第3章 聚类分析答案
- 格式:doc
- 大小:107.50 KB
- 文档页数:4
第三章 聚类分析一、填空题1.在进行聚类分析时,根据变量取值的不同,变量特性的测量尺度有以下三种类型: 间隔尺度 、 顺序尺度 和 名义尺度 。
2.Q 型聚类法是按___样品___进行聚类,R 型聚类法是按_变量___进行聚类。
3.Q 型聚类统计量是____距离_,而R 型聚类统计量通常采用_相似系数____。
4.在聚类分析中,为了使不同量纲、不同取值范围的数据能够放在一起进行比较,通常需要对原始数据进行变换处理。
常用的变换方法有以下几种:__中心化变换_____、__标准化变换____、____规格化变换__、__ 对数变换 _。
5.距离ij d 一般应满足以下四个条件:对于一切的i,j ,有0≥ij d 、 j i =时,有0=ij d 、对于一切的i,j ,有ji ij d d =、对于一切的i,j,k ,有kj ik ij d d d +≤。
6.相似系数一般应满足的条件为: 若变量i x 与 j x 成比例,则1±=ij C 、 对一1≤ij 和 对一切的i,j ,有ji ij C C =。
7.常用的相似系数有 夹角余弦 和 相关系数 两种。
8.常用的系统聚类方法主要有以下八种: 最短距离法 、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法。
9.快速聚类在SPSS 中由__K-mean_____________过程实现。
10.常用的明氏距离公式为:()qpk q jk ik ij x x q d 11⎥⎦⎤⎢⎣⎡-=∑=,当1=q 时,它表示 绝对距离 ;当2=q 时,它表示 欧氏距离 ;当q 趋于无穷时,它表示 切比雪夫距离 。
11.聚类分析是将一批 样品 或 变量 ,按照它们在性质上 的 亲疏、相似程度 进行分类。
12.明氏距离的缺点主要表现在两个方面:第一 明氏距离的值与各指标的量纲有关 ,第二 明氏距离没有考虑到各个指标(变量)之间的相关性 。
第三章 F 关系与聚类分析一、 关系1.直积(笛卡尔积){}(,),A B x y x A y B ∆⨯=∈∈{}11(,,),1,,n n i i A A x x x A i n ∆⨯⨯=∈= 211321111,R R R RR R R R R=⨯=⨯=⨯⨯2.关系现实世界中存在各种各样的关系“父子关系”,“师生关系”,“数的大于等于关系”… 特点:涉及两个集合,X Y,,x X y Y∀∈∈,x 与y 或者有关系,或者没关系,这就是普通关系。
定义 1 给定论域X ,规定一个X 到Y 的关系R (记作RX Y →),对任意,x X y Y∈∈,x 与y 有关系,记作xRy ,x 与y 无关系记作cxR y ,二者必居其一,且仅居其一。
定义1'(等价定义)若R X Y⊆⨯,则称R 为X 到Y 的关系。
例1 “大于等于“关系,记作“≥”(,)x y R R ∀∈⨯,1, (,)0, x y x y x y≥⎧≥=⎨<⎩3.常用性质(X 上的关系) (1)自反R xX xRx∀∈⇒(,)x x R ∈(2)对称RxRy yRx⇒(,)(,)x y R y x R ∈⇒∈(3)传递RxRy yRz xRz⇒且(,)(,)(,)x y R y z R x z R∈∈⇒∈且4.分类(聚类)问题 (1)1nii X E ==⋃(2), i j E E i j φ⋂=≠二、F 关系的定义和性质1.定义1 称X Y⨯的一个模糊子集R确定了一个X到Y的模糊关系R (记作RX Y →),隶属度(,)R x y 表示x 与y 有关系的程度。
“朋友”关系,“信任”关系,“相像”关系… 例1 实数域上的“远远大于”关系,记作“>>”,隶书函数定义为:120,(,)1001()x y x y x y x y -≤⎧⎪>>=⎨⎡⎤+>⎪⎢⎥-⎣⎦⎩ , 10,0, (,)0.520,18, (,)0.03851000,100, (,)0.9999x y x y x y x y x y x y ==>>===>>===>>=例2设某地区身高论域{}140,150,160,170,180X =,体重论域{}40,50,60,70,80Y =,下表给出了一个表示身高与体重之间相互关系R ,它是一个模糊关系。
