矿井提升机毕业设计
- 格式:doc
- 大小:799.84 KB
- 文档页数:39
毕业设计–矿井提升机图1. 引言矿井提升机是一种用于将物料从井下提升到地面的设备,广泛应用于矿山和地下工程中。
在矿山生产中,矿井提升机起到了至关重要的作用。
本文将介绍矿井提升机的图示设计。
2. 设计目的矿井提升机图的设计目的是为了清晰地展示矿井提升机的结构和工作原理。
通过图示,读者可以直观地了解矿井提升机的各个部件和它们之间的相互关系。
3. 设计内容矿井提升机图的设计内容包括矿井提升机的整体结构、关键部件以及它们之间的连接方式。
通过图示,读者可以了解到以下内容:3.1 矿井提升机的整体结构矿井提升机的整体结构包括提升机井架、轨道、提升绳、提升机车及各种辅助设备。
图中将展示这些部件的布局和相互关系,帮助读者直观地了解矿井提升机的外观。
3.2 矿井提升机的关键部件矿井提升机的关键部件包括电动机、减速机、刹车器、钢丝绳等。
图中将详细标注这些部件,以及它们的工作原理和安装位置。
3.3 矿井提升机部件之间的连接方式矿井提升机的各个部件之间通过连接方式密切配合,确保提升机的正常运行。
图中将展示这些连接方式,如电动机与减速机的连接、提升绳的连接方式等。
4. 设计流程矿井提升机图的设计流程如下:1.收集矿井提升机的相关资料和信息,包括它的结构、部件和工作原理。
2.根据收集到的资料,绘制矿井提升机的草图。
草图的目的是在纸上粗略勾勒出矿井提升机的整体结构和关键部件的位置。
3.在草图的基础上,使用计算机辅助设计(CAD)软件进行详细绘制。
在CAD软件中,可以更加精确地绘制出矿井提升机的各个部件及其连接方式。
4.检查和修正设计图。
在绘制完成后,需要对设计图进行检查和修正,确保图中的信息准确无误。
5.输出并分享设计图。
使用Markdown文本格式保存设计图,并进行分享和交流。
5. 总结本文介绍了矿井提升机图的设计方法和内容。
通过图示,读者可以直观地了解矿井提升机的结构和工作原理。
希望本文对正在进行矿井提升机图设计的读者有所帮助。
JK-2.5/20型提升机的组成及各部分结构特点矿井提升机作为一个完整的机械—电气机组,它的组成部分及其功能如下:1)工作机构主轴装置和主轴承(包括滚筒和摩擦轮),作为缠绕或搭放提升钢丝绳,以承受各种正常载荷(静载荷、动载荷)及非常载荷。
2)制动系统制动器和液压传动系统,用于机器停止时,能可靠地闸住机器。
并能在正常(工作)制动和紧急制动时,参与控制机器的速度,能使机器迅速停车。
3)机械传动系统减速器和联轴器,用以减速和传递动力。
4)润滑系统润滑油站及管路,当机器工作时,不断向轴承、减速器轴承及啮合齿面压送润滑油。
5)观测和操纵系统包括操纵台、深度指示器及测速发电机。
操纵台控制主电动机的速度变化和换向及对制动系统进行控制;深度指示器指示提升容器的运行位置,在提升容器接近井口(或井底)时发出减速信号,当机器过卷或超速时,进行限速和过卷保护。
对于多绳摩擦式提升机,能自动调零;测速发电机用于测定机器的实行运行速度。
6)拖动、控制和自动保护系统拖动有交流、直流两大系统。
交流包括:交流主电动机、金属电阻及控制接触器,并可带动力制动、低频制动或微拖动装置。
直流包括:直流电动机,其电源设备,有电动发电机组和可控硅整流。
拖动系统是为了实现机器稳定地起动、等速、减速、停车和换向。
自动保护系统具有:过速、过卷、闸瓦磨损超限、润滑油超压或欠压、制动油超压或欠压、轴承温升超限,制动油温升超限、电动机过流或欠压等自动保护的作用。
7)辅助部分包括司机座椅、机座、机架、护栅、挡板、护罩等辅助用具及材料。
对于多绳摩擦式提升机还包括导向轮装置及摩擦轮衬垫的车槽装置。
2 各系列提升机主轴装置2.1 主轴装置的结构主轴装置是提升机的工作机构,也是提升机的主要承载部件,它承担了提升机的全部转矩,同时也承受着摩擦轮上两侧钢丝绳的拉力。
主轴装置主要由主轴、摩擦轮、滚动轴承、轴承座、轴承盖、轴承梁、摩擦衬垫、固定块、压块、夹板、高强度螺栓组件等零部件组成。
目录第一章. 概述 (1)1.1 矿井提升机的发展概况 (1)1.2 矿井提升机生产过程简介 (1)1.3矿井提升的特点 (2)第二章几种常见的提升机和运输设备的简介 (4)2.1缠绕式、摩擦式提升机的工作原理 (4)2.1.1单绳缠绕式提升机的工作原理 (4)2.1.2多绳摩擦式提升机的工作原理 (5)2.2 缠绕式、摩擦式提升机的特点、存在的问题以及解决的方法 (8)2.2.1. 缠绕式提升机的特点、缺点以及问题的解决 (8)2.2.2. 摩擦式提升机的特点、缺点以及问题的解决 (9)2.2.3多绳摩擦提升机的缺点: (9)2.3缠绕式、摩擦式提升机共同存在并难以解决的一些问题 (10)2.4 目前斜井提升常用的方式 (11)2.4.1.斜井串车提升的工作原理 (11)2.4.2. 斜井串车提升的优点和不足 (13)2.4.3. 斜井胶带输送机提升的工作原理 (14)2.4.4皮带输送机的分类 (15)2.4.5 斜井胶带输送机提升的优点及缺点 (15)第三章旋斗式连续提升机的简介与设计 (17)3.1旋斗式连续提升机简介 (17)3.1.1 旋斗式连续提升机的结构 (17)3.1.2 旋斗式连续提升机的工作原理 (17)3.1.3旋斗式连续提升机的构成 (18)3.1.4旋斗式连续提升机的优点: (19)3.1.5旋斗式提升机的不足 (20)3.2.旋斗式连续提升机的设计计算 (22)3.2.1 设计参数: (22)3.2.2主轴装置的设计计算 (22)3.2.2.1链斗的初步设计 (22)3.2.2.2提升链的设计与确定 (23)3.2.2.3斗链材料的选择 (25)3.3主动链轮计算 (28)3.3.1 驱动功率计算与电机选择 (30)3.3.2减速器选型 (32)3.3.3联轴器的选型 (33)3.3.4驱动链轮轴轴承和轴承座 (35)3.3.5主轴的设计及计算校核 (36)3.3.6链轮处键连接计算及校核 (39)3.4斗轴的设计 (40)3.4.1链的平衡轴设计 (41)3.4.2导向链轮的设计计算 (43)3.4.2.1导向链轮1的设计 (44)3.4.2.2a轴计算 (44)3.4.2.3b.