,金属表面少量电子有可能逸出晶格之外,而静电作用又使这部分电子束缚在金属的表面附近,在金属相的表面层中形成双电层。
偶极分子在溶液表面上定向排列也会构成偶极双电层,这种偶极层也会出现一定大小的电位差。
可以把这两种双电层称为偶极双电层,这种双电层的电位差就是偶极双电层的电位差。
(3)吸附双电层溶液中某种带电离子,有可能被吸附在金属与溶液的界面上形成一层过剩的电荷,这层电荷受静电吸引溶液中间等数量的带相反电荷的离子构成双电层。
这种双电层称为吸附双电层,这种双电层所产生的电位差称为吸附双电层电位差。
双电层中剩余电荷不多,所产生的电位差不大,但它对电极反应的影响却很大。
通常,由双电层而引起的电位差Δψ在0.1-1V之间,根据计算,电极表面只有10%的左右的原子具有剩余电荷,也就是说其覆盖度只有0.1左右。
如果双电层的电位为1V,界面间两层电荷间的距离数量级为10-10m,则双电层的电场强度为Φ=1/10-10=1010(V/m)实验证明,当电场强度超过106 V/m时,任何电介质将被击穿放电,引起电离。
电化学原理知识点电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。
第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。
三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。
电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。
腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。
阳极:发生氧化反应的电极原电池(-)电解池(+)阴极:发生还原反应的电极原电池(+)电解池(-)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。
分类:1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。
水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。
可分为原水化膜与二级水化膜。
活度与活度系数:活度:即“有效浓度”。
活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。
规定:活度等于1的状态为标准态。
对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。
离子强度I:离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:注:上式当溶液浓度小于0.01mol·dm-3 时才有效。
电导:量度导体导电能力大小的物理量,其值为电阻的倒数。
符号为G,单位为S ( 1S =1/Ω)。
第二章是电化学热力学界面:不同于基体的两相界面上的过渡层。
相间电位:两相接触时存在于界面层的电位差。
产生电位差的原因是带电粒子(包括偶极子)分布不均匀。
形成相间电位的可能情况:1。
残余电荷层:带电粒子在两相间的转移或外部电源对界面两侧的充电;2.吸附双电层:界面层中阴离子和阳离子的吸附量不同,使界面和相体带等量相反的电荷;3.偶极层:极性分子在界面溶液侧定向排列;4.金属表面电势:各种短程力在金属表面形成的表面电势差。
电化学界面的基本结构特征双电层
双电层结构主要包括两个重要的部分:电荷层和扩散层。
1.电荷层:
电荷层是电解质离子靠近电极表面的区域,其中的离子成为吸附态离子,形成一个电荷云。
在该区域中,正负电荷的离子分别以吸附在电极表
面并与溶液中的反离子进行排斥。
这些正负离子构成了固、液相之间的分
界面,形成了一个电位差,称为电位的ζ-电位。
电荷层的厚度取决于电解质的浓度和电极的电位。
当电解质浓度低时,电荷层较薄;当电解质浓度高时,电荷层较厚。
同样,当电极电位较高时,电荷层也较厚,而当电极电位较低时,电荷层较薄。
2.扩散层:
扩散层是指离开电极表面的电解质离子的区域。
由于离子在溶液中可
以自由扩散,扩散层中的离子可以自由移动,达到电解质浓度的均匀分布。
在扩散层内,离子的浓度逐渐恢复到远离电极表面时的均匀浓度。
扩散层的厚度取决于电解质的浓度和溶液的流速。
当电解质浓度低或
者溶液的流速高时,扩散层较薄;当电解质浓度高或者溶液的流速低时,
扩散层较厚。
总的来说,电化学界面的基本结构特征是双电层,包括电荷层和扩散层。
电荷层是电解质离子靠近电极表面的区域,其中的离子形成了电位差。
扩散层是离开电极表面的电解质离子的区域,其中离子的浓度会逐渐恢复
到均匀分布。
这些特征对于电化学反应的进行和理解起着重要的作用。