第三章 聚类分析一、填空题1.在进行聚类分析时,根据变量取值的不同,变量特性的测量尺度有以下三种类型: 间隔尺度 、 顺序尺度 和 名义尺度 。
2.Q 型聚类法是按___样品___进行聚类,R 型聚类法是按_变量___进行聚类。
3.Q 型聚类统计量是____距离_,而R 型聚类统计量通常采用_相似系数____。
4.在聚类分析中,为了使不同量纲、不同取值范围的数据能够放在一起进行比较,通常需要对原始数据进行变换处理。
常用的变换方法有以下几种:__中心化变换_____、__标准化变换____、____规格化变换__、__ 对数变换 _。
5.距离ij d 一般应满足以下四个条件:对于一切的i,j ,有0≥ij d 、 j i =时,有0=ij d 、对于一切的i,j ,有ji ij d d =、对于一切的i,j,k ,有kj ik ij d d d +≤。
6.相似系数一般应满足的条件为: 若变量i x 与 j x 成比例,则1±=ij C 、 对一切的i,j ,有1≤ij 和 对一切的i,j ,有ji ij C C =。
7.常用的相似系数有 夹角余弦 和 相关系数 两种。
8.常用的系统聚类方法主要有以下八种: 最短距离法 、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法。
9.快速聚类在SPSS 中由__K-mean_____________过程实现。
10.常用的明氏距离公式为:()qp k q jk ik ij x x q d 11⎥⎦⎤⎢⎣⎡-=∑=,当1=q 时,它表示 绝对距离 ;当2=q 时,它表示 欧氏距离 ;当q 趋于无穷时,它表示 切比雪夫距离 。
11.聚类分析是将一批 样品 或 变量 ,按照它们在性质上 的 亲疏、相似程度 进行分类。
12.明氏距离的缺点主要表现在两个方面:第一 明氏距离的值与各指标的量纲有关 ,第二 明氏距离没有考虑到各个指标(变量)之间的相关性 。
聚类分析1聚类分析的含义聚类是根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。
2聚类分析的原理2.1聚类分析的定义聚类分析是将样品或变量按照它们性质上的亲疏程度进行分类的多元统计分析方法。
进行聚类分析时,用来描述物品或变量的亲疏程度通常有两个途径,一个是把每个样品或变量看成是多维空间上的一个点,在多维坐标中,定义点与点,类与类之间的距离,用点与点间距离来描述作品或变量之间的亲疏程度;二是计算样品或变量的相似系数,用相似系数来描述样品或变量之间的亲疏程度。
2.2 聚类分析的种类聚类分析按原理分为系统聚类与快速聚类。
聚类分析按照分组理论依据的不同,可分为系统聚类法、动态聚类法、模糊聚类、图论聚类等多种聚类方法。
(1)系统聚类分析法。
是在样品距离的基础上定义类与类的距离,首先将n 个样品自成一类,然后每次将具有最小距离的两个类合并,合并后再重新计算类与类之间的距离,再并类,这个过程一直持续到所有的样品都归为一类为止。
这种聚类方法称为系统聚类法。
根据并类过程所做的样品并类过程图称为聚类谱系图。
(2)动态聚类分析法。
是将n个样品初步分类,然后根据分类函数尽可能小的原则,对初步分类进行调整优化,直到分类合理为止。
这种分类方法一般称为动态聚类法,也称调优法。
(3)模糊聚类分析法。
是利用模糊数学中模糊集理论来处理分类问题的方法,他对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果。
(4)图论聚类分析法。
是利用图论中最小支撑树(MST)的概念来处理分类问题,是一种独具风格的方法。
2.3聚类分析法的分类按对象进行分类:Q型聚类分析是对样本进行分类处理的,R 型聚类分析是对变量(指标)进行分类处理的。
Q型聚类分析的特点(1)可以综合利用多个变量的信息对样本进行分类。
(2)分类结果是直观的,聚类谱系图非常清楚地表现其数值分类结果。
一、填空题1.EM算法中,E代表期望,M代表()。
正确答案:最大化2.无监督学习中除了聚类,另一种是()。
正确答案:建模3.我们将一个数据可以属于多个类(概率)的聚类称作()。
正确答案:软聚类二、判断题1.聚类算法中的谱聚类算法是一种分层算法。