导向链轮轴承选择 (46)3.4.2.4c.导向链轮轴校核 (46)3.4.3 制动器的选择计算 (47)第四章旋斗式连续提升机的改向方案设计 (48)4.1 四种传动方案的选择 (48)4.2 改向链轮联合传动的设计 (51)4.3改向轮系的设计 (52)第五章罐道梁以及管路的设计 (54)5.1概述 (54)5.2方案比较及选择 (54)5.3施工工艺 (54)5.3.1构件加工及防腐 (54)5.4封口及井盖门安装 (55)5.5 罐道梁梯子间的安装 (56)5.6 管路安装 (56)5.7井底套架安装 (56)5.8电缆敷设 (56)第六章回煤系统的设计 (57)参考文献 (58)外文翻译部分: (59)英文原文 (59)中文译文 (67)致谢 (75)第一章. 概述1.1 矿井提升机的发展概况矿山生产的全过程离不开矿山运输和提升工作。
摘要矿井提升机是沿井筒提升煤炭、矸石、升降人员、下放材料的大型机械设备。
它是矿山井下生产系统和地面工业广场相连接的枢纽,故要求具有很高的安全性,其成本和耗电量也比较高。
因此本次在矿井提升机选型设计中, 主要是根据所给参数确定矿井提升设备,包括选择提升容器、钢丝绳、提升机、卷筒及校核提升能力,并经过多方面的技术经济比较,结合矿井的具体条件,做到设计切合实际。
保证提升机的选型及其的,确定具有经济安全合适的提升系统。
矿井排水是通过排水泵经过管路把井下的水排到地面,保证正常生产。
本次设计主要是通过计算,设计从中央泵房把水从立井中的管路排放到地面。
矿井通风是采矿科学的一个重要组成部分。
为了使井下各工作地点都有良好的通风,有足够的新鲜空气,使其中有毒,有害,粉尘不超过规定值。
矿井通风在矿业工程中占重要地位。
通风机分为轴流式和离心式,本次设计中主要是做到对通风机有合理的选型。
关键词:矿井提升机矿井排水矿井通风选型设计绪论本设计选题根据是解决煤矿矿井生产中的提升;排水及通风问题。
矿山提升设备是矿井运输中的非常重要设备,占有特殊地位,是井下与地面联系的主要工具。
矿井提升机是矿山运输中的主装式交-交变频提升机。
后者主回路和磁场回路均采用电力电子器件,实现变频和整流。
由于采集设备,是井下与地面联系的重要工具。
矿井提升机又是矿山最大的固定设备之一,它的耗电量占矿山总耗电量的30~40%。
电力电子技术较早就用于矿井提升机的传动,并且发展迅速,从60年代的模拟控制SCR-D直流提升机发展到目前最先进的同步机内用交流电机,没有电刷问题,提升机容量可以大幅度增加,例如南非帕拉波矿井内装式提升机电机功率达6300kW。
我国东欢坨、大雁、陈四楼等矿均引进了内装式提升机。
目前,全数字电力电子器件构成的国产直流提升机已占领了国内市场,并开始出口。
但是由于我国的科技和生产水平的限制,我国的矿井提升机还有很大一部分需要依赖于进口发达国家的设备。
第一章 矿井提升机的拖动系统矿井提升机是煤矿运输系统重要组成部分,人员、设备、材料、煤炭和矸石等均靠提升机输送。
提升机安全、高效和合理运行,对矿井生产及人身安全具有重发意义。
有效地合理选择电气设备是非常重要的。
第一节 提升机电动机的选择提升电动机一般分为直流和交流两种,交流电动机多采用绕线式异步电动机,目前我国矿井提升机交流拖动单机容量不超过1000KW ,双机拖动容量不超过2000KW ,其容量限制主要受主回路换向器容量的限制,交流拖动系统简单,设备价格便宜,当电动机单机容量超过1000KW ,或最大提升速度超过10m/s 时应采用直流拖动。
提升机的电动机选择时应满足功率、电压和转速三个方面的要求。
功率与提升机的一次提升质量和最大速度有关,双容器提升系统的电动机功率为:ημ1000m gkQV P = (1-1)式中 g – 重力加速度,m/s 2k - 矿井阻力系数,箕斗取1.15,罐笼提升取1.2Q - 提升机一次提升质量,kgVm - 提升机最大提升速度, m/sμ - 动力系数,取1.2~1.4η - 减速机传动效率直联传动时取1提升电动机电压,首先看电动机功率等级,功率越大电压等级越高,一般情况是,电动机功率在200kw 以下选380V 电压,250~500kw 以上选用高压6kv 电动机,200~500kw 范围内选用660v 电压,若电压等级在功率交叉范围内,最好通过技术经济比较后确定,也可由矿井供电电压决定,高压为6kv ,低压采用380v 。
电动机的转速为:D iV n m π60= (1-2)式中 i - 减速器传动比D - 提升机卷筒直径对于交流电动机确定型号,规格后,要根据力图中可能出现的最大力去校验是否满足过载能力,即 4.1m λλ=(1-3)第二节 提升系统对控制的要求无论何种提升系统,电力拖动和控制系统都为求简单经济,保证与设计的速度图和力图相符,并且在所有的情况下,提升系统都能够安全可靠工作,提升系统的电力拖动和控制系统应满足下列要求。
矿井提升机选型及控制设计摘要矿井提升机是矿井运输的重要设备,是沟通矿井上下的纽带的,其任务是沿井筒提煤、矿石、矸石,下放材料,升降人员和设备。
矿井提升机是煤矿、铁矿、有色金属矿生产过程中的重要设备,它的可靠运行直接关系到煤矿生产的安全,矿井提升机信号系统的可靠性和准确性是矿井提升和安全运输的重要保证。
本设计主要对矿井生产所用的提升机械设备选型及控制进行的一次合理选择,了解了煤矿生产矿井的提升系统的基构造和原理,对提升设备的选型和设计有了初步的了解,而且对井下大巷和采区的机械有了进一步的深入了解,对提升机,皮带,以及绞车的设计和选择有了更深一步的认识。
设计中运用PLC控制技术,PLC系统采用三菱公司的FX2N系列作为主控制器,对井口、井底、机房信号台进行信号联络。
