电磁学(梁灿彬)第五章 稳恒电流的磁场
- 格式:ppt
- 大小:3.51 MB
- 文档页数:77
《电磁学》教学大纲英文名称:electromagnetics授课专业:物理学学时:72学分:4开课学期:二年级上学期适用对象:物理学专业一、课程性质与任务电磁学是物理学专业的一门专业基础课。
电磁学已渗透到物理学的各个领域,成为研究物质过程必不可少的基础。
通过本门课程的教学,要求:使学生能全面地认识和理解电磁运动的基本现象和基本概念,系统地掌握电磁运动的基本规律,具有一定的分析和解决电磁学问题的能力,并为学习后继课程打下必要的基础。
通过对电磁学发展史上某些重大的发现和发明的介绍,使学生了解物理学思想和实验方法,培养学生的辩证唯物主义世界观,使学生获得科学方法论上的教益。
二、课程教学的基本要求1 、正确理解以下基本概念和术语:基本粒子、静电场、库仑力、电场强度、电通量、电位、电位差、电功、静电平衡、静电屏蔽、电容、加速器、静电能、极化强度、电位移向量、电流密度、超导、电功率、经典金属电子论、电动势、非静电力、温差电动势、静磁场、磁感应强度、安培力、磁通量、磁矩、电磁感应、感生电场、自感、互感、涡电流、趋肤效应、磁能、磁化强度、磁化电流、磁场强度、顺磁性、抗磁性、铁磁性、磁畴、铁磁屏蔽、位移电流、电磁场、能流密度、电磁波谱。
2 、掌握以下基本规律及分析计算方法(1)静电场基本定律和定理:库仑定律、电荷守恒定律、高斯定理、环路积分定理、叠加原理。
(2)稳恒电流和电路:欧姆定律、焦耳定律、基尔霍夫定律(节点方程、回路电压方程)(3)稳恒磁场的基本定律和定理:毕——伐定律,安培定律、高斯定理、环路积分定理。
(4)交变电磁场的基本定律和定理:楞次定律、法拉第电磁感应定律、麦克斯韦方程组。
(5)掌握以下物理量的分析计算方法:电场强度、电位、电位差、电通量、电容、磁感应强度、磁通量、安培力、磁矩、电动势、电磁能量等。
3 、注意培养学生以下几方面能力(1)分析电磁运动规律及物理实验构思方法,重视对实验现象的总结,培养科学分析问题的能力。
§5 带电粒子在磁场中的运动引言:我们已知磁场对电流施力作用,而带电粒子以速度v运动时相当于电流,故运动带电粒子在磁场B中要受力而运动,此力称为洛仑兹力。
一、Force s z Lorent 'q 设一带电q (含正、负号)的粒子以速度v在磁场B 中运动,实验证明它受力为:B v q F ⨯=其大小为),sin(B v qvB F =,其方向垂直于B v ,所决定的平面,由B v⨯确定,如图5-34。
图5-34[讨论]1、0,=⋅⊥v F v F 故,表明磁力F 对运动电荷q 不做功。
F为侧向力(类似于曲线运动提供向心力者),它只改变q 之运动方向,不改变v或动能。
2、若空间B E,并存,则:)(B v E q F ⨯+=。
3、由B v q F⨯=也可定义B ,方法同前用B l Id F d ⨯=定义。
4、选速器原理:电子束中电子速度v 大小不一,选择某一速率的电子。
让电子束垂直穿过B E,(正交)共存区,直进者选出,其余删掉,且选出的粒子速率满足BE v =,分析如图5-35。
带负电的电子以初速进入B E,共存区BF+qF B-qθ)θ 正电荷 负电荷υυ∵B E F F =,∑=0FevB eE = ∴BE v =与m e ,无关。
图5-35二、洛仑兹力与安培力的关系安培力:B l Id F d⨯=洛仑兹力:B v q F⨯=形式上相似,反映内在有联系(相当性:l Id v q↔)。
载流导体内有大量定向运动电荷(电子),磁场对运动电荷的洛仑兹力是磁场对载流导体安培力的根本起因(教材中:安培力是作用在各自由电子上洛仑兹力的宏观表现)。
下面从微观角度进行考察:如图5-36(a),一段长为L ,载流为I 、截面为S 的导线,电子定向漂移速度u,电子数密度为n ,处于均匀磁场B中(不考虑热运动)neu u j ==ρneus js I ==如图5-36(b),L F ' --电子所受洛仑兹力,H F--霍耳电场力,当H L F F -='时,平衡。
