1-3及4高斯法和牛顿法.
- 格式:ppt
- 大小:2.50 MB
- 文档页数:28
课程设计说明书题目电力系统分析系 ( 部)专业( 班级 )姓名学号指导教师起止日期电力系统分析课程设计任务书系(部): 专业:指导教师:目录一、潮流计算基本原理1.1 潮流方程的基本模型1.2 潮流方程的讨论和节点类型的划分1.3、潮流计算的意义二、牛顿一拉夫逊法2.1 牛顿-拉夫逊法基本原理2.2节点功率方程2.3修正方程2.4 牛顿法潮流计算主要流程三、收敛性分析四、算例分析总结参考文献电力系统分析潮流计算一、潮流计算基本原理1.1潮流方程的基本模型电力系统是由发电机、变压器、输电线路及负荷等组成,其中发电机及负荷是非线性元件,但在进行潮流计算时,一般可以用接在相应节点上的一个电流注入量来代表。
因此潮流计算所用的电力网络系由变压器、输电线路、电容器、电抗器等静止线性元件所构成,并用集中参数表示的串联或并联等值支路来模拟。
结合电力系统的特点,对这样的线性网络进行分析,普通采用的是节点法,节点电压与节点电流之间的关系I=YV (1—1)其展开式为(i=1,2,3, …,n) (1—2)在工程实际中,已经的节点注入量往往不是节点电流而是节点功率,为此必须应用联系节点电流和节点功率的关系式 (i=1,2,3, …,n) (1—3)将 式 ( 1 - 3 ) 代 入 式 ( 1 - 2 ) 得 到 (i=1,2,3, …,n) (1-4)交流电力系统中的复数电压变量可以用两种极坐标来表示V =Vei8. (1-5)或 V=e+jf (1-6)而复数导纳为Y=G+jB (1-7)将式(1-6)、式(1- 7)代入以导纳矩阵为基础的式(1-4),并将实部与虚部分开,可以得到以下两种形式的潮流方程。
潮流方程的直角坐标形式为潮流方程的极坐标形式为(1—10)(1-11)以上各式中,j∈i表示乙号后的标号j的节点必须直接和节点i相联,并包括j=i的情况。
这两种形式的潮流方程通常称为节点功率方程,实牛顿一拉夫逊等潮流算法所采用的主要数学模型。
高斯牛顿法高斯—牛顿迭代法的基本思想是使用泰勒级数展开式去近似地代替非线性回归模型,然后通过多次迭代,多次修正回归系数,使回归系数不断逼近非线性回归模型的最佳回归系数,最后使原模型的残差平方和达到最小。
高斯—牛顿法的一般步骤为:(1)初始值的选择。
其方法有三种,一是根据以往的经验选定初始值;二是用分段法求出初始值;三是对于可线性化的非线性回归模型,通过线性变换,然后施行最小平方法求出初始值。
(2)泰勒级数展开式。
设非线性回归模型为:i=1,2,…,n (3-68)其中r为待估回归系数,误差项~N(0, ),设:,为待估回归系数的初始值,将(3-68)式在g点附近作泰勒展开,并略去非线性回归模型的二阶及二阶以上的偏导数项,得(3-69)将(3-69)式代入(3-68)式,则移项:令:则:i=1,2,…,n用矩阵形式表示,上式则为:(3-70)其中:(3)估计修正因子。
用最小平方法对(3-70)式估计修正因子B,则:(3-71)设g为第一次迭代值,则:(4)精确度的检验。
设残差平方和为:,S为重复迭代次数,对于给定的允许误差率K,当时,则停止迭代;否则,对(3-71)式作下一次迭代。
(5)重复迭代。
重复(3-71)式,当重复迭代S次时,则有:修正因子:第(S+1)次迭代值:四、应用举例设12个同类企业的月产量与单位成本的资料如下表:表3-9 间接代换法计算表企业编号单位产品成本(元)月产量1 2 3 4 5 6 7 8 91011121601511141288591757666606160101620253136404551566065(注:资料来源《社会经济统计学原理教科书》第435页)试配合适当的回归模型分析月产量与单位产品成本之间的关系。
解:(1)回归模型与初始值的选择。
根据资料散点图的识别,本数据应配合指数模型:对指数模型两边取对数,化指数模型为线性回归模型,然后施行最小平方法求出初始值。
即:则上述指数模型变为:对分别求反对数,得,带入原模型,得回归模型:高斯—牛顿迭代法初始回归模型:残差平方和:(2)泰勒级数展开式。
数学方法解决非线性方程组非线性方程组在科学、工程和数学领域中具有重要的应用价值。
解决非线性方程组是一个复杂的任务,而数学方法为我们提供了一种有效的途径。