组态设计使用WINCC完成,能够实现上位监控功能。
使用编程软件实现信号的联络。
采用PLC控制不但提高了信号传输的可靠性和准确性,而且具有极大的灵活性和扩展性。
在不改变系统硬件的前提下,仅靠改变PLC内部的程序就可满足用户要求。
有效地解决了信号系统中的远距离传输和可靠性问题。
关键词:矿井提升机信号系统;提升机;钢丝绳;电动机PLC;上位监控; WINCC前言毕业设计是培训学生综合运用本专业所学的理论知识和专业知识来分析,解决实际问题的能力的重要教学环节,是对三年所学知识的复习与巩固,同样,也促使了同学们之间的互相探讨,互相学习。
因此,我们必须认真、谨慎、塌实、一步一步的完成设计,给我们三年的学习生涯画上一个圆满的句号。
毕业设计是一个重要的教学环节,通过毕业实习使我们了解到一些实际与理论之间的差异。
通过毕业设计不仅可以巩固专业知识,为以后的工作打下坚实的基础,而且还可以培养和熟练使用资料,运用工具书的能力.在各位老师及有关技术人员的指导下锻炼自己独立思考、分析、解决的能力,把我们所学的课本知识与实践结合起来,起到温故而知新的作用。
在毕业设计过程中,我们要较系统的了解矿运及提升的设计中的每一个环节,包括从总体设计原则,本次设计综合三年所学的专业课程,以《设计任务书》的指导思想为中心,参照有关资料,有计划、有头绪、有逻辑地把这次设计搞好!该设计力求内容精练,重点突出。
矿井提升机的设计目录第1章前言第2章矿井提升机的组成及分类第3章矿井提升机的制动装置及安全装置第4章提升机调速控制系统硬件实现第5章提升机调速控制系统软件实现第6章矿井提升机操作、维护与检修第1章前言1.1 国内外提升及研究状况近三十年来,国外提升机机械部分和电气部分都得到了快速的发展,两者相互促进,相互提高。
起初的提升机是电动机通过减速器传动卷筒的系统,后来出现了直流慢速电动机和直流电动机悬臂安装直接传动的提升机。
上世纪七十年代西门子发明矢量控制的交一直一交变频原理后,标志着用同步电动机来代替直流电机实现调速的技术时代已经到来。
1981年第一台用同步机悬臂传动的提升机在德国问世,1988年由MA VGHH和西门子合作制造的机电一体的提升机(习惯称为内装电机式)在德国诞生了,这是世界上第一台机械和电气融合成一体的同步电机传动提升机。
在提升机机械和电气传动技术飞速发展的同时,电子技术和计算机技术的发展,使提升机的电气控制系统更是日新月异。
早在上世纪七十年代,国外就将可编程控制器(PLC)应用于提升机控制。
上世纪八十年代初,计算机又被用于提升机的监视和管理。
计算机和PLC的应用,使提升机自动化水平、安全、可靠性都达到了一个新的高度,并提供了新的、现代化的管理、监视手段。
特别要强调的是,此时期在国外一著名的提升机制造公司,如西门子、ABB、ALSTHOM都利用新的技术和装备,开发或完善了提升机的安全保护和监控装置,使安全保护性能又有了新的提高。
矿井提升系统的类型很多,按被提升对象分:主井提升、副井提升;按井筒的提升道角度分:竖井(如图1.1所示为竖井井架设备)和斜井;按提升容器分:箕斗提升、笼提升、矿车提升;按提升类型分:单绳缠绕式和多绳摩擦式等。
我国常用的矿用提升机主要是单绳缠绕式和多绳摩擦式。
我国的矿井与世界上矿业较发达的国家相比,开采的井型较小、矿井提升高度较浅,煤矿用提升机较多,其他矿(如金属矿、非金属矿)则较少。
第一章 矿井提升机的拖动系统矿井提升机是煤矿运输系统重要组成部分,人员、设备、材料、煤炭和矸石等均靠提升机输送。
提升机安全、高效和合理运行,对矿井生产及人身安全具有重发意义。
有效地合理选择电气设备是非常重要的。
第一节 提升机电动机的选择提升电动机一般分为直流和交流两种,交流电动机多采用绕线式异步电动机,目前我国矿井提升机交流拖动单机容量不超过1000KW ,双机拖动容量不超过2000KW ,其容量限制主要受主回路换向器容量的限制,交流拖动系统简单,设备价格便宜,当电动机单机容量超过1000KW ,或最大提升速度超过10m/s 时应采用直流拖动。
提升机的电动机选择时应满足功率、电压和转速三个方面的要求。
功率与提升机的一次提升质量和最大速度有关,双容器提升系统的电动机功率为:ημ1000m gkQV P = (1-1)式中 g – 重力加速度,m/s 2k - 矿井阻力系数,箕斗取1.15,罐笼提升取1.2Q - 提升机一次提升质量,kgVm - 提升机最大提升速度, m/sμ - 动力系数,取1.2~1.4η - 减速机传动效率直联传动时取1提升电动机电压,首先看电动机功率等级,功率越大电压等级越高,一般情况是,电动机功率在200kw 以下选380V 电压,250~500kw 以上选用高压6kv 电动机,200~500kw 范围内选用660v 电压,若电压等级在功率交叉范围内,最好通过技术经济比较后确定,也可由矿井供电电压决定,高压为6kv ,低压采用380v 。
电动机的转速为:D iV n m π60= (1-2)式中 i - 减速器传动比D - 提升机卷筒直径对于交流电动机确定型号,规格后,要根据力图中可能出现的最大力去校验是否满足过载能力,即 4.1m λλ=(1-3)第二节 提升系统对控制的要求无论何种提升系统,电力拖动和控制系统都为求简单经济,保证与设计的速度图和力图相符,并且在所有的情况下,提升系统都能够安全可靠工作,提升系统的电力拖动和控制系统应满足下列要求。
