导数的概念及运算复习课件
- 格式:ppt
- 大小:1.82 MB
- 文档页数:53
新高考数学新题型一轮复习课件第三章§3.1 导数的概念及其意义、导数的运算考试要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如 f(ax+b))的导数.落实主干知识探究核心题型内容索引课时精练L U O S H I Z H U G A N Z H I S H I 落实主干知识知识梳理1.导数的概念(1)函数y =f (x )在x=x0处的导数记作 或 .0'|x x y f ′(x 0)(2)函数y =f (x )的导函数2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的,相应的切线方程为 .y -f (x 0)=f ′(x 0)(x -x 0)斜率3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=___f (x )=x α(α∈Q ,且α≠0)f ′(x )=______f (x )=sin xf ′(x )=______f (x )=cos xf ′(x )=_______f (x )=a x (a >0,且a ≠1)f ′(x )=_______0αx α-1cos x -sin x a x ln ae xf(x)=e x f′(x)=____ f(x)=log a x(a>0,且a≠1)f′(x)=______ f(x)=ln x f′(x)=___4.导数的运算法则若f ′(x ),g ′(x )存在,则有[f (x )±g (x )]′= ;[f (x )g (x )]′= ;f ′(x )±g ′(x )f ′(x )g (x )+f (x )g ′(x)[cf (x )]′= .cf ′(x )5.复合函数的定义及其导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y′x y′u·u′x=,即y对x的导数等于y对u的导数与u对x的导数的乘积.1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条.(2)过点处的切线,该点不一定是切点,切线至少有一条.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)与曲线只有一个公共点的直线一定是曲线的切线.( )(3)f ′(x 0)=[f (x 0)]′.( )(4)若f (x )=sin (-x ),则f ′(x )=cos (-x ).( )××××教材改编题∴f ′(1)=e -1,又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1,即切线方程为y -(e +1)=(e -1)(x -1),即y =(e -1)x +2.1.函数f (x )=e x + 在x =1处的切线方程为______________.y =(e -1)x +22.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a=______. f′(x)=1+ln x+2ax,3.若f(x)=ln(1-x)+e1-x,则f′(x)=____________.T A N J I U H E X I N T I X I N G 探究核心题型题型一导数的运算例1 (1)(多选)(2022·济南质检)下列求导运算正确的是√√(x2e x)′=(x2+2x)e x,故B错误;教师备选1.函数y=sin 2x-cos 2x的导数y′等于√y′=2cos 2x+2sin 2x2.(2022·济南模拟)已知函数f′(x)=e x sin x+e x cos x,则f(2 021)-f(0)等于√A.e2 021cos 2 021B.e2 021sin 2 021C. D.e因为f′(x)=e x sin x+e x cos x,所以f(x)=e x sin x+k(k为常数),所以f(2 021)-f(0)=e2 021sin 2 021.(1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.(3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (1)若函数f(x),g(x)满足f(x)+xg(x)=x2-1,且f(1)=1,则f′(1)+g′(1)等于√A.1B.2C.3D.4当x=1时,f(1)+g(1)=0,∵f(1)=1,得g(1)=-1,原式两边求导,得f′(x)+g(x)+xg′(x)=2x,当x=1时,f′(1)+g(1)+g′(1)=2,得f′(1)+g′(1)=2-g(1)=2-(-1)=3.e2 (2)已知函数f(x)=ln(2x-3)+ax e-x,若f′(2)=1,则a=___.∴f′(2)=2+a e-2-2a e-2=2-a e-2=1,则a=e2.命题点1 求切线方程题型二导数的几何意义例2 (1)(2021·全国甲卷)曲线y = 在点(-1,-3)处的切线方程为_____________.5x -y +2=0所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,x-y-1=0则直线l的方程为_____________.∵点(0,-1)不在曲线f(x)=x ln x上,∴设切点为(x0,y0).又f′(x)=1+ln x,∴直线l的方程为y+1=(1+ln x0)x.∴直线l的方程为y=x-1,即x-y-1=0.命题点2 求参数的值(范围)例3 (1)(2022·青岛模拟)直线y=kx+1与曲线f(x)=a ln x+b相切于点P(1,2),则2a+b等于√A.4B.3C.2D.1∵直线y=kx+1与曲线f(x)=a ln x+b相切于点P(1,2),将P(1,2)代入y=kx+1,可得k+1=2,解得k=1,解得a=1,可得f(x)=ln x+b,∵P(1,2)在曲线f(x)=ln x+b上,∴f(1)=ln 1+b=2,解得b=2,故2a+b=2+2=4.(2)(2022·广州模拟)过定点P(1,e)作曲线y=a e x(a>0)的切线,恰有2条,(1,+∞)则实数a的取值范围是__________.