本文将介绍一些常用的数学方法,以解决非线性方程组的问题。
1. 牛顿法牛顿法是一种常用的数值解法,用于求解非线性方程组。
它基于泰勒级数的思想,通过迭代逼近方程组的根。
具体步骤如下:首先,选择一个初始点作为近似解。
然后,根据函数的导数来计算方程组在该点的切线,找到切线与坐标轴的交点。
将该交点作为新的近似解,继续迭代,直到满足收敛条件。
牛顿法具有快速收敛的特点,但在某些情况下可能会陷入局部极小值点。
2. 雅可比迭代法雅可比迭代法也是一种常见的数值解法。
它将非线性方程组转化为线性方程组的形式,然后通过迭代来逼近解。
具体步骤如下:首先,将非线性方程组表示为矩阵形式,其中包含未知数的系数矩阵和常数向量。
然后,将方程组进行变换,使得未知数的系数矩阵变为对角矩阵。
接下来,选择一个初始解向量,并通过迭代计算新的解向量,直到满足收敛条件。
雅可比迭代法适用于大规模的非线性方程组求解,但收敛速度较慢。
3. 高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进版本。
它在每次迭代中使用新的解向量来更新未知数的值,从而加快收敛速度。
具体步骤如下:首先,选择一个初始解向量。
然后,通过迭代计算新的解向量,直到满足收敛条件。
高斯-赛德尔迭代法相对于雅可比迭代法而言,可以更快地收敛到解。
它在求解非线性方程组时具有较好的效果。
4. 弦截法弦截法是一种近似求解非线性方程组的方法。
它通过线段的截断来逼近方程组的根。
具体步骤如下:首先,选择一个初始的线段,其中包含方程组的两个近似解。
然后,通过截取线段上的新点,构造新的线段。
重复这个过程,直到满足收敛条件。
弦截法是一种迭代方法,它可以在不需要计算导数的情况下逼近方程组的根。
但是,它的收敛速度比牛顿法和雅可比迭代法要慢。
总结:数学方法提供了一种有效的途径来解决非线性方程组的问题。
全国中学生物理竞赛公式全国中学生物理竞赛力学公式一、运动学1.椭圆的曲率半径2.牵连加速度3.等距螺旋线运动的加速度二、牛顿运动定律三、动量1.密舍尔斯基方程〔变质量物体的动力学方程〕()dv dm m F u v dt dt=+-〔其中v 为主体的速度,u 为即将成为主体的一局部的物体的速度〕 四、能量1.重力势能GMm W r=-〔一定有负号,而在电势能中,如果为同种电荷之间的相互作用的电势能,如此应该为正号,但在万有引力的势能中不存在这个问题,一定是负号!!!!〕2.柯尼希定理21''2k k c k kc E E M v E E =+=+〔E k ’为其在质心系中的动能〕 3.约化质量4.资用能〔即可以用于碰撞产生其他能量的动能〔质心的动能不能损失〔由动量守恒决定〕〕〕资用能常用于阈能的计算2212121122kr m m E u u m m μ==+〔u 为两个物体的相对速度〕 5.完全弹性碰撞与恢复系数(1)公式(2)恢复系数来表示完全弹性碰撞112211222112m v m v m u m u u u v v +=+-=-〔用这个方程解比用机械能守恒简单得多〕五、角动量 dL M I dtβ==〔I 为转动惯量〕 3.转动惯量4.常见物体的转动惯量(1)匀质球体225I mr = (2)匀质圆盘〔圆柱〕212I mr =(3)匀质细棒绕端点213I mr =(4)匀质细棒绕中点2112I mr = (5)匀质球壳223I mr =(6)薄板关于中心垂直轴221()12I m a b =+ 5.平行轴定理 2D C I I md =+〔I c 为相对质心且与需要求的轴平行的轴〕6.垂直轴定理(1)推论:一个平面分布的质点组,取z 轴垂直于此平面,x ,y 轴取在平面内,如此三根轴的转动惯量之间有关系 z x y I I I =+〔由此可以推出长方形薄板关于中心垂直轴的转动惯量221()12I m a b =+> 7.天体运动的能量 2GMm E a=-〔a 为椭圆轨道的半长轴,当然,抛物线轨道的能量为0,双曲线轨道的能量大于0〕 8.开普勒第三定律:2234T a GMπ= 六、静力学1.利用矢量的叉乘来解决空间受力平衡问题例如x 方向上的力矩:x y z z y M F r F r F r =⨯=-选一点为轴的话,可以直接列三个力矩平衡的方程来解决问题七、振动与波动1.简谐振动的判定方法2.