毕业设计--矿井提升机图目录前言 (4)1、绪论 (5)1.1 矿井提升机的任务及其地位 (5)1.2 矿井提升机的发展历程 (6)1.2.1 缠绕式提升机的发展状况 (6)1.2.2 各个系列提升机的主要特点 (6)1.3 矿井提升机的类型和工作原理 (8)1.3.1 矿井提升机的类型及其组成部分的特点 (8) 1.3.2 矿井提升机的工作原理 (10)2提升机的选型和计算 (15)2.1.1 罐笼选择 (15)2.1.2 钢丝绳设计及选择 (15)2.1.3提升机的选用 (16)2.2 提升机的运动学计算 (17)2.2.1 选择加减速度 (17)2.2.2 速度各参数的计算 (17)2.3 提升动力学计算 (18)2.3.1 预选电动机 (18)2.3.2 提升系统的变位质量 (18)2.3.3 力图的计算 (19)3 提升机减速器的设计 (21)3.1 减速器的作用 (21)3.2 减速器的国内外现状 (21)3.3 减速器的总体设计 (22)3.3.1 拟定传动方案 (22)3.3.2 电机选型 (23)3.3.3传动装置的总传动比及其分配 (23)3.3.4 计算传动装置的运动和动力参数 (23)3.4 齿轮设计 (25)3.4.1 高速级齿轮设计 (25)3.4.2 低速级齿轮设计 (32)3.5 轴的设计............................ 错误!未定义书签。
3.5.1减速器高速轴1的设计........... 错误!未定义书签。
3.5.2 中间轴2的设计................ 错误!未定义书签。
3.5.3 低速级轴3的设计.............. 错误!未定义书签。
4提升机制动装置的结构设计................... 错误!未定义书签。
4.1 矿井提升机制动装置的功用及类型...... 错误!未定义书签。
4.1.1 制动装置的功用................ 错误!未定义书签。
摘要矿井提升机是沿井筒提升煤炭、矸石、升降人员、下放材料的大型机械设备。
它是矿山井下生产系统和地面工业广场相连接的枢纽,故要求具有很高的安全性,其成本和耗电量也比较高。
因此本次在矿井提升机选型设计中, 主要是根据所给参数确定矿井提升设备,包括选择提升容器、钢丝绳、提升机、卷筒及校核提升能力,并经过多方面的技术经济比较,结合矿井的具体条件,做到设计切合实际.保证提升机的选型及其运转两个方面都是合理的, 最终确定具有经济安全合适的提升系统。
本次在对主要部件主轴装置的设计计算中,采用计算主轴上的正常载荷,根据其分别求出轴上的弯矩、扭矩及其相应的力,校核轴危险断面的安全系数及刚度.并对零部件轴、切向键、齿轮进行校核,充分保证了各部件设计的合理性,尽可能地确定经济合理的最优设计方案。
关键词:矿井提升机选型设计主轴装置设计AbstractMine Hoist is along the shaft upgrade coal,coal,movements,a large delegation of material mechanical equipment。
It is underground mine production systems and the ground industry square connected to the hub,it requires high security,costs and power consumption is relatively high。
So this in the mine hoist type design,the main according to the parameters of mine to upgrade equipment, including the option of upgrading containers, rope,hoist, and checking drum capacity and the result of technical and economic comparison with the specific conditions of mine, so design realistic. Hoist guarantee the selection and operation of two aspects are reasonable, and ultimately determine a suitable economic security system upgrade。
多绳摩擦式矿井提升机毕业设计1. 简介矿井提升机是在矿井中用于将矿石或其他物质从井底提升到地面的设备。
多绳摩擦式矿井提升机是一种常用的提升机类型,它通过多根绳子与提升机箱体相连接,利用绳子与滑轮的摩擦力来实现物体的提升。
本文将介绍多绳摩擦式矿井提升机的设计方案及相关技术要点。
2. 设计方案多绳摩擦式矿井提升机的设计方案包括以下几个主要部分:2.1 提升机箱体提升机箱体是多绳摩擦式矿井提升机的主体结构,它承载着提升机的各个组件。
提升机箱体一般采用钢结构,具有足够的强度和刚度来支撑和保护提升机的工作部件。
2.2 绳轮系统绳轮系统是多绳摩擦式矿井提升机的关键组成部分,它由多个绳轮组成。
每根绳子穿过一个绳轮,绳轮与提升机箱体相连。
绳轮的作用是改变绳子的运动方向,增加绳子与滑轮的接触面积,从而提高提升机的提升效率。
2.3 电动机驱动系统电动机驱动系统是多绳摩擦式矿井提升机的动力源,它通过电动机转动绳轮,使绳子与滑轮摩擦产生足够的力来提升物体。
电动机驱动系统需要考虑电机的功率和扭矩输出以及与绳轮之间的传动装置。
2.4 控制系统控制系统是多绳摩擦式矿井提升机的核心部分,它负责控制提升机的启停、速度调节、运行方向以及安全保护等功能。
控制系统通常采用PLC控制或者单片机控制,通过传感器对提升机的运行状态进行监测,并根据程序进行相应的控制操作。
2.5 安全保护系统安全保护系统是多绳摩擦式矿井提升机设计中不可忽视的一部分,它包括制动系统、限位装置、紧急停机装置等。
制动系统用于在停机时保持提升机的位置稳定,限位装置用于监测提升机的上下界限,紧急停机装置用于在发生紧急情况时迅速停止提升机的运行。
3. 技术要点在设计多绳摩擦式矿井提升机时,需要考虑以下几个技术要点:3.1 绳子的选型和布置绳子的选型需要根据提升物体的质量和提升高度来确定,同时还需要考虑绳子的强度、耐磨性等性能指标。
绳子的布置要合理,尽量减小绳子间的干涉,提高提升机的工作效率。
