平行线间的距离公式
- 格式:ppt
- 大小:387.00 KB
- 文档页数:10
高三数学解题公式、结论大全(解析几何)1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴,则=AB 。
y //AB 轴,则=AB 。
2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++,则:2221BA C C d +-=注意:x ,y 对应项系数应相等。
3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ ,则P 到l 的距离为:22BA CBy Ax d +++=4、 直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F b kx y 消y :02=++c bx ax ,务必注意.0>∆若l 与曲线交于A ),(),,(2211y x B y x , 则:2122))(1(x x k AB -+=5、 若A ),(),,(2211y x B y x ,P (x ,y )。
P 在直线AB 上,且P 分有向线段AB 所成的比为λ,则⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 变形后:y y y y x x x x --=λ--=λ2121或6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα适用范围:k 1,k 2都存在且k 1k 2≠-1 , 21121tan k k k k +-=α若l 1与l 2的夹角为θ,则=θtan 21211k k k k +-,]2,0(π∈θ注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。
(2)l 1⊥l 2时,夹角、到角=2π。
新版材料阅读题一、填空题1.两条平行线间的距离公式一般地;两条平行线l 1:Ax +By +C 1=0和l 2:Ax +By +C 2=0间的距离公式d =12√A 2+B 2如:求:两条平行线x +3y −4=0和2x +6y −9=0的距离.解:将两方程中x,y 的系数化成对应相等的形式,得2x +6y −8=0和2x +6y −9=0 因此,d =√22+62=√1020两条平行线l 1:3x +4y =10和l 2:6x +8y −10=0的距离是____________.二、解答题2.已知点P ,Q 为平面直角坐标系xOy 中不重合的两点,以点P 为圆心且经过点Q 作⊙P ,则称点Q 为⊙P 的“关联点”,⊙P 为点Q 的“关联圆”.(1)已知⊙O 的半径为1,在点E (1,1),F (﹣12,√32),M (0,-1)中,⊙O 的“关联点”为______;(2)若点P (2,0),点Q (3,n ),⊙Q 为点P 的“关联圆”,且⊙Q 的半径为√5,求n 的值;(3)已知点D (0,2),点H (m ,2),⊙D 是点H 的“关联圆”,直线y =﹣43x+4与x 轴,y 轴分别交于点A ,B .若线段AB 上存在⊙D 的“关联点”,求m 的取值范围.3.阅读下列材料,并完成填空.你能比较20132014和20142013的大小吗?为了解决这个问题,先把问题一般化,比较n n+1和(n+1)n(n≥1,且n为整数)的大小.然后从分析n=1,n=2,n=3⋯的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列(1)-(7)组两数的大小:(在横线上填上" > "" =“或”<")(1)1221;(2)2332;(3)3443;(4)4554;(5)5665;(6)6776;(7)7887;(2)归纳第(1)问的结果,可以猜想出n n+1和(n+1)n的大小关系;(3)根据以上结论,可以得出20132014和20142013的大小关系.4.在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的对边分别记为a,b,c,倍角三角形的三边a,b,c有什么关系呢?让我们一起来探索.(1)我们先从特殊的倍角三角形入手研究.请你结合图形填空:(2)如图4,对于一般的倍角△ABC,若∠CAB=2∠CBA,∠CAB、∠CBA、∠C的对边分别记为a,b,c,a,b,c,三边有什么关系呢?请你作出猜测,并结合图4给出的辅助线提示加以证明;(3)请你运用(2)中的结论解决下列问题:若一个倍角三角形的两边长为5,6,求第三边长.(直接写出结论即可)5.阅读理解题在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax+By+C=0(A 2+B 2≠0)的距离公式为:d=00√A 2+B 2,例如,求点P (1,3)到直线4x+3y ﹣3=0的距离. 解:由直线4x+3y ﹣3=0知:A=4,B=3,C=﹣3 所以P (1,3)到直线4x+3y ﹣3=0的距离为:d=√42+32=2根据以上材料,解决下列问题:(1)求点P 1(0,0)到直线3x ﹣4y ﹣5=0的距离. (2)若点P 2(1,0)到直线x+y+C=0的距离为,求实数C 的值.6.若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则有x 1+x 2=−ba ,x 1⋅x 2=ca ,由上式可知,一元二次方程的两根和、两根积是由方程的系数确定的,我们把这个关系称为一元二次方程根与系数的关系.若α,β是方程x 2−x −1=0的两根,记S 1=α+β,S 2=α2+β2,…,S n =αn +βn ,(1)S 1=________;S 2=________;S 3=________;S 4=________;(直接写出结果) (2)当n 为不小于3的整数时,由(1)猜想S n ,S n−1,S n−2有何关系? (3)利用(2)中猜想求(1+√52)7+(1−√52)7的值.。