简谐振动中的量的关系3.驻波min 2x λ=〔x 为相邻的波节或波腹间的距离,即驻波的图形中一个最小重复单位的长度〕4.多普勒效应(1)宏观物体的多普勒效应①观察者运动,波源不动②观察者不动,波源运动③观察者与波源都运动(2)光的多普勒效应注:多普勒效应中的速度的正负单独判断后带入公式中,其实只用记住观察者的运动影响在分子上,而波源运动的影响在分母下.5.有效势能与其应用22()()2eff L V r U r mr=+〔()U r 为传统意义的势能,如引力势能、静电势能、弹性势能,222L mr 是惯性离心力的势能〕振动的角频率满足:ω=〔物体在0r 附近振动,但应该满足''0eff V >,否如此轨道不稳定〕任意物体在0x 附近做简谐振动的条件为:00'()0,''()0U x U x =>其中求简谐振动的角频率的方法为:ω="()k U x =〕 全国中学生物理竞赛电学公式一、静电场:1.高斯定理:4επ∑⎰∑==⋅q q k S d E 封闭面 2.安培环路定理:0=⋅⎰l d E3.均匀带电球壳外表的电场强度:22R kQE =〔在计算相互作用的时候应该用这个公式〕4.无限长直导线产生的电场强度:r k E η2=5.无限大带电平板产生的场强:022εσσπ==k E 6.电偶极矩产生的场强 ①沿着两点连线方向:33rp k r ql kE == ②垂直方向:3322r p k r ql k E ==其中p 为电偶极矩=ql 7.实心球内部电势:322123RQ r k R Q k -=ϕ 8.实心球内部场强:3Qr E kR = 9.同心球形电容器:介电常数指内外球壳之间充满的其中εε)(1221R R k R R C -=即电解质会使电场强度变小但让电容变大10.静电场的能量:2022228E 22121E k C Q QU CU W επω=====电场能量密度为11.电场的极化:kdSC r kQU r Q kQ F E E r r r r r πεεεεε4)1(2210===≥=平行板电容器的电容:点电荷的电势:库仑定律: 对于平行板电容器有:000,Q Q CU S σ==〔不论是否有介质,用这个公式计算出的是自由电荷的密度,而极化电荷密度在平行板电容器中总是满足:01'r rεσσε-=,如果有多个介质在板中串联或并联,将它们分开为许多个电容,然后将电荷密度进展叠加就可以得到最终的自由电荷的密度与极化电荷的密度.〕12.电像法:无限大的接地平板的电像法略接地的球体:q hr q h r h -==','2可以看做将距离和电荷量都乘上一个比例系数hr 只不过电荷的性质相反! 二、稳恒电流 1. 法拉第电解定律:为化合价)为摩尔质量,为电化当量)n M FnMq m k kq m (:)2((:)1(==2. 电阻定律:)1()1(00t R R t ααρρ+=+=即〔t 为摄氏温度〕 3. △-Y 变换:312312233133123121223231231231121YR R R R R R R R R R R R R R R R R R ++=++=++=−→−∆即△-Y 为下求和,Y-△为上求和电容的△-Y 变换与电阻的恰好相反,△-Y 为上求和,Y-△为下求和4. 电流密度的定义:n j SI ∆∆= 5. 欧姆定律的另一表达形式:)1(,ρσ==E σj 6. 焦耳定律的微分形式:ρσ222j j V R I V P p ==== 7. 微观电流neSujS I neuj === 8. 电阻率对电子产生的加速度:9. 晶体三极管的电流分布:三、磁场与电磁感应1. 洛伦兹力B v q F ⨯=2. 毕奥-萨伐尔定律:20cos 4r L I B ϕπμ∆∑= 3. 无限长直流导线产生的磁场:r I r I k B πμ20== 4. 无限长密绕螺线管内部磁场:为单位长度的匝数)n nI B (0μ=5. 安培环路定理:⎰∑=⋅)0内(L I l d B μ〔可用此轻易推出无限长直导线的磁场〕6. 高斯定理:0S (=∆⋅∑)封闭面S B7. 复阻抗:)(1i j Cj X Lj X RX C L R 学中的为单位复数,相当与数ωω===8. 