《电磁学》教学大纲一、课程基本信息1.课程中文名称:电磁学2.类别:必修3.专业:物理学教育4.学时:108学时5.学分:6学分(含实践学分2学分)二、课程的地位、作用和任务电磁学是师范专科学校物理教育专业的一门重要的主干课程。
通过本课程的学习,使学生全面了解电磁运动的基本现象,系统地掌握电磁运动的基本概念及基本规律,初步具备分析解决电磁学问题的能力;了解经典电磁学的运用范围和电磁学发展史上某些重大发现和发明过程的物理思想和方法;了解电磁学研究的发展前沿以及它与其他学科的联系,注意理论联系实际,让学生初步学会用电磁学知识解决一些生产及生活中的实际问题。
三、理论教学内容与任务基本要求第一章真空中的静电场( 10 学时)(一)要求l、掌握静电场的基本概念,基本规律;掌握描述“场”和解决“场”问题的方法和途径2、明确电荷是物质的一种属性,阐明电荷的量子性和守恒定律:掌握电荷之间的相互作用规律3、掌握电场强度、电位这两个重要概念以及它们所遵循的叠加原理4、能熟练地计算有关静电学的有关问题5、演示实验:(1)摩擦起电,电荷之间的相互作用,电荷的检验;(2)电力线的分布(二)要点:l、电荷2、库仑定律3、电场电场强度4、静电场的高斯定理5、电位电位差静电场的环路定理*6、电场强度与电位的微分关系(三)难点1、电场、电位和电能量等概念;2、求解电场、电位分布的方法第二章导体周围的静电场(6学时)(一)要求1、正确理解并掌握导体静电平衡的条件2、掌握导体静电平衡的性质:初步掌握求解导体静电平衡问题的方法3、理解电容及电容器的概念:掌握平衡板电容器、球形电容器、圆柱形电容器计算公式以及电容器串、并联的计算方法4、理解电场能的概念并会计算真空中的静电场能5、演示实验:(1)导体表面上电荷的分布;(2)静电感应起电;(3)静电屏蔽(二)要点:1、导体的静电平衡条件2、导体静电平衡的性质3、封闭导体腔内外的电场4、电容及电容器*5、静电计静电感应起电机6、带电体的能量(三)难点:根据导体静电平衡条件和导体的静电平衡性质求解导体静电平第三章静电场中的电介质( 6 学时)(一)要求1、了解电介质极化的微观机制,掌握极化强度矢量的物理意义2、理解极化电荷的含义,掌握极化电荷、极化电荷面密度与极化强度矢量P 之间的关系3、掌握有介质时电场的讨论方法,会用介质中的高斯定理来计算静电场;明确E 、P 、D 的联系和区别4、了解静电场的能量及能量密度5、演示实验:介质对电容器电容的影响(二)要点:1、电介质的极化2、极化强度矢量3、有介质时的静电场方程*4、静电场的边值关系5、静电场的能量和能量密度(三)难点:求解介质中静电场的具体问题,如极化电荷的分布,介质中电场的分布等第四章稳恒电流和电路(8 学时)(一)要求1、理解稳恒电流的概念以及与其相对应的稳恒电场:了解稳恒电路的特点及串、并联电阻的计算2、透彻分析并掌握电流密度矢量及电场这两个概念的物理意义3、掌握欧姆定律(不含源电路、一段含源电路和全电路的欧姆定律)和焦耳定律;会计算电功及电功率4、掌握用基尔霍夫定律计算一些典型的复杂电路的方法5、演示实验:(1)电源电动势的测量;(2)影响导体电阻的因素;(3)惠斯登电桥(二)要点:1、电流稳恒电流电流密度矢量2、欧姆定律及其微分形式3、焦耳定律电功率*4、电阻的串联和并联*5、气体导电、液体导电6、电源和电动势7、闭合回路及含源支路的欧姆定律8、基尔霍夫定律*9、温差电现象(三)难点:l、电动势的概念2、用基尔霍夫定律求解复杂的电路第五章稳恒电流的磁场( 10 学时)(一)要求l、理解掌握磁感应强度B 