第二章2 过程控制的数学模型-曲线响应 (1)讲解
- 格式:ppt
- 大小:309.50 KB
- 文档页数:18
过程控制数学模型阶跃响应法过程控制是指通过对物理、化学或生物过程的监测和调节,实现对过程参数的控制,使得过程能够按照预定的要求进行运行。
在过程控制中,数学模型是不可或缺的工具,它可以描述过程的动态行为,帮助我们设计和调节控制器。
在过程控制中,一种常见的数学模型是阶跃响应法,即通过对过程施加一个阶跃输入信号,观察过程输出的响应,从而得到过程的数学模型。
阶跃响应法可以分为两个步骤:建立模型和参数辨识。
阶跃响应法的建模包括确定过程的数学描述和选择适当的模型结构。
通常情况下,过程可以用线性动态模型来描述,如传递函数模型或状态空间模型。
传递函数模型是用拉普拉斯变换来描述的,它将输入和输出之间的关系表示为一个比例因子和一个滞后因子的乘积。
传递函数模型的一般形式可表示为:G(s)=K/(Ts+1)其中,G(s)是过程的传递函数,K是比例增益,T是时间常数,s是拉普拉斯变换的复频率。
dx/dt = Ax + Buy=Cx+Du其中,x是状态向量,u是输入向量,y是输出向量,A、B、C和D是与过程特性相关的矩阵。
在得到过程的数学模型后,需要进行参数辨识,即确定模型的参数值。
参数辨识可以通过对测量数据进行处理来实现。
通常情况下,可以通过最小二乘法来拟合模型和测量数据,将模型的输出与实际测量的输出之间的差异最小化,从而得到最优的参数值。
阶跃响应法的优点是简单易行,只需要对过程施加一个阶跃输入信号,并测量输出的响应。
通过观察响应的形状和参数的数值大小,可以初步了解过程的特性,并建立起数学模型。
然而,阶跃响应法也有一些局限性。
首先,采样间隔和采样时间的选择对辨识结果有一定影响,因此需要对采样参数进行合理选择。
其次,阶跃响应法只能获取过程的静态和动态特性,无法获取过程的非线性特性。
最后,如果过程具有多模态响应,阶跃响应法可能无法获取到所有的模态。
综上所述,过程控制数学模型阶跃响应法是一种简单有效的方法,可以帮助我们了解过程的动态特性,以及设计合理的控制策略。