安培力产生的力偶矩:((M m B m m NISn n =⨯=为磁矩)且:为线圈的法向量且方向满足电流的右手螺旋定则)当然力偶矩的大小与所旋转轴无关,甚至所选转轴可以不在线圈平面内,只要满足转轴与力偶矩的方向平行即可〔即与力的方向垂直〕即BISN M =9. 磁矩产生的磁感应强度:032mB x μπ=10. 自感:I L t ε∆=-∆自感磁场能量:212L W LI = 11. 变压器中阻抗变换:2112'()(n R R n n =为原线圈的匝数) 全国中学生物理竞赛 光学 公式一、几何光学1.平面镜反射:2.平面折射〔视深公式〕''n n n n u v R-+=〔圆心在像方半径取正,圆心在物方半径取负〕 以上所有:0,00,0u u v v ><><实物,,虚物实像,,虚像二、波动光学注意关注牛顿环干预的原理,尤其是注意是在球面上反射的光线〔没有半波损失〕与在最低的平面处反射的光线〔有半波损失〕进展干预,而不是在最上面的平面反射的光线进展干预!而且牛顿环作为一种特殊的等厚干预,光在空气层中的路径要计算两次!所以可以得到牛顿环的公式如下: ,3,2,1,0()21(=+=k R k r k λ……〕〔指的是第k 级明纹的位置,中央为暗纹〕22cos 2i h n =∆〔注意等倾干预的半波损失有两种情况〕 〔2i 指的是第一次进入2n 介质的折射角〕6.等厚干预〔略〕''ff xx =〔其中x 与'x 为以焦距计算的物距和像距〕对于物方与像方折射率一样的透镜有牛顿公式的符号规如此为:以物方焦点的远离光心的距离为牛顿物距〔即当经典物距小于焦距的物体的牛顿物距小于零〕;以像方焦点的远离光心的距离为牛顿像距.x d D针对于玻璃球而言A 为齐明点,R n n AO 12=〔即从任何位置看A 点的像在同一位置〕1.22d λθ=〔即艾里斑〕全国中学生物理竞赛 近代物理学 公式一、洛伦兹变换与其推论:2222121222011''1cv c v t t t t t cv l l -∆=--=-=∆-=τ钟慢效应:尺缩效应:〔这两个公式最好不要用,最好用最根底的洛伦兹变换来进展推导,否如此容易在确定不变量的时候出现问题〕小心推导钟慢效应与尺缩效应的时候不要弄反了一定要分析到底在哪一个参考系中x 或者t 是不变的速度变换:〔这个可以由洛伦兹变换求导推出〕<系的速度系相对为S S v '> 正向:222222211'11'1'cvu c v u u c vu c v u u c vu vu u x z z x y y x x x --=--=--= 逆向:2222222'11''11''1'c v u c v u u cv u c v u u cv u v u u x z z xy y xx x +-=+-=++= 时间与空间距离变换:二、相对论力学:动量:0p mv m v γ===能量:2220=E mc m c γ== 动能满足:202c m mc E k -=又有:224202c p c m E +=全国中学生物理竞赛 热学 公式一、理想气体1.理想气体状态方程2.平均平动动能与温度的关系3.能均分定理二、固体液体气体和热传导方式4.热传导定律5.辐射6.膨胀7.外表X 力8.液体形成的球形空泡〔两面都是空气〕由于外表X 力产生的附加压强为:三、特殊准静态过程<1>状态方程〔泊松方程〕 完整的应为:)(,111Const T P Const PT Const TVConstPV ====---γγγγγγ <2>做功 2122111d ()1V V W p V p V p V γ==--⎰〔整个方程实际的意义就是:V W nC T =∆,本来是很简单的,所以对于绝热过程来说,一般不要乱用泊松方程,否如此会误入歧途,因为泊松方程好似与热力学第一定律加上理想气体状态方程完全等效〕 W Q U +=∆〔Q 指系统吸收的热量,W 指外界对系统做的功〕开尔文表述:不可能从单一热源吸收热量,使之完全变为有用功而不产生其他影响.〔第二类永动机是不可能造成的〕 克劳修斯表述:不可能把热量从低温物体传到高温物体而不引起其他变化.全国中学生物理竞赛原子物理 公式1.波尔相关理论:o11212120.53A 53pm13.6n n r E eVn m r r ZMZ M E E n m ===-==〔m 为电子的质量,M 为相当于电子的粒子的质量,比如μ-子〕12212(th M M E Q M M M +=为运动粒子质量,为静止粒子的质量)〔最好用资用能来进展推导,这个比拟保险,公式容易记错〕1.p x h ∆∆≥2.E t h ∆∆≥ 〔另有说法为,44hhp x E t ππ∆∆>∆∆>〕 5.光电效应光子携带能量:E h ν= 光电子的动能:k E h W ν=-逸出功 反向截止电压:k h W E V e eν-==逸出功[附]三角函数公式。