由y ′=a e x ,若切点为(x0, ),则切线方程的斜率k = = >0,∴切线方程为y = (x -x 0+1),又P (1,e)在切线上,∴ (2-x 0)=e ,0'|x x y 0e x a 0e x 0e x a 0e x a 0e x a 令φ(x )=e x (2-x ),∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0;当x∈(1,+∞)时,φ′(x)<0,∴φ(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减,∴φ(x)max=φ(1)=e,又x→-∞时,φ(x)→0;x→+∞时,φ(x)→-∞,解得a>1,即实数a的取值范围是(1,+∞).1.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为A.(1,3)B.(-1,3)C.(1,3)或(-1,3)D.(1,-3)√教师备选设切点P(x0,y0),f′(x)=3x2-1,又切点P(x0,y0)在y=f(x)上,∴当x0=1时,y0=3;当x0=-1时,y0=3.∴切点P为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M是曲线y=ln x+x2+(1-a)x上的任一点,若曲线在M点处的切线的倾斜角均是不小于的锐角,则实数a的取值范围是A.[2,+∞) B.[4,+∞)√C.(-∞,2]D.(-∞,4]故a≤2,所以a的取值范围是(-∞,2].(1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.(2)注意区分“在点P处的切线”与“过点P处的切线”.跟踪训练2 (1)(2022·南平模拟)若直线y=x+m与曲线y=e x-2n相切,则√设直线y =x +m 与曲线y =e x -2n 切于点(x0, ),因为y ′=e x -2n ,所以 =1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m ,02e x n -02e x n -(2)若函数f(x)=ln x+2x2-ax的图象上存在与直线2x-y=0平行的切线,[2,+∞)则实数a的取值范围是__________.直线2x-y=0的斜率k=2,又曲线f(x)上存在与直线2x-y=0平行的切线,∴a≥4-2=2.∴a的取值范围是[2,+∞).例4 (1)(2022·邯郸模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于A.0B.-1C.3D.-1或3√题型三两曲线的公切线由f(x)=x ln x求导得f′(x)=1+ln x,则f′(1)=1+ln 1=1,于是得函数f(x)在点A(1,0)处的切线l的方程为y =x-1,因为直线l与g(x)的图象也相切,即关于x的一元二次方程x2+(a-1)x+1=0有两个相等的实数根,因此Δ=(a-1)2-4=0,解得a=-1或a=3,所以a=-1或a=3.(2)(2022·韶关模拟)若曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则a的取值范围为__________.由y =ax 2(a >0),得y ′=2ax ,由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,与曲线C 2切于点(x 2, ),2e x 222121e e ,x x ax x x -=-则2ax 1=可得2x 2=x 1+2,1121e 2x x +∴a = ,12e 2x x+记f (x )= ,122e (2)4x x x +-则f ′(x )= ,当x ∈(0,2)时,f ′(x )<0,f (x )单调递减;当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增.延伸探究 在本例(2)中,把“存在公共切线”改为“存在两条公共切线”,则a的取值范围为___________.由本例(2)知,∵两曲线C 1与C 2存在两条公共切线,∴a = 有两个不同的解.1121e 2x x +12e 2x x +∵函数f (x )= 在(0,2)上单调递减,又x →0时,f (x )→+∞,x →+∞时,f (x )→+∞,1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于A.1B.2C.3D.3或-1教师备选√解得x=1,故切点为(1,0),可求出切线方程为y=x-1,此切线和g(x)=x2+ax也相切,故x2+ax=x-1,化简得到x2+(a-1)x+1=0,只需要满足Δ=(a-1)2-4=0,解得a=-1或a=3.。
第1讲导数的概念及运算基础知识整合1.导数的概念(1)f(x)在x=x0处的导数就是f(x)在x=x0处的□01瞬时变化率,记作:y′|x=x0或f′(x0),即f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(2)当把上式中的x0看作变量x时,f′(x)即为f(x)的导函数,简称导数,即y′=f′(x)=□02limΔx→0f(x+Δx)-f(x)Δx.2.导数的几何意义函数f(x)在x=x0处的导数就是曲线y=f(x)在点□03P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k=f′(x0),切线方程为□04y -y0=f′(x0)(x-x0).3.基本初等函数的导数公式(1)C′=□050(C为常数);(2)(x n)′=□06nx-(n∈Q*);(3)(sin x)′=□07cos x;(4)(cos x)′=□08-sin x;(5)(a x)′=□09a ln_a;(6)(e x)′=□10e;(7)(log a x)′=1x ln a;(8)(ln x)′=□111x.4.导数的运算法则(1)[f(x)±g(x)]′=□12f′(x)±g′(x).(2)[f (x )·g (x )]′=□13f ′(x )g (x )+f (x )g ′(x ). 