X X X矿主井绞车选型设计学校:河北工程大学班级:机电一体化04级指导老师:姓名:齐晓廷日期:2007年7月15日目录前言第一章井田概况和地质特征第一节井田概述第二节地质特征第二章井田开拓第一节井田境界及储量第二节矿井设计生产能力及服务年限第三章提升设备选型计算第一节提升容器选择计算第二节提升钢丝绳选择计算第三节提升机和天轮选择计算第四节提升机与井筒相对位置计算第五节提升电动机的初选计算第六节提升系统变位质量计算第七节提升设备的运动学计算第八节提升设备的动力学计算第九节提升电动机容量的计算第十节设备的电耗及效率的计算第四章电动机转子串电阻计算第五章提升机拖动控制系统简介第六章设计参考书第七章谢辞前言X X X井田位于峰峰矿区南部,与X X X毗邻,井田内上组煤为焦煤。
交通方便,开发该井田煤层对矿区生产和接续将起积极作用。
为了充分发挥上组煤较丰富的工业储量,矿井设计生产能力45万吨。
由于下组煤受澳灰水威胁,水文地质条件尚待进一步查明,本设计遵循地质报告审批意见,将下组煤储量列为暂难利用的表外储量,暂不考虑开采。
根据井田地质构造和年设计生产能力,按照煤炭开采的有关技术政策,规程规范,尽量提高矿井采、掘、运等机械水平,提高矿井效率和安全程度,提高资源回收率。
本设计的主要内容;矿井年设计能力为45万吨。
井田上组煤工业储量为5250.96万吨,可采储量为3210.277万吨。
矿井上组煤服务年限51年。
采用立井暗斜井开拓方式,工业场地利用原北大峪工业场地。
矿井为单水平开拓,水平标高-390m。
-3.5m水平为立井和暗斜井的转载水平。
矿井采用中央并列抽出式通风系统,并服务于矿井整个生产服务期限内。
大巷运输采用7t架线电机车牵引1t矿车,主暗斜井采用8t箕斗和主井采用3t箕斗提煤。
原副立井改为回风井,新建副井至-3.5m转载水平,并装备1对1宽1窄罐笼,担负矿井辅助提升。
矿井到达设计产量时布置一个生产采区和一个准备采区,装备2个高档工作面和1个普采工作面。
目录前言 (4)1、绪论 (5)1.1 矿井提升机的任务及其地位 (5)1.2 矿井提升机的发展历程 (6)1.2.1 缠绕式提升机的发展状况 (6)1.2.2 各个系列提升机的主要特点 (6)1.3 矿井提升机的类型和工作原理 (8)1.3.1 矿井提升机的类型及其组成部分的特点 (8)1.3.2 矿井提升机的工作原理 (10)2提升机的选型和计算 (18)2.1.1 罐笼选择 (18)2.1.2 钢丝绳设计及选择 (18)2.1.3提升机的选用 (19)2.2 提升机的运动学计算 (20)2.2.1 选择加减速度 (20)2.2.2 速度各参数的计算 (20)2.3 提升动力学计算 (21)2.3.1 预选电动机 (21)2.3.2 提升系统的变位质量 (21)2.3.3 力图的计算 (22)3 提升机减速器的设计 (25)3.1 减速器的作用 (25)3.2 减速器的国内外现状 (25)13.3 减速器的总体设计 (26)3.3.1 拟定传动方案 (26)3.3.2 电机选型 (27)3.3.3传动装置的总传动比及其分配 (27)3.3.4 计算传动装置的运动和动力参数 (28)3.4 齿轮设计 (29)3.4.1 高速级齿轮设计 (29)3.4.2 低速级齿轮设计 (37)3.5 轴的设计 (44)3.5.1减速器高速轴1的设计 (44)3.5.2 中间轴2的设计 (49)3.5.3 低速级轴3的设计 (51)4提升机制动装置的结构设计 (54)4.1 矿井提升机制动装置的功用及类型 (54)4.1.1 制动装置的功用 (54)4.1.2 制动装置的类型 (54)4.1.3 制动系统的要求 (55)4.2 制动装置的有关规定和要求 (55)4.3 制动器的主要类型 (56)4.3.1 块闸制动器 (56)4.3.2 综合式制动器 (59)4.3.3 盘式制动器 (60)4.4 液压盘式制动器的结构和工作原理 (61)4.4.1 液压盘式制动器的结构 (61)4.4.2 液压盘式制动器的工作原理 (62)24.5盘式制动器的设计计算 (63)4.5.1 盘式制动器工作时所需制动力 (63)4.5.2 每副闸应有的制动力矩 (66)4.6 盘式制动器的调整和维护 (66)4.6.1 闸瓦间隙的调整 (66)4.6.2 蝶形弹簧的检查 (67)4.7 提升机液压工作站的设计 (67)4.7.1 液压站的功用 (67)4.7.2 对交流拖动提升机液压站的工作要求 (68)4.7.3 液压站的组成部分 (68)4.7.4 液压站类型及其结构原理 (69)4.7.5 制动力的调节 (72)4.7.6 液压站的维护及注意事项 (76)总结 (78)致谢 (79)参考文献 (80)附录 (81)3前言我国是个能源大国,也是矿山机电设备制造和使用大国。
目录1绪论 (2) (2) (2) (2) (3) (3)2系统方案设计 (5) (6) (9)3 PLC控制电路设计 (13)PLC的选型与端口分配 (13) (14)PLC的端口分配 (19)PLC的布线 (22) (23) (23) (24) (25)4变频器控制电路设计 (28) (28) (30) (30) (33) (33) (38)5软件设计 (43)PLC控制回路程序设计 (43) (43)S型速度控制子程序 (44) (44) (46) (47)结论 (51)致谢 (52)参考文献 (53)附录 (54)1绪论矿井提升机是煤矿安全生产的关键设备之一,其作用是提升煤炭、矿石,升降人员和下放物料等,在整个煤矿生产中占有十分重要的地位。
矿井提升机安全、可靠、高效、准确地运行集中体现在其电气控制系统中,电控系统性能的优劣直接影响全矿的安全生产及矿工生命的安全。
目前国内各大煤矿矿井提升机电控系统的调速方案大多数还是采用继电器—接触器控制的转子串电阻调速,设备陈旧、技术落后。