的物理意义2、在理解毕奥—萨伐尔定理物理意义的基础上能熟练地用它来计算载流导体的磁感应强度的分布3、掌握磁场中的高斯定理和安培环路定理;并会用安培环路定理计算具有轴对称的电流所产生的磁场4、掌握洛仑兹力公式及安培公式,并会用它们进行有关的计算5、演示实验:(1)磁感应线的演示(2)载流导线之间的相互作用(二)要点:l、基本磁现象2、磁感应强度、磁感应线3、毕奥—萨伐尔定律4、磁通量、磁场的高斯定理5、安培环路定理6、磁场对平行载流导线及带电粒子的作用7、平行载流导线的相互作用安培的定义(三)难点:1、磁感应强度的定义2、求解磁感应强度分布的具体问题第六章磁场对运动电荷和电流的作用(6学时)(一)要求1、掌握洛仑兹力公式,并会用右手螺旋法则判断洛仑兹力的方向2、掌握带电粒子在磁场中的运动情况3、了解回旋加速器的工作原理4、掌握安培力公式,并会用它们进行有关计算5、掌握磁场对载流导线的作用6、演示实验:(1)汤姆逊实验;(2)霍尔效应(二)要点:1、洛仑兹力2、汤姆逊实验*3、霍耳效应4、安培定律磁场对载流导线的作用(三)难点:洛仑兹力和安培力的概念及有关计算第七章磁介质( 6 学时)(一)要求1、理解磁化的概念和描述磁化的宏观量M 的定义式;掌握磁化电流与磁化强度矢量M 之间的关系2、了解磁介质呈现顺磁性和抗磁性的原因;掌握铁磁质的三大特点:①高值,②非线性,③磁滞现象3、掌握介质中的安培环路定理及其应用;了解H 、M 、B 三者之间的联系和区别4、了解磁路概念及相应的计算5、演示实验:介质对磁场的影响(二)要点:1、磁介质的磁化磁化强度矢量磁化电流2、磁介质存在时的安培环路定理3、顺磁性与抗磁性4、铁磁质* 5、磁路及其计算(三)难点:磁化强度矢量的物理意义以及求解磁化电流的第八章电磁感应和暂态过程( 12学时)(一)要求1、理解电磁感应现象的物理意义;掌握电磁感应的法拉第—楞次定律2、解感生电场的物理意义3、熟练地掌握计算动生电动势和感生电动势的方法,并能正确判断它们的方向4、了解自感现象和互感现象以及它们的应用,掌握自感系数L和互感系数M的物理意义和计算方法5、了解涡流,趋肤效应以及磁场的能量6、能正确写出RL、RC 串并联电路暂态过程的微分方程,掌握其解的形式和物理意义。
第五章 稳恒磁场引言:电流通过导体有热效应,通过电解液有化学效应。
本章讨论电流的磁效应:电流在其周围空间激发磁场,磁场对电流有磁力作用。
本章重点介绍真空中静磁学知识,建立稳恒磁场之基本方程式。
研究方法仍为场论方法,注意与静电场比较和区别。
§1 磁的基本现象和规律一、磁作用电与磁常相伴随、相互转化,相互作用综述为图5-1所示几种情况。
图5-1 图5-21、磁铁间的相互作用 结合实物演示说明:(1)同种磁极相互排斥、异种磁极相互吸引,参见图5-2; (2)将一磁棒分为两段,N 、S 极并不能相互分离,不存在磁单极; (3)地球本身是一大磁体,其磁性N 极在地理南极,磁性S 极在地理北极。
自由悬挂的条形磁棒或长磁针始终指南北,即是上规律的体现——指南针及应用。
2、电流对磁铁的作用图5-3NS NSSNN S N S电流磁铁磁铁电流③ ②② ③①④I SNNI NSSINN SS通电导线周围产生磁场,通电螺线管相当于条形磁铁,参见图5-3。
3、磁铁对电流的作用电流是运动电荷形成,表明磁极对运动电荷也有磁力作用,参见图5-4。
图5-4 右手定则判受力4、电流对电流的作用 参见图5-5说明。
同向电流:吸引 反向电流:排斥图5-5以上均称为磁相互作用,是基本的磁现象。
二、磁场1、物质磁性的基本来源螺线管通电后的磁性与磁棒的相似性,启发人们:磁铁与电流是否在本源上一致?(19世纪,法国)安培分子电流假说:组成磁铁的最小单元——磁分子就是环形电流。
若这些分子电流定向排列,宏观上即显示N 、S 极。
●磁分子的“分子电流”等效成图5-6●分子环流形成的微观解释:原子、分子内电子的绕核旋转和自转。
综上可见:一切磁效应均来源于电流;一切磁作用都是电流与电流之间的相互作用,或说成运动电荷之间的相互作用。
I NSFN SF图5-62、磁场在静电学中,电的作用是近距作用,同样磁作用也是近距的:即磁作用是通过磁场传递。
///5.1.1 解答:(1) 质子所受洛伦兹力的方向向东(2) 质子的电荷量191.610q C -=⨯,质子所受洛伦兹力大小为163.210F qvB N -==⨯质子的质量271.6710m kg -=⨯,质子所受洛伦兹力与受到的地球引力相比较:101.9510F qvB F mg==⨯洛重 5.2.1 解答:O 点的磁场B 可看作两条半无限长直载流导线产生的磁场1B 、2B 和MN 部分阶段1/4圆周载流导线产生的磁场3B 的合成。
