混凝土单轴受压应力-应变曲线..
- 格式:ppt
- 大小:2.55 MB
- 文档页数:41
混凝土受压应力-应变全曲线方程混凝土受压应力-应变全曲线方程混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。
钢筋混凝土结构是目前使用最为广泛的一种结构形式。
但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。
近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。
由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。
1、混凝土单轴受压全曲线的几何特点经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。
典型的曲线如图1所示,图中采用无量纲坐标。
sc c E E N f y x 0,,===σεε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。
常用混凝土受压应力—应变曲线的比较及应用σσεεp 图1-2 Sargin曲线式中:εc1为相应于压应力峰值σ0的压应变εc1=-0.0022,εc1为从原点到压应力峰值点的割线模量, 1c E =0σ/0.0022,0E 为混凝土初始弹性模量;εu为混凝土极限压应变, 其大小与1c E 、0E 及εc1有关。
1.3清华过镇海曲线清华大学的过镇海教授在1982年结合自己多年的研究成果提出了自己的混凝土受压应力-应变曲线表达式,如图1-3所示。
第I 阶段中,OA 仍为二次抛物线,与德国人R üsch 提出的抛物线模式相同如下:])(2[2000εεεεσσ-⨯= )(0εε≤ (1-1) 第II 阶段中,下降段AB 用有理分式表示如下: 0200)1(εεεεαεεσσ+-=)(0u εεε<< (1-5)σσεε0图1-3 过镇海曲线εAB其中,α,0ε见下表:表1-1 材料 强度等级 水泥标号α 0ε/10-3普通混凝土 C20~C30 325 425 0.4 0.8 1.40 1.60 C40 425 2.0 1.80 陶粒混凝土 CL25 425 4.0 2.00 水泥砂浆 M30~M40325,4254.02.501.4 美国Hognestad 曲线美国人E.Hognestad 在1951年提出的应力-应变全曲线方程分为上升段和下降段,上升段与德国人R üsch 所提出模型的上升段相同,但是下降段采用一条斜率为负的直线来模拟,如图1-4所示,上升段表达式如下:])(2[2000εεεεσσ-⨯= )(0εε≤ (1-1)下降段表达式为:)1(000εεεεασσ---=u)(0u εεε<<(1-6)其中:α=0.015;εu =0.038经过化简以后,表达式变为如下: )()012.0014.0(u 00ε<ε<εε-σ=σ(1-7)σσ0ε2图1-4 Hongestad曲线0.85σ0εu对于以上四种常见的混凝土单轴受压应力—应变曲线先将其优缺点进行总结,如下表:表1-2优点 缺点中国规范(1)OA 段表达式比较简单,又能反映应力—应变曲线上升段的特点;AB 段则更为简单。
混凝土受压应力-应变全曲线方程混凝土受压应力-应变全曲线方程混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley和Mchenry的试验研究再次证实,1962年,Barnard在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin,P.T.Wang,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。
钢筋混凝土结构是目前使用最为广泛的一种结构形式。
但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。
近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。
由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。
1、混凝土单轴受压全曲线的几何特点经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。
典型的曲线如图1所示,图中采用无量纲坐标。
sc c E E N f y x 0,,===σεε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。
混凝土受压应力-应变全曲线方程混凝土受压应力-应变全曲线方程混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。
钢筋混凝土结构是目前使用最为广泛的一种结构形式。
但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。
近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。
由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。
1、混凝土单轴受压全曲线的几何特点经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。
典型的曲线如图1所示,图中采用无量纲坐标。
sc c E E N f y x 0,,===σεε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。
常用混凝土受压应力—应变曲线的比较及应用摘要:为了对受弯截面进行弹塑性分析及其他研究,在对各种混凝土受压应力应变曲线研究的基础上,总结出了四种常用曲线,这些曲线已经被广泛应用。
对四种常用曲线进行简介,并指出了它们的适用范围及优缺点。
在进行受弯截面弹塑性分析时,介绍了运用四种常用曲线对其受力性能进行分析的计算模式,并且运用实际案例进行受弯截面弹塑性分析,方便工程师们参考和借鉴。
关键词:混凝土;受压应力应变曲线;本构关系;受弯截面0 引言混凝土受压应力—应变曲线是其最基本的本构关系,又是多轴本构模型的基础,在钢筋混凝土结构的非线件分析中,例如构件的截面刚度、截面极限应力分布、承载力和延性、超静定结构的内力和全过程分析等过程中,它是不可或缺的物理方程,对计算结果的准确性起决定性作用。
