12_第七章-聚类分析
- 格式:pptx
- 大小:3.35 MB
- 文档页数:60
聚类分析方法聚类分析是一种常用的数据分析方法,它可以将数据集中的对象按照其相似性进行分组,形成若干个簇。
通过聚类分析,我们可以发现数据中的内在结构,帮助我们更好地理解数据集的特点和规律。
在实际应用中,聚类分析被广泛应用于市场分割、社交网络分析、图像处理等领域。
本文将介绍聚类分析的基本原理、常用方法和应用场景,希望能够帮助读者更好地理解和应用聚类分析。
聚类分析的基本原理是将数据集中的对象划分为若干个簇,使得同一簇内的对象相似度较高,不同簇之间的对象相似度较低。
在进行聚类分析时,我们需要选择合适的相似性度量方法和聚类算法。
常用的相似性度量方法包括欧氏距离、曼哈顿距离、余弦相似度等,而常用的聚类算法包括K均值聚类、层次聚类、DBSCAN等。
不同的相似性度量方法和聚类算法适用于不同的数据类型和应用场景,选择合适的方法对于聚类分析的效果至关重要。
K均值聚类是一种常用的聚类算法,它通过不断迭代更新簇中心的方式,将数据集中的对象划分为K个簇。
K均值聚类的优点是简单、易于理解和实现,但是它对初始簇中心的选择较为敏感,容易收敛到局部最优解。
层次聚类是另一种常用的聚类算法,它通过逐步合并或分裂簇的方式,构建一棵层次化的聚类树。
层次聚类的优点是不需要事先确定簇的个数,但是它对大数据集的处理效率较低。
DBSCAN是一种基于密度的聚类算法,它能够发现任意形状的簇,并且对噪声数据具有较强的鲁棒性。
不同的聚类算法适用于不同的数据特点和应用场景,我们需要根据具体情况选择合适的算法进行聚类分析。
聚类分析在实际应用中有着广泛的应用场景。
在市场分割中,我们可以利用聚类分析将顾客分为不同的群体,从而制定针对性的营销策略。
在社交网络分析中,我们可以利用聚类分析发现社交网络中的社区结构,从而发现潜在的影响力人物。
在图像处理中,我们可以利用聚类分析对图像进行分割和特征提取,从而实现图像内容的理解和识别。
聚类分析在各个领域都有着重要的应用,它为我们理解和利用数据提供了有力的工具。
第七章聚类分析第一节遗传距离数量性状遗传研究中,常常需要在多性状水平上度量个体或群体间的亲疏关系,遗传距离是在多性状水平上概括这些研究对象间的亲缘关系疏远程度的有效统计量之一。
通过对遗传距离的聚类分析,不仅可以认识所研究对象(个体或群体)间亲缘关系的远近,还可进一步研究不同类群间关系远近与杂种优势的关系,为杂交育种和杂种优势的利用提供理论和材料依据。
下面首先介绍有关遗传距离的基本概念—样品与变量,然后介绍遗传距离的具体计算,第三部分介绍聚类分析。
一、样品与变量遗传距离可以通过三种不同类型信息获得:表型信息、分子(包括DNA和蛋白质)标记信息和系谱信息,由这三种信息求得的遗传距离分别称为表型遗传距离、遗传标记距离和系谱遗传距离。
在聚类分析中有两个很重要的概念:样品和变量。
样品是所研究的对象,如不同群体、不同品种以及变异群体内的不同个体等。
为了研究样品间的关系,需要拟定一些指标来测试这些样品,这些指标就是变量,如株高、产量、籽粒长度、胚颜色等为表型性状变量;采用分子生物学技术获得的“0、1”型标记变量被称为分子标记变量。
样品间表型性状变量和分子标记变量的遗传距离计算方法不同,下面分别叙述。
二、基于数量性状表型数据的遗传距离(一)数据变换一般来说,用来考察样品的表型性状变量有多个,这些变量使用的量纲会有不同,取值范围也不相同。
为了使不同量纲、不同取值范围的数据能放在一起进行比较,通常需要对原始数据进行变换处理,使之变成无量纲而具可比性。
假设有n个样品,m个变量,y表示第i个样品在第j个变量的观测值,ij==。
观测值数据列于表7-1。