点到直线的距离、两条平行线间的距离题型全归纳【知识梳理】点到直线的距离与两条平行线间的距离题型一、点到直线的距离【例1】 求点P (3,-2)到下列直线的距离: (1)y =34x +14;(2)y =6;(3)x =4.【类题通法】应用点到直线的距离公式应注意的三个问题(1)直线方程应为一般式,若给出其他形式应化为一般式. (2)点P 在直线l 上时,点到直线的距离为0,公式仍然适用.(3)直线方程Ax +By +C =0中,A =0或B =0公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.【对点训练】1.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A .2 B .2- 2 C .2-1D .2+12.点P(2,4)到直线l:3x+4y-7=0的距离是________.题型二、两平行线间的距离【例2】求与直线l:5x-12y+6=0平行且到l的距离为2的直线方程.【类题通法】求两平行线间的距离,一般是直接利用两平行线间的距离公式,当直线l1:y=kx+b1,l2:y=kx+b2,且b1≠b2时,d=|b1-b2|k2+1;当直线l1:Ax+By+C1=0,l2:Ax+By+C2=0且C1≠C2时,d=|C1-C2|A2+B2.但必须注意两直线方程中x,y的系数对应相等.【对点训练】3.两直线3x+y-3=0和6x+my-1=0平行,则它们之间的距离为________.题型三、距离的综合应用【例3】求经过点P(1,2),且使A(2,3),B(0,-5)到它的距离相等的直线l的方程.【类题通法】解这类题目常用的方法是待定系数法,即根据题意设出方程,然后由题意列方程求参数.也可以综合应用直线的有关知识,充分发挥几何图形的直观性,判断直线l的特征,然后由已知条件写出l的方程.【对点训练】4.求经过两直线l1:x-3y-4=0与l2:4x+3y-6=0的交点,且和点A(-3,1)的距离为5的直线l的方程.5. 已知A(-2,0),B(2,-2),C(0,5),过点M(-4,2)且平行于AB的直线l将△ABC分成两部分,求此两部分面积的比.题型四距离最值问题例4.已知P,Q分别为直线3x+4y-12=0与6x+8y+6=0上任一点,则|PQ|的最小值为()A.B.C.3 D.6例5.已知x+y-3=0,则的最小值为.例6.已知直线l1过A(3,0),直线l2过B(0,4),且l1∥l2,用d表示l1与l2间的距离,则d的取值范围是.【练习反馈】1.原点到直线x+2y-5=0的距离为()A.1B. 3C.2 D. 52.已知直线l1:x+y+1=0,l2:x+y-1=0,则l1,l2之间的距离为()A.1 B. 2C. 3 D.23.直线4x-3y+5=0与直线8x-6y+5=0的距离为________.4.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是________.5.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.点到直线的距离、两条平行线间的距离题型全归纳参考答案【例1】[解] (1)185.(2) 8.(3) 1.【对点训练】 1.选C 2.答案:3【例2】设所求直线的方程为5x -12y +C =0, 由两平行直线间的距离公式得2=|C -6|52+-2,解得C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 【对点训练】 3.104【例3】[解]当直线斜率不存在时,即x =1,显然符合题意.当直线斜率存在时,设所求直线的斜率为k ,则直线方程为y -2=k (x -1).由条件得|2k -3-k +2|k 2+1=|5-k +2|k 2+1,解得k =4,故所求直线方程为x =1或4x -y -2=0. 【对点训练】4.x =2或4x -3y -10=0. 5.两部分的面积之比为. 例4.答案:C 例5.答案:例6.答案:(0,5] 【练习反馈】1.选D 2.选B 3.12 4.答案:-3或1735.解:由直线方程的两点式得直线BC 的方程为 y2-0=x +31+3,即x -2y +3=0.由两点间距离公式得|BC |=-3-2+-2=25,点A 到BC 的距离为d ,即为BC 边上的高,d =|-1-2×3+3|12+-2=455,所以S =12|BC |·d =12×25×455=4, 即△ABC 的面积为4.。
平行线的距离公式
平面上平行线间的距离公式为:d=|C1-C2|/√(A²+B²)。
设两条直线方程为Ax+By+C1=0,Ax+By+C2=0则其距离公式
d=|C1-C2|/√(A²+B²)。
几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线一定要在同一平面内定义,不适用于立体几何,比如异面直线,不相交,也不平行。
基本定义:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如若a∥b,b∥c,则a∥c。
平行线的定义包括三个基本特征:一是在同一平面内,二是两条直线,三是不相交。
在同一平面内,两条直线的位置关系只有两种:平行和相交。
直角坐标系的8大公式直角坐标系是数学中常用的坐标系之一,广泛应用于几何、物理和工程等领域。
在直角坐标系中,我们通过坐标对点进行唯一标识和定位。
本文将介绍直角坐标系中的8大公式,这些公式在解决几何和代数问题时非常有用。
一、坐标距离公式在直角坐标系中,我们可以通过两点的坐标计算它们之间的距离。
假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么点A和点B之间的距离可以由以下公式求得:d = √((x₂ - x₁)² + (y₂ - y₁)²)这个公式被称为坐标距离公式,可以通过计算两点之间的直线距离来确定它们之间的距离。
二、中点公式在直角坐标系中,我们可以通过两点的坐标计算它们的中点坐标。
假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么这两点的中点坐标可以由以下公式求得:M = ((x₁ + x₂) / 2, (y₁ + y₂) / 2)这个公式被称为中点公式,可以通过计算两点坐标的平均值来确定它们的中点坐标。
三、斜率公式在直角坐标系中,我们可以通过两点的坐标计算它们之间的斜率。
假设点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),那么这两点之间的斜率可以由以下公式求得:m = (y₂ - y₁) / (x₂ - x₁)这个公式被称为斜率公式,可以用于计算两点之间直线的斜率。
斜率表示直线的倾斜程度。
四、线性方程公式在直角坐标系中,我们可以通过直线的斜率和一点的坐标来确定直线的方程。
假设直线的斜率为m,一点的坐标为(x₁, y₁),那么直线的方程可以由以下公式给出:y - y₁ = m(x - x₁)这个公式被称为线性方程公式,可以用于描述直线在直角坐标系中的方程。
五、平行线公式在直角坐标系中,我们可以通过两条平行线的斜率来确定它们之间的关系。
假设平行线L₁的斜率为m₁,平行线L₂的斜率为m₂,那么这两条平行线之间的关系可以由以下公式给出:m₁ = m₂这个公式表示两条平行线的斜率相等。