近年来,国内外学者对其进行了大量的研究及改进,已有数十条曲线表达式,其中部分具有代表性的表达式已经被各国规范采纳。
常用的表达式包括我国《混凝土结构设计规范》(GB50010-2010)、CEB-FIP Model Code(1990)、清华过镇海以及美国学者Hognestad 建议的混凝土受压应力应变关系,在已有研究的基础上,本文将对各个表达式在实际运用中的情况进行比较,并且通过实际算例运用这些表达式进行受弯截面弹塑性分析,从而为工程师们在实际应用时提供参考和借鉴。
1 常用混凝土受压应力—应变曲线比较至今已有不少学者提出了多种混凝土受压应力应变曲线,常用的表达式采用两类,一类是采用上升段与下降段采用统一曲线的方程,一类是采用上升段与下降段不一样的方程。
1.1 中国规范我国《混凝土结构设计规范》(GB50010-2010)采用的模式为德国人R üsch1960年提出的二次抛物线加水平直线,如图1-1所示。
上升阶段的应力应变关系式为:)(])(2[02000ε≤εεε-εε⨯σ=σ (1-1)A 点为二次抛物线的顶点,应力为0σ,是压应力的最大值,A 点的压应变为0ε。
混凝土受压应力-应变全曲线方程混凝土受压应力-应变全曲线方程混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的根底,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度缺乏造成的重要结论,这一结论于1948年由Ramaley和Mchenry的试验研究再次证实,1962年,Barnard在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者〔如M.Sagin,P.T.Wang,过镇海等〕所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。
钢筋混凝土结构是目前使用最为广泛的一种结构形式。
但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。
近年来,随着有限元数值方法的开展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比拟精确的分析了。
由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线确实定就是一个重要的方面。
1、混凝土单轴受压全曲线的几何特点经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。
典型的曲线如图1所示,图中采用无量纲坐标。
sc c E E N f y x 0,,===σεε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。
湖南大学硕士学位论文混凝土单轴抗拉应力—应变全曲线的试验研究姓名:吴锋申请学位级别:硕士专业:结构工程指导教师:彭勃20060620堡丝圭兰塑垫堡堡垄=窒茎尘些竺塑兰兰竺耋一j目.,励≥;I斟a)变形测量架集量架b)变形架安装示意图/一粘结钢板■■。
攀争!■2习:乏c)引伸仪安装示意图d)引伸仪安装实物图图3.8引伸仪安装示意图和实物图片.24.硕士学位论文加卸载直至引伸仪的测量结果稳定后,比较引伸仪测量到的混凝土四侧的变形值的大小(受拉变形取正值,受压变形取负值);最后将混凝土变形值最大的一侧的引伸仪连接到伺服试验机上,作为反馈控制信号,同时将闭环伺服试验机设置成引伸仪控制模式,控制其变形增长速度。
如果随机的将任意一侧引伸仪测量到的变形作为试验机的反馈控制信号,将会使试验的成功率大大降低;(5)安装防倾铁棒1331。
采用防倾铁棒是为了防止混凝土断裂瞬间倾倒破坏引伸仪和试验机:(6)将试件卸载后对试件重新加载,初始采用荷载控制模式,加载速度为100N,s,加载到抗拉强度的50%时,改为引伸仪控制模式,加载速度为O.002mm/min,直至试件破坏。
图3.11为正在采集数据DH5935动态应变采集系统;图3.12为本文试验装置全貌;图3.13为正在做拉伸应力一应变全曲线的试件。
图3.1l正在采集数据的DH5935应变测试系统图3.12试验装置全貌图3.13试验中的试件3.5受拉试件应力分布使用本试验装置进行混凝土拉伸全曲线试验时,在加载初期,由于球铰的转动,可使截面上达到均匀受拉,如图3.14a)所示,但此时截面两对边的变形是不等的‘341,如图3.14b)。
为验证混凝土试件是否均匀受拉,我们将拉伸试件中各侧面等分为上、中、下三部分,试验中对不同部位的变形进行了测量,结果如图3.15所示。
试件的四个混凝十单轴抗拉应力一麻变伞fl}I线的试验研究在采用本文拉伸试验装置进行试验时,我们对试件的断裂位置进行了观察。
混凝土应力应变全曲线的试验研究混凝土作为建筑材料广泛应用于各种建筑结构中,其应力应变行为是混凝土结构和混凝土材料研究的重要内容。
混凝土的应力应变关系直接影响着结构的强度、稳定性和耐久性,因此对于混凝土应力应变全曲线的试验研究具有重要意义。
本文将围绕混凝土应力应变全曲线的试验展开讨论,以期为混凝土工程的应用和发展提供有益的参考。
在本次试验中,我们采用了电子万能试验机(WDW-100)和混凝土压力试验机(YYD-200)对混凝土试件进行应力应变全曲线的测试。
试件为100mm×100mm×100mm的立方体,成型龄期为28天。
在试验过程中,通过拉伸和压缩两种方式对试件施加荷载,并采用引伸计和压力传感器测量试件的变形参数。
按照设计的试验方案,我们对每个试件进行了应力应变全曲线的测试,并得到了完整的曲线。
通过对曲线图的观察和分析,可以清楚地看到混凝土试件在受力过程中的弹性变形、塑性变形和破坏三个阶段。
通过对试验结果的分析,我们发现混凝土应力应变全曲线具有以下特征和规律:弹性变形阶段:在施加荷载的初期,混凝土试件表现出弹性变形特征,应力与应变呈线性关系。
此时,混凝土的弹性模量较高,抵抗变形的能力较强。
塑性变形阶段:随着荷载的不断增加,混凝土试件开始进入塑性变形阶段。
在这个阶段,应变随应力的增加而迅速增大,而应力与应变的关系逐渐偏离线性关系。
这是由于混凝土内部的微裂缝逐渐产生、扩展和贯通,导致结构内部发生不可逆的塑性变形。
破坏阶段:当荷载继续增加到一定程度时,混凝土试件突然破坏,应力发生急剧下降。
这个阶段标志着混凝土结构的极限承载能力达到极限,结构失去稳定性。
通过本次试验,我们得到了混凝土应力应变全曲线,分析了曲线特征和规律,并探讨了该曲线对混凝土疲劳性能和裂纹扩展行为的影响。
试验结果表明,混凝土的应力应变关系是一个复杂的过程,不仅与材料的组成和结构有关,还受到外界环境和加载条件等多种因素的影响。