特别地:[C ·f (x )]′=□14Cf ′(x )(C 为常数). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=□15f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同. 2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.(2019·海南模拟)曲线y =x2x -1在点(1,1)处的切线方程为( )A .x -y -2=0B .x +y -2=0C .x +4y -5=0D .x -4y -5=0答案 B 解析 y ′=2x -1-2x (2x -1)2=-1(2x -1)2,当x =1时,y ′=-1,所以切线方程是y -1=-(x -1),整理得x +y -2=0.故选B.2.函数f (x )=x (2017+ln x ),若f ′(x 0)=2018,则x 0的值为( ) A .e 2 B .1 C .ln 2 D .e 答案 B解析 f ′(x )=2017+ln x +x ·1x =2018+ln x ,故由f ′(x 0)=2018,得2018+ln x 0=2018,则ln x 0=0,解得x 0=1.故选B.3.若曲线y =e x +ax +b 在点(0,2)处的切线l 与直线x +3y +1=0垂直,则a +b =( )A .3B .-1C .1D .-3 答案 A解析 因为直线x +3y +1=0的斜率为-13,所以切线l 的斜率为3,即y ′|x=0=e 0+a =1+a =3,所以a =2;又曲线过点(0,2),所以e 0+b =2,解得b =1.故选A.4.(2019·河北质检)已知直线y =kx 是曲线y =ln x 的切线,则k 的值是( ) A .e B .-e C.1e D .-1e 答案 C解析 依题意,设直线y =kx 与曲线y =ln x 切于点(x 0,kx 0),则有⎩⎨⎧kx 0=ln x 0,k =1x 0,由此得ln x 0=1,x 0=e ,k =1e .故选C.5.f (x )=2x +3x 的图象在点(1,f (1))处的切线方程为________. 答案 x -y +4=0解析 f ′(x )=-2x 2+3,f ′(1)=1,即切线的斜率为1,又f (1)=5,即切点坐标为(1,5),故切线方程为y -5=x -1,即x -y +4=0.6.(2019·郑州模拟)直线x -2y +m =0与曲线y =x 相切,则切点的坐标为________.答案 (1,1)解析 ∵y =x =x12 ,∴y ′=12x -12 ,令y ′=12x -12 =12,则x =1,则y =1=1,即切点坐标为(1,1).核心考向突破考向一 导数的基本运算 例1 求下列函数的导数:(1)y =cos x e x ;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =sin 3x +sin3x ;(4)y =1(2x -1)3.解 (1)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x.(2)因为y =x 3+1x 2+1,所以y ′=3x 2-2x 3. (3)y ′=(sin 3x )′+(sin3x )′=3sin 2x cos x +3cos3x . (4)y ′=⎣⎢⎡⎦⎥⎤1(2x -1)3′=[(2x -1)-3]′=-3(2x -1)-4×2=-6(2x -1)-4. 触类旁通导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.即时训练 1.求下列函数的导数: (1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =11-2x;(4)y =ln xx 2+1.解 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(3)y ′=[(1-2x ) -12]′=-12(1-2x )-32 ×(-2)=(1-2x ) -32 .(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x(x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.考向二 导数的几何意义角度1 求切线的方程例2 (1)(2019·四川成都模拟)曲线y =x sin x 在点P (π,0)处的切线方程是( )A .y =-πx +π2B .y =πx +π2C .y =-πx -π2D .y =πx -π2答案 A解析 因为y =x sin x ,所以y ′=sin x +x cos x ,在点P (π,0)处的切线斜率为k =sinπ+πcosπ=-π,所以曲线y =x sin x 在点P (π,0)处的切线方程是y =-π(x -π)=-πx +π2.故选A.(2)曲线y =f (x )=e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为________.答案 2x -y +2=0解析 ∵f ′(x )=e 2x +1·(2x +1)′=2e 2x +1, ∴f ′⎝ ⎛⎭⎪⎫-12=2e 0=2,∴曲线y =e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为y -1=2⎝ ⎛⎭⎪⎫x +12,即2x -y +2=0.角度2 求切点的坐标例3 (1)(2019·陕西模拟)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为( )A .(1,1)B .(-1,-1)C .(1,-1)D .(-1,1)答案 A解析 对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线y =1x (x >0)上点P 处的切线斜率为-1,由y ′=-1x 2=-1,得x =1,则y =1,所以点P 的坐标为(1,1).故选A.