4.2简单幂函数的图象和性质课件
- 格式:ppt
- 大小:1.63 MB
- 文档页数:41
函数简单的幂函数课件pptxx年xx月xx日contents •幂函数概述•幂函数的图象和性质•幂函数的应用•幂函数的拓展•总结与反思目录01幂函数概述幂函数定义:形如y=x^a的函数,其中a为常数。
幂函数在高等数学中占有重要地位,其性质和应用有着广泛的应用。
0102非零的常数次幂函数$y=x^a$,当a>0时,函数在$(0,+\infty)$上单调递增;当a<0时,函数在$(0,+\infty)$上单调递减。
幂函数的图象幂函数的图象由点$(1,1)$出发,在$y$轴右侧的图象是上升的,在$y$轴左侧的图象是下降的,并且图象过点$(0,0)$。
幂函数的奇偶性当$a$为整数时,幂函数为奇函数;当$a$为偶数时,幂函数为偶函数。
当$a$为负奇数时,幂函数为既奇又偶函数;当$a$为负偶数时,幂函数为非奇非偶函数。
幂函数的对称性$y=x^a$的图象关于原点对称;$y=x^{-a}=1/x^a$的图象关于$y$轴对称。
幂函数的扩展在实际应用中,可以将幂函数扩展到多个变量的情形,如二元三次幂函数等。
03040502幂函数的图象和性质幂函数图象的绘制步骤、要点、注意事项总结词步骤要点注意事项1.定义域,2.函数式,3.图象1.定义域的确定,2.函数式的变换,3.图象的绘制1.定义域的边界值的处理,2.函数式变换的准确性,3.图象的精确度幂函数性质的运用基本性质、应用、实例总结词1.单调性,2.奇偶性,3.周期性基本性质1.函数的单调性,2.函数的奇偶性,3.函数的周期性应用 1.幂函数的单调递增区间,2.幂函数的奇偶性判断,3.幂函数的周期求解实例03幂函数的应用总结词了解幂函数与方程根的关系,掌握利用幂函数求解方程的方法。
利用幂函数求解方程通过对幂函数的性质和图像的掌握,利用幂函数求解方程的解,特别注意在特定区间求解方程时需要注意的问题。
幂函数与方程根的关系幂函数在方程中的应用,主要是指利用幂函数的性质和图像特点,通过观察幂函数的图像来确定方程的根。
幂函数的性质与图像ppt于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
篇二:幂函数的性质与图像(一) - 黄浦教研→首页幂函数的性质与图像(一)学校:储能中学执教:陈云青日期:2011-12-6教学目标1.知道幂函数的概念,会用有代表性的k的值,讨论幂函数的定义域、单调性、奇偶性及最值;2.在探究幂函数的性质与图像的过程中,体会研究函数性质的过程与方法; 3.在交流研究幂函数性质的活动中,感悟数学思想方法。
教学重点幂函数的性质与图像。
教学难点探索研究幂函数性质与图像的途径,熟悉由特殊到一般的数学思想。
情景引入建立下列问题的函数关系:(1)如果正方形的边长为x,那么正方形的面积y?____________ ;(2)如果一个正方体容器的体积为x,那么该正方体容器的棱长y?____________ ;(3)如果某人在x秒内,骑自行车行了1km,那么他骑自行车的平均速度y?____________ 。