正确答案:×解析:聚类算法中的谱聚类算法是一种扁平算法。
2.两个向量之间的余弦距离等于1减这两个向量的余弦相似度。
正确答案:√3.K-均值++算法能够克服最远点不能处理离群值的问题。
正确答案:√4.K-means和EM聚类之间的主要区别之一是EM聚类是一种“软”聚类算法。
正确答案:√5.监督学习的训练集时有标签的数据。
正确答案:√6.在文本聚类中,欧氏距离是比较适合的。
正确答案:×三、单选题1.以下哪些方法可以确定K-均值算法已经收敛?()A.划分不再改变B.聚类中心不再改变C.固定次数的迭代D.以上三种均是正确答案:D2.以下哪些算法可以处理非高斯数据?()A.K-means算法B.EM算法C.谱聚类算法D.以上三种算法都可以正确答案:C四、多选题1、无监督学习可以应用于哪些方面?()A.图像压缩B.生物信息学:学习基因组C.客户细分(即分组)D.学习没有任何标签的聚类/群组正确答案:A、B、C、D2、以下哪些选项是K-均值聚类面临的问题?()A.K的选择具有挑战性B.硬聚类并不总是正确的C.贪婪算法存在的问题D.关于数据的球形假设(到聚类中心的距离)正确答案:A、B、C、D3、聚类可以应用于哪些方面?()A.基因表达数据的研究B.面部聚类C.搜索结果聚类D.新闻搜索正确答案:A、B、C、D4、在K-均值算法中,以下哪些方法可以用于随机种子的选择?()A.随机选择数据作为中心B.空间中的随机位置作为中心C.尝试多个初始起点D.使用另一个聚类方法的结果进行初始化正确答案:A、B、C、D5、EM算法可以应用于以下哪些方面?()A.学习贝叶斯网络的概率B.EM-聚类C.训练HMMD.学习微信好友网络正确答案:A、B、C、D。
多元统计分析课后练习答案第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
数据挖掘算法原理与实现第2版第三章课后答案
1.密度聚类分析:
原理:密度聚类分析是指通过测量数据对象之间的密度(density)
来将其聚成几个聚类的一种聚类分析方法。
它把距离邻近的数据归入同一
类簇,并把不相连的数据分成不同的类簇。
实现:通过划分空间中每一点的邻域来衡量数据点之间的聚类密度。
它将每个数据点周围与它最近的K个数据点用一个空间圆包围起来,以定
义该数据点处的聚类密度。
然后,可以使用距离函数将所有点分配到最邻
近的类中。
2.引擎树:
原理:引擎树(Search Engine Tree,SET)是一种非常有效的数据
挖掘方法,它能够快速挖掘关系数据库中指定的有价值的知识。
实现:SET是一种基于决策树的技术,通过从关系数据库的历史数据
中提取出有价值的信息,来建立一种易于理解的引擎树,以及一些有益的
信息发现知识,以便用户快速找到想要的信息。
SET对原始数据进行一系
列数据挖掘处理后,能够提取出其中模式分析的信息,从而实现快速、高
效的引擎。
3.最大期望聚类:
原理:最大期望聚类(Maximization Expectation Clustering,MEC)是一种有效的数据挖掘算法,它可以自动识别出潜在的类簇结构,提取出
类簇内部的模式,帮助用户快速完成类簇分析任务。
聚类分析作业例题:
进行聚类分析,步骤如下:
1、标准化的欧式距离聚类
各类所属
得出以上结果,以欧氏距离为计算距离方法,把以上17个亚洲国家地区按6个变量欧氏距离划分为三类。
第一类为:Bangladesh
第二类为:China
第三类为:Malaysia 2、尝试其他类间距离方法
其他类间距离方法得出以上结果,以欧氏距离为计算距离方法,把以上17个亚洲国家地区按6个变量欧氏距离也可以划分为以下三类:
第一类为:Bangladesh
第二类为:China
第三类为:Malaysia
3、用样本主成分画图
由图可知,所聚成的3类中:
第1类有5个样本,类间距离较接近,效果较好;
第2类有6个样本,类间距离较接近,效果次之;
第3类有6个样本。
类间距离较离散,效果最差。
数据挖掘概念与技术课后答案第二版第一章:数据挖掘概论1.什么是数据挖掘?数据挖掘是一种通过从大量数据中发现隐藏模式、关系和知识的方法。
它将统计学、机器学习和数据库技术结合起来,用于分析海量的数据,并从中提取出有用的信息。
2.数据挖掘的主要任务有哪些?数据挖掘的主要任务包括分类、回归、聚类、关联规则挖掘和异常检测等。