而且这种控制方式还存在以下问题: (1)转子回路串接电阻,消耗电能,造成能源浪费。
(2)电阻分级切换,为有级调速,设备运行不平稳,容易引起电气及机械冲击。
(3)继电器、接触器频繁动作,电弧烧蚀触点,影响接触器使用寿命,维修成本较高。
(4)交流绕线异步电动机的滑环存在接触不良问题,容易引起设备事故。
(5)电动机依靠转子电阻获得的低速,其运行特性较软。
(6)提升容器通过给定的减速点时,由于负载的不同,而将得到不同的减速度,不能达到稳定的低速爬行,最后导致停车位置不准,不能正常装卸载。
上述问题使提升机运行的可靠性和安全性不能得到有效的保障。
因此,需研制更加安全可靠的控制系统,使提升机运行的可靠性和安全性得到提高。
通过在提升机控制系统中应用计算机控制技术和变频调速技术,对原有提升机控制系统进行升级换代,大大提高系统运行的可靠性与安全性。
矿井提升机图毕业设计1. 引言矿井提升机是在矿山中运输和提升矿石、矿砂等材料的重要设备。
在矿山行业中,矿井提升机的安全和效率对于矿山的经营和生产起到至关重要的作用。
本文将介绍一个矿井提升机图的毕业设计,旨在通过详细设计和分析,优化提升机的结构和运行方式,提高矿井提升机的安全性和效率。
2. 设计目标本文矿井提升机图的毕业设计的主要目标是优化矿井提升机的结构,提高其运行效率,并确保其安全可靠的运行。
具体设计目标包括:•提高提升机的承载能力;•减少能耗,增加能源利用效率;•提高矿石和矿砂的提升速度;•降低提升机的维护成本;•提高提升机的安全性能。
3. 设计步骤矿井提升机图的毕业设计的设计步骤如下:3.1 需求分析通过了解矿井提升机的具体使用情况和需求,确定设计的基本要求。
需要考虑的因素包括矿石和矿砂的重量、提升高度、提升速度、运行环境等。
3.2 结构设计根据需求分析的结果,进行提升机的结构设计。
设计应包括提升机的底盘、支撑结构、提升机构等。
需要考虑的因素包括提升机的稳定性、承载能力、结构强度等。
3.3 电气系统设计设计提升机的电气系统,包括电机选择、电机控制、传感器选择等。
需要考虑的因素包括提升机的启动和停止控制、提升机速度控制、提升机安全监测等。
3.4 安全性分析对设计的提升机进行安全性分析,评估提升机的安全性能。
分析需要考虑的因素包括矿井环境的特点、提升机的结构、电气系统等。
3.5 性能测试与验证对设计的提升机进行性能测试和验证,确保设计的提升机符合设计要求。
测试内容包括提升机的承载能力、提升速度、能耗等。
4. 设计结果与讨论在设计过程中,根据需求分析和设计要求,进行了详细的结构设计和电气系统设计。
通过安全性分析,设计确保了提升机的安全性能。
通过性能测试与验证,证明了设计的提升机的性能符合设计要求。
根据设计结果,提升机的承载能力、运行效率和安全性能都得到了明显的改善。
提升机的结构设计和电气系统设计都经过了合理的优化,使得提升机在矿山中的运行更加稳定和高效。
目录第1章矿井提升设备概述 (3)1.1提升机的定义 (3)1.2提升机的分类 (3)1.2.1 按用途分 (3)1.2.2 按拖动方式分 (3)1.2.3 按提升容器类型分 (3)1.2.4 按井筒的倾角分 (3)1.2.5 按提升机类型分 (3)1.3提升机的制动装置的功用、类型 (9)1.3.1 制动装置的功用 (9)1.3.2 制动装置的类型 (9)1.4提升机型号的选用及制动器的设计类型 (10)1.4.1提升机的选用 (10)1.4.2制动器的设计类型 (10)2.1制动装置的有关规定和要求 (11)2.2提升机制动器主要类型 (12)2.2.1 块式制动器 (12)2.2.2盘式制动器 (13)2.3盘式制动器的结构及工作原理 (14)2.3.1盘式制动器的布置方式 (14)23.2盘式制动器的结构 (15)2.4制动器的设计计算 (16)2.4.1 确定在工作状态下所需要的制动力 (16)2.4.2 确定制动器数量 (22)第3章制动器的工作可靠性评定 (26)3.1盘式制动器的安装要求及调整 (26)3.1.1 盘式制动器的要求(包括零部件) (26)3.1.2 盘式制动器闸瓦间隙的调整 (26)3.2制动器的故障模式及可靠性图框 (27)3.3制动器的优化设计及工作可靠性评定 (29)3.3.1 设计变量 (29)3.3.2 优化策略 (29)3.4制动器的维护可靠性评定 (30)第4章结论 (33)致谢 (34)参考文献 (36)第1章矿井提升设备概述1.1 提升机的定义矿井提升机是矿井大型固定设备之一,它的主要任务就是沿井筒提升煤炭、矿石和矸石;升降人员和设备;下放材料和工具等。
矿井提升设备是联系井下与地面的纽带,是主要的提升运输工具,因此它整个矿井生产中占有重要的地位。
1.2 提升机的分类1.2.1 按用途分(1) 主井提升设备主井提升设备的任务是专门提升井下生产的煤炭。
------------------------------------------装订线------------------------------------------ 毕业设计课题说明书
题目
成教学院机电专业045 ----1 班完成人尹慧新学号 043
同组人
指导教师
完成日期2006 年月日
中国矿业大学成教学院
目录
毕业设计任务书 (1)
一矿井提升设备的选择……………………………………
1、提升方式的确定及提升设备选型计算依据……………
2、提升容器的选择………………………………………………
3、提升钢丝绳选择计算……………………………………
4、矿井提升机和天轮的选择计算…………………………
5、矿井提升机与井筒相对位置的计算…………………………
6、提升系统运动学;动力学参数计算……………………
7、提升电动机容量校外核………………………………………
8、电耗极其效率…………………………………
9、年产量验算………………………………………
二、参考文献
参考文献
[1] 黄劲枝主编.机械设计基础.北京:机械工业出版社,2001.7
