§1.3__概率的公理化定义与概率的性质
- 格式:ppt
- 大小:586.00 KB
- 文档页数:14
概率公理化的定义概率公理化是概率论的基本公理系统,用于定义和推导概率的性质和规则。
它由三个基本公理组成,分别是非负性公理、规范性公理和可列可加性公理。
首先,非负性公理指出概率是一个非负的实数,即概率值始终大于或等于零。
这是因为概率是表示事件发生的可能性的度量,而任何事件的发生概率都不应该是负数。
因此,对于任何事件A,其概率P(A)满足P(A)≥0。
其次,规范性公理指出概率的最大值是1,即整个样本空间的概率是1。
样本空间是所有可能事件的集合,而其中的某一个事件一定会发生。
因此,整个样本空间的概率等于1。
即对于整个样本空间S,有P(S) = 1。
最后,可列可加性公理是概率公理化的核心内容,它指出对于任意可列个互不相容的事件Ai(i=1,2,3,...),其概率P(Ai)的和等于它们各自概率的和。
这表示当我们考虑多个事件同时发生的情况时,可以将它们的概率逐个相加来求得总概率。
即对于事件A1,A2,A3,...,有P(A1∪A2∪A3∪...) =P(A1) + P(A2) + P(A3) + ...。
这三个基本公理共同构成了概率公理化的定义,通过这些公理我们可以进行概率的形式化描述和推导。
同时,这些公理也满足概率的一些基本性质和规则,如辅助定理、概率的有限可加性、概率的递减性等。
其中,辅助定理是基于这三个公理得到的,它指出对于事件A 和事件B,当A包含于B时,A的概率一定小于等于B的概率。
即当A⊆B时,有P(A)≤P(B)。
概率的有限可加性指出对于任意有限个互不相容的事件A1,A2,A3,...,它们的概率P(A1∪A2∪A3∪...)等于它们各自概率的和。
即对于有限个事件A1,A2,A3,...,有P(A1∪A2∪A3∪...) = P(A1) + P(A2) + P(A3) + ...。
概率的递减性指出对于事件A和事件B,当A包含于B时,B的概率一定大于等于A的概率。
即当A⊆B时,有P(B)≥P(A)。