(2)(2018·江西模拟)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.答案 (e ,e)解析 设点P (x 0,y 0),∵y =x ln x ,∴y ′=ln x +x ·1x =1+ln x .∴曲线y =x ln x 在点P 处的切线斜率k =1+ln x 0.又k =2,∴1+ln x 0=2,∴x 0=e ,y 0=eln e =e.∴点P 的坐标是(e ,e). 角度3 求公切线的方程例4 (1)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2 答案 D解析 ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D.(2)若直线l 与曲线y =e x及y =-14x 2都相切,则直线l 的方程为________.答案 y =x +1解析 设直线l 与曲线y =e x 的切点为(x 0,e x 0),直线l 与曲线y =-14x 2的切点为⎝ ⎛⎭⎪⎫x 1,-x 214,因为y =e x 在点(x 0,e x 0)处的切线的斜率为y ′|x =x 0=e x0,y =-x 24在点⎝ ⎛⎭⎪⎫x 1,-x 214处的切线的斜率为y ′|x =x 1=⎝ ⎛⎭⎪⎫-x 2| x =x 1=-x 12,则直线l 的方程可表示为y =e x 0x -x 0e x 0+e x0或y =-12x 1x +14x 21,所以⎩⎪⎨⎪⎧e x0=-x 12,-x 0e x 0+e x0=x 214,所以e x 0=1-x 0,解得x 0=0,所以直线l 的方程为y =x +1.触类旁通(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).(2)求曲线f (x ),g (x )的公切线l 的方程的步骤,①设点求切线,即分别设出两曲线的切点的坐标(x 0,f (x 0)),(x 1,g (x 1)),并分别求出两曲线的切线方程;,②建立方程组,即利用两曲线的切线重合,则两切线的斜率及在y 轴上的截距都分别相等,得到关于参数x 0,x 1的方程组,解方程组,求出参数x 0,x 1的值;,③求切线方程,把所求参数的值代入曲线的切线方程中即可.即时训练 2.(2019·衡水调研)已知曲线y =x 22-3ln x 的一条切线的斜率为2,则切点的横坐标为( )A .3B .2C .1 D.12 答案 A解析 设切点坐标为(x 0,y 0),且x 0>0,由y ′=x -3x ,得k =x 0-3x 0=2,∴x 0=3.故选A.3.曲线y =1-2x +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2答案 A 解析 ∵y =1-2x +2=x x +2,∴y ′=x +2-x(x +2)2=2(x +2)2,y ′|x =-1=2, ∴曲线在点(-1,-1)处的切线斜率为2, ∴所求切线方程为y +1=2(x +1),即y =2x +1.4.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________.答案 1-ln 2解析 直线y =kx +b 与曲线y =ln x +2,y =ln (x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln (x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k -1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝ ⎛⎭⎪⎫1k ,-ln k +2,B ⎝ ⎛⎭⎪⎫1k -1,-ln k ,∵A ,B 在直线y =kx +b 上, ∴⎩⎪⎨⎪⎧2-ln k =k ·1k +b ,-ln k =k ·⎝ ⎛⎭⎪⎫1k -1+b ⇒⎩⎪⎨⎪⎧b =1-ln 2,k =2.考向三 求参数的范围例5 (1)(2019·沈阳模拟)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .1B .2C .5D .-1 答案 A解析 由题意可得3=k +1,3=1+a +b ,则k =2.又曲线的导函数y ′=3x 2+a ,所以3+a =2,解得a =-1,b =3,所以2a +b =1.故选A.(2)已知函数f (x )=e x -mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫1e ,+∞解析 由题意知,方程f ′(x )=-1e 有解,即e x -m =-1e 有解,即e x=m -1e 有解,故只要m -1e >0,即m >1e 即可.故填⎝ ⎛⎭⎪⎫1e ,+∞.触类旁通处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.即时训练 5.已知函数f (x )=ax 2+2b ln x ,若曲线y =f (x )在点(2,f (2))处的切线方程为y =x +2-6ln 2,则a +b =( )A .-2B .-1C .2D .1 答案 A解析 由切线方程,得f (2)=4-6ln 2,f ′(2)=1. ∵f (x )=ax 2+2b ln x ,∴f ′(x )=2ax +2bx ,∴⎩⎪⎨⎪⎧4a +2b ln 2=4-6ln 2,4a +b =1,解得a =1,b =-3, ∴a +b =-2.故选A.6.若曲线y =13x 3+ax 2+x 存在垂直于y 轴的切线,则实数a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) B .(-∞,-1]∪[1,+∞) C .(-∞,-1]∪[0,+∞) D.⎣⎢⎡⎭⎪⎫-12,+∞ 答案 B解析 令y =f (x )=13x 3+ax 2+x ,则f ′(x )=x 2+2ax +1,∵曲线y =f (x )存在垂直于y 轴的切线,∴f ′(x )=0有解,即x 2+2ax +1=0有解,∴Δ=(2a )2-4≥0,∴a ≥1或a ≤-1,即实数a 的取值范围为(-∞,-1]∪[1,+∞),故选B.。