3.数据挖掘的流程有哪些步骤?数据挖掘的典型流程包括问题定义、数据收集、数据预处理、特征选择、模型构建、模型评估和模型应用等步骤。
4.数据挖掘的应用领域有哪些?数据挖掘的应用领域非常广泛,包括市场营销、金融分析、生物医学、社交网络分析等。
5.数据挖掘的风险和挑战有哪些?数据挖掘的风险和挑战包括隐私保护、数据质量、误差纠正、过拟合和模型解释等。
第二章:数据预处理1.数据预处理的主要任务有哪些?数据预处理的主要任务包括数据清洗、数据集成、数据转换和数据规约等。
2.数据清洗的方法有哪些?数据清洗的方法包括缺失值填补、噪声数据过滤、异常值检测和重复数据处理等。
3.数据集成的方法有哪些?数据集成的方法包括实体识别、属性冲突解决和数据转换等。
4.数据转换的方法有哪些?数据转换的方法包括属性构造、属性选择、规范化和离散化等。
5.数据规约的方法有哪些?数据规约的方法包括维度规约和数值规约等。
第三章:特征选择与数据降维1.什么是特征选择?特征选择是从原始特征集中选择出最具有代表性和区分性的特征子集的过程。
2.特征选择的方法有哪些?特征选择的方法包括过滤式特征选择、包裹式特征选择和嵌入式特征选择等。
3.什么是数据降维?数据降维是将高维数据映射到低维空间的过程,同时保留原始数据的主要信息。
4.数据降维的方法有哪些?数据降维的方法包括主成分分析、线性判别分析和非负矩阵分解等。
5.特征选择和数据降维的目的是什么?特征选择和数据降维的目的是减少数据维度、提高模型训练效果、降低计算复杂度和防止过拟合等。
第四章:分类与预测1.什么是分类?分类是通过训练数据集建立一个分类模型,并将未知数据对象分配到其中的某个类别的过程。
第三章 聚类分析
一、填空题
1.在进行聚类分析时,根据变量取值的不同,变量特性的测量尺度有以下三种类型: 间隔尺度 、 顺序尺度 和 名义尺度 。
2.Q 型聚类法是按___样品___进行聚类,R 型聚类法是按_变量___进行聚类。
3.Q 型聚类统计量是____距离_,而R 型聚类统计量通常采用_相似系数____。
4.在聚类分析中,为了使不同量纲、不同取值范围的数据能够放在一起进行比较,通常需要对原始数据进行变换处理。
常用的变换方法有以下几种:__中心化变换_____、__标准化变换____、____规格化变换__、__ 对数变换 _。
5.距离ij d 一般应满足以下四个条件:对于一切的i,j ,有0≥ij d 、 j i =时,有
0=ij d 、对于一切的i,j ,有ji ij d d =、对于一切的i,j,k ,有kj ik ij d d d +≤。
6.相似系数一般应满足的条件为: 若变量i x 与 j x 成比例,则1±=ij C 、 对一
1≤ij 和 对一切的i,j ,有ji ij C C =。
7.常用的相似系数有 夹角余弦 和 相关系数 两种。
8.常用的系统聚类方法主要有以下八种: 最短距离法 、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法。
@
9.快速聚类在SPSS 中由__K-mean_____________过程实现。
10.常用的明氏距离公式为:()q
p
k q jk ik ij x x q d 11⎥⎦
⎤⎢⎣⎡-=∑=,当1=q 时,它表示 绝
对距离 ;当2=q 时,它表示 欧氏距离 ;当q 趋于无穷时,它表示 切比雪夫距离 。
11.聚类分析是将一批 样品 或 变量 ,按照它们在性质上 的 亲疏、相似程度 进行分类。
12.明氏距离的缺点主要表现在两个方面:第一 明氏距离的值与各指标的量纲有关 ,第二 明氏距离没有考虑到各个指标(变量)之间的相关性 。
13.马氏距离又称为广义的 欧氏距离 。
14,设总体G 为p 维总体,均值向量为()'
p μμμμ,,
,= 21,协差阵为∑,则样品()'
=p X X X X ,,,21 与总体G 的马氏距离定义为
()()()μμ-∑'
-=-X X G X d 12,。
15.使用离差平方和法聚类时,计算样品间的距离必须采用 欧氏距离 。
16.在SPSS 中,系统默认定系统聚类方法是 类平均法 。
17.在系统聚类方法中, 中间距离法和 重心法 不具有单调性。
