大学物理规范作业(本一)20解答
- 格式:ppt
- 大小:358.00 KB
- 文档页数:10
大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
参 考 答 案练习一1-2、DD 3、i ct v v)31(30+=,400121ct t v x x ++=4、 j 8,j i 4+-,4412arctg arctg -+ππ或5解:(1)j t t i t r)4321()53(2-+++=;(2))/(73;)3(34s m j i v j t i dt rd v s t +=++===;(3))/(12s m j dtvd a ==6 解: ∵ xvv t x x v t v a d d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v练习二:1-2、CB 3、32ct ,ct 2,R t c 42,R ct 2; 4、212t t +,212t+5、解:(1)由23Rbt dt d R dt ds v -===θ得:Rbt dtdv a 6-==τ,4229t Rb R v a n == n n n e t Rb e Rbt e a e a a4296+-=+=τττ6、当滑至斜面底时,h y =,则gh v A 2=',A 物运动过程中又受到B 的牵连运动影响,因此,A 对地的速度为jgh i gh u v u v AA )sin 2()cos 2('αα++=+=地练习三:1-3、BCB 4、3s ; 5、ωωωωR j t i t R v R y x )cos sin (222+-==+6、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v t l v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d sv h s v s l s v s lv s v v s t s l t l s t v a =+-=+-=-==船船 7、解: kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0 t k e v dtdxv -==0dt e v dx t k tx-⎰⎰=000)1(0t k e kv x --=练习四:1-2 AC3、解: 2s m 83166-⋅===m f a x x 2s m 167-⋅-==mf a y y (1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x--=⨯-+⨯⨯+⨯-=++=4、解:小球的受力分析如下图,有牛顿第二定律可知:dtdvm F kv mg =--分离变量及积分得:⎰⎰----=-v tFkv mg F kv mg d dt m k00)(解得:))(1(1F mg e kv t m k--=-5、解:取弹簧原长时m 2所在处为坐标原点,竖直向下为x 轴,m 1,m 2的受力分析如上图所示。