[2] 林晓新主编.工程制图.北京:机械工业出版社,2001.7
[3] 任金泉主编.机械设计课程设计.西安:西安交通大学出版社,2002.12
[4] 吴宗泽主编.机械设计实用手册.北京:高等教育出版社,2003.11。
摘要矿井提升机是沿井筒提升煤炭、矸石、升降人员、下放材料的大型机械设备。
它是矿山井下生产系统和地面工业广场相连接的枢纽,故要求具有很高的安全性,其成本和耗电量也比较高。
因此本次在矿井提升机选型设计中, 主要是根据所给参数确定矿井提升设备,包括选择提升容器、钢丝绳、提升机、卷筒及校核提升能力,并经过多方面的技术经济比较,结合矿井的具体条件,做到设计切合实际。
保证提升机的选型及其的,确定具有经济安全合适的提升系统。
矿井排水是通过排水泵经过管路把井下的水排到地面,保证正常生产。
本次设计主要是通过计算,设计从中央泵房把水从立井中的管路排放到地面。
矿井通风是采矿科学的一个重要组成部分。
为了使井下各工作地点都有良好的通风,有足够的新鲜空气,使其中有毒,有害,粉尘不超过规定值。
矿井通风在矿业工程中占重要地位。
通风机分为轴流式和离心式,本次设计中主要是做到对通风机有合理的选型。
关键词:矿井提升机矿井排水矿井通风选型设计绪论本设计选题根据是解决煤矿矿井生产中的提升;排水及通风问题。
矿山提升设备是矿井运输中的非常重要设备,占有特殊地位,是井下与地面联系的主要工具。
矿井提升机是矿山运输中的主装式交-交变频提升机。
后者主回路和磁场回路均采用电力电子器件,实现变频和整流。
由于采集设备,是井下与地面联系的重要工具。
矿井提升机又是矿山最大的固定设备之一,它的耗电量占矿山总耗电量的30~40%。
电力电子技术较早就用于矿井提升机的传动,并且发展迅速,从60年代的模拟控制SCR-D直流提升机发展到目前最先进的同步机内用交流电机,没有电刷问题,提升机容量可以大幅度增加,例如南非帕拉波矿井内装式提升机电机功率达6300kW。
我国东欢坨、大雁、陈四楼等矿均引进了内装式提升机。
目前,全数字电力电子器件构成的国产直流提升机已占领了国内市场,并开始出口。
但是由于我国的科技和生产水平的限制,我国的矿井提升机还有很大一部分需要依赖于进口发达国家的设备。
矿山提升机是大型固定机械之一。
矿山提升机从最初的蒸汽拖动的单绳缠绕式提升机发展到今天的变频拖动的多绳摩擦式提升机和双绳缠绕式提升机,经历了170多年的发展历史。
目前,国内外经常使用的提升机有单绳式和多绳摩擦式两种形式。
国产单绳缠绕式提升机有JT和JM两个系列。
JT系列提升机卷筒直径为800—1600mm,主要用于井下运输提升工作;JM系列提升机卷筒直径2—5主要用于地面井口提升工作。
按提升钢丝绳(简称提升绳)的工作原理,可分为缠绕式矿井提升机和摩擦式矿井提升机两类。
缠绕式矿井提升机,有单卷筒和双卷筒两种,钢丝绳在卷筒上的缠绕方式与一般绞车类似。
单筒大多只有一根钢丝绳,连接一个容器。
双筒的每个卷筒各配一根钢丝绳,连接两个容器,提升机运转时一个容器上升,另一个容器下降。
缠绕式矿井提升机大多用于年产量在120万吨以下、井深小于400米的矿井中。
摩擦式矿井提升机适用于凿井以外的各种竖井提升。
提升绳搭挂在摩擦轮上,利用与摩擦轮衬垫的摩擦力使容器上升。
提升绳的两端各连接一个容器,或一端连接容器,另一端连接平衡重。
为提高经济效益和安全性,摩擦式矿井提升机采用尾绳平衡提升方式,即配有与提升绳重量相等的尾绳。
尾绳两端分别与两个容器(或容器和平衡重)的底部连接,形成提升绳-容器-尾绳-容器(或平衡重)-提升绳的封闭环路。
容器处于井筒中的任何位置时,摩擦轮两侧的提升绳和尾绳的重量之和总是相等的。
一般将布置在井筒顶部塔架上的这种提升机称为塔式摩擦式矿井提升机。
塔架高出地面几十米,在地震区和地表土层特厚的矿区建造井塔耗资较大。
提升机布置在地面的称为落地摩擦式矿井提升机,这种提升机的提升绳通过井架天轮引入井筒,与容器相连。
按提升绳的数量又可分为单绳摩擦式矿井提升机和多绳摩擦式矿井提升机。
单绳摩擦式只用一根提升绳。
多绳摩擦式同时使用数根提升绳搭挂在同一摩擦轮上。
多绳摩擦式的优点是:可采用较细的钢丝绳和直径较小的摩擦轮,从而机组尺寸小,便于制造;速度高、提升能力大、安全性好。
年产量120万吨以上的竖井大多采用这种提升机,技术参数已达:有效载荷60吨,提升速度20米/秒,提升高度2100米,提升绳10根。
但这种提升机的各根提升绳的受力不易均匀,更换钢丝绳也较复杂。
当摩擦轮两侧提升绳的张力差超过规定值,或提升绳与衬垫的摩擦系数降低(如接触面上有油或受温度影响)时,可能发生提升绳打滑现象。
矿井提升机的组成矿井提升机主要由电动机、减速器、卷筒(或摩擦轮)、制动系统、深度指示系统、测速限速系统和操纵系统组成,采用交流或直流电机驱动。
采用低速电动机时可不用减速器,电动机直接与卷筒主轴相连,或将电动机转子装在卷筒主轴的末端。
传动功率大时,可采用2台或4台电动机同时驱动。
一台提升机的总功率已达到11600千瓦。
制动系统是保证提升机安全运行的重要装置。
遇紧急情况时,制动系统应通过可调节制动力矩的液压系统产生两级安全制动,以保证提升机及时停车又不产生制动过猛现象。
交流电动机驱动的提升机,其制动系统还要具有灵敏的制动力矩可调性能,以准确控制提升机在临近停车点时的运行速度。
矿井提升机的用途及在矿山生产中所占的地位提升机是矿山的大型固定设备之一,是联系井下与地面的主要运输工具。
矿井提升工作是整个采矿过程中的重要环节。
从地下采出的煤炭、矿石必须提升至地面才有实际应用价值。
废石的提升,工作人员、材料及设备的升降等都要靠提升工作来完成。
矿井提升设备就是完成上述工作的多种机电设备组成的大型成套装备。
矿井提升设备在工作中一旦发生机械或电气事故,就会造成停产,甚至造成人身伤亡。
单绳缠绕式提升机的工作原理及结构图1-1上图所示是单绳缠绕式箕斗提升系统示意图,固定在提升机滚筒1上。