高斯牛顿法高斯—牛顿迭代法的基本思想是使用泰勒级数展开式去近似地代替非线性回归模型,然后通过多次迭代,多次修正回归系数,使回归系数不断逼近非线性回归模型的最佳回归系数,最后使原模型的残差平方和达到最小。
高斯—牛顿法的一般步骤为:(1)初始值的选择。
其方法有三种,一是根据以往的经验选定初始值;二是用分段法求出初始值;三是对于可线性化的非线性回归模型,通过线性变换,然后施行最小平方法求出初始值。
(2)泰勒级数展开式。
设非线性回归模型为:i=1,2,…,n (3-68)其中r为待估回归系数,误差项~N(0, ),设:,为待估回归系数的初始值,将(3-68)式在g点附近作泰勒展开,并略去非线性回归模型的二阶及二阶以上的偏导数项,得(3-69)将(3-69)式代入(3-68)式,则移项:令:则:i=1,2,…,n用矩阵形式表示,上式则为:(3-70)其中:(3)估计修正因子。
用最小平方法对(3-70)式估计修正因子B,则:(3-71)设g为第一次迭代值,则:(4)精确度的检验。
设残差平方和为:,S为重复迭代次数,对于给定的允许误差率K,当时,则停止迭代;否则,对(3-71)式作下一次迭代。
(5)重复迭代。
重复(3-71)式,当重复迭代S次时,则有:修正因子:第(S+1)次迭代值:四、应用举例设12个同类企业的月产量与单位成本的资料如下表:表3-9 间接代换法计算表企业编号单位产品成本(元)月产量1 2 3 4 5 6 7 8 91011121601511141288591757666606160101620253136404551566065(注:资料来源《社会经济统计学原理教科书》第435页)试配合适当的回归模型分析月产量与单位产品成本之间的关系。
解:(1)回归模型与初始值的选择。
根据资料散点图的识别,本数据应配合指数模型:对指数模型两边取对数,化指数模型为线性回归模型,然后施行最小平方法求出初始值。
即:则上述指数模型变为:对分别求反对数,得,带入原模型,得回归模型:高斯—牛顿迭代法初始回归模型:残差平方和:(2)泰勒级数展开式。
小学奥数计算专题练习之高斯算法约翰·卡尔·弗里德里希·高斯(JohannCarlFriedrichGauss,1777年4月30日-1855年2月23日)德国数学家、物理学家、天文学家、大地测量学家,是近代数学奠基者之一,被认为是历最重要的数学家之一,并享有“数学王子”之称。
高斯和阿基米德、牛顿并列为世界三大数学家。
一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。
他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。
计算方法(公式)具体的方法是:首项加末项乘以项数除以2项数的计算方法是末项减去首项除以项差(每项之间的差)加1.如:1+2+3+4+5+······+n,则用字母表示为:n(1+n)/2等差数列求和公式Sn=(a1+an)n/2Sn=n(2a1+(n-1)d)/2;d=公差Sn=An2+Bn;A=d/2,B=a1-(d/2)算法由来高斯小时候非常淘气,一次数学课上,老师为了让他们安静下来,给他们列了一道很难的算式,让他们一个小时内算出1+2+3+4+5+6+……+100的得数。
全班只有高斯用了不到20分钟给出了答案,因为他想到了用(1+100)+(2+99)+(3+98)……+(50+51)……一共有50个101,所以50×101就是1加到一百的得数。
后来人们把这种简便算法称作高斯算法。
1.1+2+3+……+8+9+10=2.1+3+5+……+17+19=3.1+2+3+……51+52+……+99+100=4.1+3+5+……51+53+……+97+99=5.2+4+6+……50+52+……+98+100=6.3+6+9+……+51+54+57+……+96+99=7.5+10+15+……+50+55+……+95+100=8.1+4+7+……+52+55+58+……+97+100=9.小添添家的时钟每整点时就敲钟,而敲的数目和当时的时间是一样的,而且在两个整点中还会敲一下,这时时钟一天内共敲多少下?10.有一列数:19、22、25、28……,这列数的前49个数(从19开始算起)的总和是的多少?。