由于磁场方向均垂直纸面向外,所以直接求出它们大小并相加即可0012cos0cos 424I IB B R Rμμπππ⎛⎫==-=⎪⎝⎭ 40032448I IB Rd R Rππμμαπ-==⎰0123124I B B B B R μππ⎛⎫=++=+ ⎪⎝⎭方向垂直纸面向外 5.2.2 解答:(a )延长线通过圆心的直长载流导线在O 点产生磁场为1B ,其大小为0;另一直长载流导线在O 点产生的磁场为2B ,方向垂直纸面向里;圆弧部分载流导线在O 点产生的磁场为3B ,方向垂直纸面向里。
故O 点的合磁场大小为0001233314842I I I B B B B R R R μμμπππ⎛⎫=++=+=+ ⎪⎝⎭方向垂直纸面向里(b )两半直长载流导线在O 点产生的磁场分别为1B 、2B ,方向均垂直纸面向里;圆弧部分载流导线在O 点产生的磁场为3B ,方向垂直纸面向里。
故O 点的合磁场大小为()000012324444I I I IB B B B R R R Rμμμμππππ=++=++=+ 方向垂直纸面向里 5.2.3 解答:(a )因为两直长载流导线延长线均通过圆心,所以对O 点的磁场没有贡献,故只需要考虑两个圆弧载流导线在O 点产生的磁场,它们所激发的磁场分别为1B 、2B ,方向均垂直纸面向里,故O 点的合磁场大小为00123312248I I B B B a b a b ππμμπ⎛⎫⎪⎛⎫=+=+=+ ⎪ ⎪⎝⎭ ⎪⎝⎭方向均垂直纸面向里(b )两延长线的直长载流导线对O 点的磁场没有贡献,只需要考虑两长度为b 的直长载流导线对O 点的磁场1B 、2B 和圆弧载流导线对O 点的磁场3B ,方向均垂直纸面向里,其合磁场大小为()0001232332cos90cos13524442a I I I B B B B b a b a πμμμππππ⎛⎫⎛⎫⎪=++=-⨯+=+ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭方向均垂直纸面向里。
车辆工程专业课程描述课程名称:大学物理㈠课程编号:0911xk05课程学分: 3 学时:54前期课程:高等数学课程简介以物理学基础为内容的大学物理课程,是理工科各专业学生一门重要的通识性的必修基础课。
大学物理课程既为学生打好必要的物理基础,又在培养学生科学的世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神、创新意识等方面,具有其他课程不能替代的重要作用。
教学要求1. 使学生对物理学所研究的各种物质运动形式以及它们之间的联系有比较全面和系统的认识;对大学物理课中的基本理论、基本知识能够正确地理解,并且有初步应用的能力。
2. 通过教学环节,培养学生严肃的科学态度和求实的科学作风。
根据本课程的特点,在传授知识的同时加强对学生进行能力培养,如通过对自然现象和演示实验的观察等途径,培养学生从复杂的现象中抽象出带有物理本质的内容和建立物理模型的能力、运用理想模型和适当的数学工具定性分析研究和定量计算问题的能力以及独立获取知识与进行知识更新的能力,联系工程实际应用的能力等。
3. 在理论教学中,要根据学生情况精讲基本内容,有些内容可安排学生自学或讨论,并要安排适当课时的习题课;要充分利用演示实验、录像等形象化教学手段,应尽量发挥计算机多媒体在物理教学中的作用,以提高教学效果。
在教学过程中,还要处理好与中学物理的衔接与过渡,一方面要充分利用学生已掌握的物理知识,另一方面要特别注意避免和中学物理不必要的重复。
在与后继有关课程的关系上,考虑到本课程的性质,应着重全面系统地讲授物理学的基本概念、基本规律和分析解决问题的基本方法,不宜过分强调结合专业。
教学内容(一)力学1.质点运动学2.质点动力学3.刚体的运动要求:力学是大学物理教学内容中最基本、最重要的部分,它是学习大学物理其它部分以及许多后继课程所必须具备的基础知识。
教学中要充分利用学生已有的力学基础,避免简单重复;要应用高等数学工具,在新的高度讲授力学概念和规律。