启动提升机,一根钢丝绳想滚筒上缠绕,使井底重箕斗向上运动;另一根钢丝根提升钢丝绳7连接,两根提升钢丝绳7的另一端则绕过安装在井架3上的天轮2,以相反的方向绳自滚筒上放松,处于井底车场的重矿车8,把矿车内的煤炭卸入井底煤仓9,再经过装载设备11把煤炭装入主井底的箕斗内。
与此同时,已提至井口卸装位置的重箕斗4,通过井架3上的卸载曲轨5的作用。
箕斗底部的闸门开启,把煤炭卸入地面煤仓6中。
处于井上、井下的两箕斗分别通过连接装置与两使井口轻箕斗向下运动,从而完成了一次提升煤炭任务。
单绳缠绕式提升机只有一根钢丝绳与容器相连。
钢丝绳的一端固定在提升机卷筒上,另一端绕过天轮与提升容器连接,当卷筒由电动机拖动以不同方向转动时,钢丝绳在卷筒上缠绕或放出,实现容器的提升和下放。
图1-2如图1-2是JK系列提升机外形图,位于右侧固定卷筒的右轮毂与轴采用静配合无键联接,左侧的游动卷筒通过调绳离合器与主轴联接。
卷筒采用全焊接结构。
卷筒外边一般设有刻制绳槽的木衬,以引导钢丝绳规则排列,减少绳的磨损,并在一定范围内增加筒壳的强度和刚度。
木衬厚度不小于2倍钢丝绳直径,宽度在100mm左右。
装配木衬时,应使其与筒壳接触良好,接触不匀会使筒壳应力分布不均。
由于更换木衬费工费时费料,因此近年生产的提升机有的采用加厚筒壳,直接在筒壳上车槽,称为带绳槽卷筒。
单层缠绕时,卷筒表面刻螺旋绳槽;多层缠绕时刻环形平行绳槽。
多层缠绕若采用螺旋绳槽,在缠偶数层时,绳圈螺旋方向改变,卷筒每转一周钢丝绳发生两次跳跃式移动。
多层缠绕采用环形平行绳槽时,卷筒每转一周,绳槽过渡只发生一次冲击,可以相对减少钢丝绳的卡咬现象。
多层缠绕钢丝绳磨损最严重的部分是相邻两层过渡处,此处绳圈与挡绳板间形成一楔形段,钢丝绳在拉力作用下,挤入或拉出楔形段会产生咬绳现象。
在层间过渡处设置合理的几何形状过渡楔块,可以引导钢丝绳顺利完成层间过渡,减少咬绳。
主轴是承受所有外部载荷,并将此载荷经主轴传给地基的主要承力部件。
主轴承支撑主轴,并承受机器旋转部件的轴向及径向负荷,一般采用滑动轴承。
提升机采用中硬齿面平行轴减速器或行星齿轮减速器。
行星齿轮减速器传动体积小、质量轻、效率高,与同等能力平行轴齿轮减速器相比,质量约为后者的30%~40%,效率提高约5%。
目前广泛应用于矿井提升机上。
双卷筒提升机都装有调绳离合器,离合器的作用是使活卷筒与主轴连接或脱开,以便调节绳长时,使两卷筒能相对转动。
调绳离合器有三种基本类型:蜗轮蜗杆离合器、摩擦离合器和齿轮离合器。
应用较多的是齿轮离合器矿井提升机的发展趋势从50年代第一代仿制的苏式БM型提升机到目前新型矿井提升机,我国提升设备总的发展趋势主要是:主轴装置由铸造支轮、螺栓联接的筒壳发展为全焊接组装式卷筒;主轴支承由滑动轴承发展为滚动轴承;调绳离合器由手动蜗轮蜗杆发展为液动径向齿块式;制动系统由气动角移块式重锤制动发展为液动盘式弹簧力制动;操纵方式由机械杠杆式变为电操纵,手动变为半自动甚至全自动、微机控制;减速器由软齿面平行轴发展为硬齿面磨齿行星齿轮传动;运行监控显示由单一指针式发展为计算机多媒体数字、图形、指针综合显示;电控系统由继电器、接触器式发展为计算机为核心的全自动系统;大型提升设备(容量1000kW 以上)发展趋势是低速直流电机拖动,采用电机转子和滚筒主轴直联的结构。
矿井排水在矿井建设和生产过程中,从各种渠道来的水源源不断地涌入矿井。
如果不及时排除,必将影响煤矿的安全和生产。
因此,必须设置排水设备,把涌入矿井的水及时从井下排至地面。
另外,由于煤矿地质条件复杂,有可能遭到突然大量涌水而淹没矿井,这时需要排水设备抢险排水,以尽快恢复矿井生产。
总之,矿井排水始终伴随着煤矿建设和生产,直至矿井报废,才完成它的历史使命。
因此,矿井排水是煤矿建设和生产中不可缺少的一部分,它对保证矿井正常生产起着非常重要的作用。
涌入矿井的水简称矿水,矿井涌水分为矿井自然涌水与矿井开采工程涌水。
矿井自然涌水来源于自然存在的地面水和地下水。
地面水是指江、河、湖以及季节性雨水、融雪等,如有较大裂缝与井下沟道相通,就会造成水灾。
地下水包括含水层水、断层水和老空水。
含水层水是指地下厚土层和各种各样的岩层中含有的水。
断层水是指附近破碎岩石中的积水。
老空水是指废弃井巷和采空区的积水。
矿井开采工程涌水是与采掘方法或工艺有关的涌水。
如水砂充填时矿井的充填废水、水采矿井的动力废水等。
随着电子技术的发展,集成电路控制系统及计算机的应用。
排水系统的效率和稳定性有了飞速的发展。
矿井通风矿井通风系统是矿井生产系统的重要组成部分,担负着连续不断地供给新鲜空气,排出有毒有害气体作业人员生命安全的重要任务,因此,通风系统的安全性对于整个矿井的安全生产至关重要.本文在分析系统优化的条件、多目标优化解的特征以及基本求解方法的基础上,从矿井通风系统安全性和基本要求出发,研究矿稳定性、可靠性以及它们与矿井通风系统安全性的关系. 应用系统优化的相关知识,确立矿井通风系统安全性指标与指标权系数.其中,安全性指标体系中各确定,采用构造判断矩阵法,并结合各专家评价经验值,构造各指标之间的相对重要度.矿井通风系统安全性指标,以通风阻力测定计算、巷道风流稳定性分析、风机可靠性分析等方法得出.通过对通风系统安全性的分析,及时发现系统运行过程中可能出现的故障和事故隐患,给矿井通风系统的设计和管理提供科学依据,可以有效的防止和减少矿井通发生. 通风系统是个复杂的系统,本论文结合矿井通风阻力测定和通风巷道的实际情况对通风系统中风量的有效性,通风系统的可靠性和稳定性进行分析.主要针对矿井通风系统的通风实际状况,通风网络结构,控制风流的通风设第一章 矿井提升机选型设计1.1 设计方案及参数提升机:井深242米,年产量45万吨单绳选6×19普通钢丝绳,多绳选6△(30)三角股钢丝绳,2.5箕斗自重2.8t ,年工作天数:r b =300天;日工作小时数:d t =14小时;装载不均匀系数:C =1.15;富裕系数:f a =1.2。