一、潮流计算方法之间的区别联系高斯-赛德尔法:原理简单,导纳矩阵对称且高度稀疏,占用内存小。
收敛速度很慢,迭代次数随节点数直接上升,计算量急剧增加,不适用大规模系统。
牛顿-拉夫逊法:收敛速度快,迭代次数和网络规模基本无关。
相对高斯-赛德尔法,内存量和每次迭代所需时间较多,其可靠的收敛还取决于一个良好的启动初值。
PQ 分解法(快速解耦法):PQ 分解法实际上是在极坐标形式的牛顿法的基础上,在交流高压电网中,输电线路等元件的R<<X ,即有功功率主要取决于电压相角,而无功功率主要取决于电压幅值,根据这种特性对方程组进行简化,从而实现了有功和无功的解耦。
两大条件:(1)线路两端的相角相差不大(小于10°~20°),而且||||ij ij G B ≤,于是可以认为:cos 1;sin ij ij ij ij G B θθ≈≤; (2)与节点无功功率相对应的导纳2/i i Q U 通常远小于节点的自导纳ii B ,也即2i i ii Q U B <<。
1. PQ 分解法用一个1n -阶和一个1n m --阶的方程组代替牛顿法中22n m --阶方程组,显著减少了内存需量和计算量。
2. 计算过程中B '、B ''保持不变,不同于牛顿法每次迭代都要重新形成雅可比矩阵,因此显著提高了计算速度。
3.雅可比矩阵J 不对称,而B '、B ''都是对称的,使求逆等运算量和所需的存储容量都大为减少。
4. PQ 分解法的迭代次数要比牛顿法多,但是每次迭代所需时间比牛顿法少,所以总的计算速度仍是PQ 分解法快。
在低压配电网中PQ 分解法不适用。
交流高压电网的输电线路的元件满足R<<X ,PQ 分解法正是基于此条件简化而来;而低电压配电网络一般R/X 比值很大,大R/X 比值病态问题也正是PQ 分解法应用中的一个最大障碍。
1.题目造倒数表,并例求 18 的倒数。
(精度为 0.0005)2.算法原理2.1 牛顿迭代法牛顿迭代法是通过非线性方程线性化得到迭代序列的一种方法。
对于非线性方程f x( ) = 0 ,若已知根x* 的一个近似值x k ,将f (x) 在x k 处展成一阶泰勒公式后忽略高次项可得:f (x) ≈f x( k ) + f '(x k )(x −x k )右端是直线方程,用这个直线方程来近似非线性方程f (x) 。
将非线性方程f x( ) = 0的根x*代入f x( *) = 0 ,即f x( k ) + f '(x k )(x* −x k ) ≈ 0* x k−f (x k ) 解出x ≈f '(x k )将右端取为x k+1 ,则x k+1 是比x k 更接近于x* 的近似值,即f (x k )x k+1 ≈x k −f '(x k ) 这就是牛顿迭代公式,相应的迭代函数是f (x)ϕ(x) = x −f '(x)2.2 牛顿迭代法的应用1 1算是求cx− =1 0的解,解出计x,即得到。
取c c 有牛顿迭代公式精品文档cx k −11 x k+1 = x k −= c c 这样就失去了迭代的意义,达不到迭代的效果。
1f (x) = cx−1,f '(x)= c,故重新构造方程:cx2 −x = 0 ,也是该式的解。
故取f (x) = cx2 −x ,cf '(x) = 2cx −1,则有牛顿迭代公式x k+1 = x k −cx k2 −x k = cx k2 , k = 0,1,...2cx k −1 2c k −11 1的值在~ 之间,取初值x0 = 0.1。
20 103.流程图0 ,,N x ε读入 1 k⇒ ( ) 0?0x f ′ = 1x 输出 01 1 k kx x ⇒ + ⇒ ( ) ( )0 10 0f x x x f x ⇒ − ′ 1 0 ?x x ε − < ≠=<=≥≠4.输出结果5.结果分析当k= 3时,得 5 位有效数字 0.05 564。
摘要随着现代社会的发展,大量的统计数据和科学实验数据变得容易获得,数据变得越来越复杂,甚至还会有噪声等干扰信息。