1,,;1,,i n j m11 y1. 标准差标准化变换:*(1,2,,;1,2,,)ij jij jy y y i n j m s -=== (7-1)变换后的数据*ij y 无量纲,每个变量的样本均值为0,标准差为1。
2. 极差标准化变换:*(1,2,,;1,2,,)ij j ij jy y y i n j m R -=== (7-2)变换后的数据*ij y 无量纲,每个变量的样本均值为0,极差为1,且|*ij y |﹤1。
聚类分析的基本概念与方法聚类分析(Cluster Analysis)是一种将数据分组或分类的统计学方法,通过将相似的对象归为同一组,使得组内的对象之间更加相似,而不同组之间的对象则差异较大。
它是数据挖掘和机器学习领域中常用的技术之一,被广泛应用于市场分析、生物信息学、图像处理等领域。
一、聚类分析的基本概念聚类分析基于相似性的概念,即认为具有相似特征的对象更有可能属于同一类别。
在聚类分析中,每个对象都被视为一个数据点,而聚类则是将这些数据点分组。
基本概念包括以下几点:1. 数据点:数据集中的每个样本或对象都被看作是一个数据点,它具有多个特征或属性。
2. 相似性度量:聚类分析的关键是如何计算数据点之间的相似性或距离。
常用的相似性度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。
3. 簇/类别:将相似的数据点归为一组,这个组被称为簇或类别。
簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。
4. 聚类算法:聚类分析依赖于具体的算法来实现数据点的分组。
常见的聚类算法有K均值聚类、层次聚类、密度聚类等。
二、聚类分析的方法1. K均值聚类(K-means Clustering):K均值聚类是一种迭代的聚类方法,它将数据点分成K个簇,每个簇代表一个样本集。
算法的基本思想是通过最小化簇内数据点与簇中心之间的平方误差来确定最优的簇中心位置。
2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于树状结构的聚类算法,它根据数据点之间的相似性逐步合并或分割簇。
层次聚类分为凝聚型和分裂型两种方法,其中凝聚型方法从单个数据点开始,逐步合并最相似的簇;分裂型方法从所有数据点开始,逐步分割最不相似的簇。
3. 密度聚类(Density-Based Clustering):密度聚类基于密度可达的概念,将具有足够高密度的数据点归为一簇。
核心思想是在数据空间中通过密度连通性来确定簇的边界,相对于K均值聚类和层次聚类,密度聚类能够有效处理不规则形状和噪声数据。
聚类分析原理及步骤
一,聚类分析概述
聚类分析是一种常用的数据挖掘方法,它将具有相似特征的样本归为
一类,根据彼此间的相似性(相似度)将样本准确地分组为多个类簇,其中
每个类簇都具有一定的相似性。
聚类分析是半监督学习(semi-supervised learning)的一种,半监督学习的核心思想是使用未标记的数据,即在训
练样本中搜集的数据,以及有限的标记数据,来学习模型。
聚类分析是实际应用中最为常用的数据挖掘算法之一,因为它可以根
据历史或当前的数据状况,帮助组织做出决策,如商业分析,市场分析,
决策支持,客户分类,医学诊断,质量控制等等,都可以使用它。
二,聚类分析原理
聚类分析的本质是用其中一种相似性度量方法将客户的属性连接起来,从而将客户分组,划分出几个客户类型,这样就可以进行客户分类、客户
细分、客户关系管理等,更好地实现客户管理。
聚类分析的原理是建立在相似性和距离等度量概念之上:通过对比一
组数据中不同对象之间的距离或相似性,从而将它们分成不同的类簇,类
簇之间的距离越近,则它们之间的相似性越大;类簇之间的距离越远,则
它们之间的相似性越小。
聚类分析的原理分为两类,一类是基于距离的聚类。