18.离差平方和法的基本思想来源于 方差分析 。
,
19.最优分割法的基本步骤主要有三个:第一,定义类的直径 ;第二, 定义目标函数 ;第三, 求最优分割 。
20.最优分割法的基本思想是基于 方差分析的思想 。
二、判断题
1.在对数据行进中心化变换之后,数据的均值为0,而协差阵不变,且变换后后的数据与变量的量纲无关。
( )
2.根据分类的原理,我们可以把聚类分为样品聚类和变量聚类。
( ) 3.兰氏距离不仅克服了明氏距离与各指标的量纲有关的缺点,而且也考虑了变量间的相关性。
( )
4.当各变量之间相互独立时,马氏距离就退化为欧氏距离。
( ) 5.在几种系统聚类法中,最短(长)距离法、(可边)类平均法、重心法和离差
平方和法都具有单调性,只有中间距离法不具有单调性。
( )
6.重心法比离差平方和法使空间扩张。
( )
7.离差平方和法的思想来源于方差分析.如果类分得比较合理,同类样品之间的离差平方和应当较大,类与类之间的离差平方和应当较小. ( ) 【
8.使用离差平方和法时,计算样品间的距离必须采用欧氏距离. ( ) 9.快速聚类法又称为动态聚类法,是一种非谱系聚类法,它可以应用于比系统聚类法大得多的数据组. ( ) 10.明氏距离的优点在于考虑了各个指标之间的相关性,而缺点在于它的值与各指标的量纲有关。
( )
11.马氏距离考虑了便了之间观测变量之间的相关性。
( )
12.兰氏距离对大的奇异值不敏感,适合高度偏倚的数据,但是它没有克服与各指标的量纲有关的缺点。
( ) 三、简答题
1.简述聚类分析的基本思想和基本步骤 2.系统聚类法的基本思想是什么 3.系统聚类法的基本步骤是什么 4.简述最长聚类法的聚类步骤。
$
5.简述快速聚类的基本思想及主要步骤。
6.简述最优分割法的步骤
7.简述Ward 离差平方和法的基本思想.
8.在数据处理时,为什么通常要进行标准化处理 9.简述最优分割法的基本思想和基本步骤。
四、计算题
1.假设有一个二维正态总体,它的分布为:⎥⎦⎤
⎢⎣⎡⎪⎪⎭⎫ ⎝
⎛⎪⎪⎭⎫ ⎝⎛19.09.01,002N ,并且还已知有
两点()'=1,1A 和()'
-=1,1B ,
要求分别用马氏距离和欧氏距离计算这两点A 和B 各自到总体均值点()'
=0,0μ的距离.
2.设有5个样品,已知各样品之间的距离矩阵为:
54321G G G G G
\
⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡06
5
.32
7
05.24105.15.30
5054321G G G G G
试分别用最短距离法和最长距离法聚类。
3.为研究全国31个省区城镇居民生活消费的分布规律,根据2003年统计资料利用SPSS 软件中的系统聚类法做类型划分,其谱系图如下,你认为从全国各省区的消费情况看,分为几类较合适,结合我国区域社会及经济发展情况,对分类结果作简要分析。
* * * * * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * * * * Dendrogram using Average Linkage (Between Groups)
Rescaled Distance Cluster Combine
C A S E 0 5 10 15 20 25 Label Num +---------+---------+---------+---------+---------+ 青海 29 宁夏 30 )
河南 16 甘肃 28 河北 3 四川 23 陕西 27 湖北 17 湖南 18 内蒙古 5 新疆 31 吉林 7 \
黑龙江 8 山西 4 辽宁 6 云南 25 安徽 12 贵州 24 江西 14 江苏 10
重庆 22 山东 15 ]
福建 13 广西 20 海南 21
天津 2 西藏 26 浙江 11 广东 19 上海 9
北京 1
4.下面给出了八个样品的两个指标数据
五、SPSS操作题
试分别利用最短距离法、最长距离法、重心法、类平均法、中间距离法将它们聚类(分类统计量采用绝对距离),并画出聚类图。
(1)样本间用欧氏距离,并用系统聚类的诸方法对样本进行聚类。
(2)将数据标准化后,仍用欧氏距离,然后用系统聚类的诸方法对样本进行聚类。
(3)对五个变量进行聚类。