曲线拟合就是找到一组数据点的内在规律,使用曲线近似的拟合这些数据,形成数学模型,对事务进行有效的预测和规划,来获得更大的效益,被广泛应用于社会各个领域,具有重要的实际应用价值。
本文旨在了解一些常用的曲线拟合方法及其原理,根据理解,设计并完成相应的曲线拟合程序,方便使用。
首先,对于有函数解析模型的曲线拟合,都是运用的最小二乘思想进行求解,根据模型种类分为三类:1,线性函数模型,举例一元线性函数的运算过程,通过正规方程求解得到拟合系数,最后根据这些原理,设计并完成了:从1阶到9阶的多项式拟合,幂函数拟合的线性最小二乘拟合程序;2,可线性化的非线性函数:通过变量变换将模型线性化,再进行线性最小二乘拟合;3,不可线性化的非线性函数,求解方法是将目标函数泰勒级数展开,迭代求解的方法有很多,本文实现的方法有3种:高斯牛顿法,信赖域—Dogleg法,LMF法。
最后通过五个实例计算,进行线性最小二乘拟合和非线性拟合,对比分析对于同一组数据,应用不同拟合方法或者不同模型所产生的结果,分析结果并结合实际发现,线性最小二乘拟合对于现实中的很多数据并不适用,将非线性函数线性化之后,有时会放大噪声,使得矩阵奇异,拟合不收敛或者没有非线性拟合准确。
进行非线性拟合时,对比三种方法,发现LMF法可以有效的避免矩阵为奇异值。
初始值只影响LMF法迭代的次数,对结果的影响并不大,而对于高斯牛顿法和信赖域—Dogleg法,很差的初始值会使得矩阵为奇异值或者接近奇异值,从而无法收敛,得不到拟合结果或者得到的结果拟合精度太差。
而当初始值良好的时候,高斯牛顿法的迭代求解速度最快。
而信赖域—Dogleg法,相较于另外两种方法,拟合精度和拟合速度都差了一些。
关键词:曲线拟合;最小二乘;高斯牛顿法;信赖域—Dogleg法;LMF法;对比分析1.绪论1.1.毕业论文研究的目的意义随着现代社会的发展,获取大量的数据将变得更加容易,在实际生活中,收集到的数据的复杂性将逐渐增加,并且会生成噪声,背景和其他干扰信息。
电力系统的潮流计算电力系统潮流计算电力工程的潮流在电力工程中,“潮流”还特指电网各处电压(包括幅值与相角)、有功功率、无功功率等的分布。
潮流的分布是运行调度单位和维修部门所必须知道的事项。
而潮流计算,是指给定电网中一些参数、已知值和未知值中假设的初始值,通过重复迭代,最终求出潮流分布的精确值,常用方法有牛顿-拉夫逊法和PQ分解法。
电力系统中的潮流在发电机母线上功率被注入网络;而在变(配)电站上接入负荷;其间,功率在网络中流动。
对于这种流动的功率,电力生产部门称为潮流(POWER FLOW)。
潮流:电力系统中电压(各节点)、功率(有功、无功)(各支路)的稳态分布潮流计算---电力系统分析中的一种最基本的计算,根据给定的运行参数确定系统的运行状态,如计算网络中个节点的电压(幅值和相角)和各支路中的功率分布及损耗。
电力系统潮流计算是电力系统最基本的计算,也是最重要的计算。
所谓潮流计算,就是已知电网的接线方式与参数及运行条件,计算电力系统稳态运行各母线电压、各支路电流、功率及网损。
对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。
对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。
潮流计算还可以为继电保护和自动装置整定计算、电力系统故障计算和稳定计算等提供原始数据。
百科名片电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。
它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。
电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。
目录潮流计算的意义潮流计算的发展史潮流计算的发展趋势编辑本段潮流计算的意义(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。
电力系统三种潮流计算方法的比较 一、高斯-赛德尔迭代法:以导纳矩阵为基础,并应用高斯--塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。
将所求方程 改写为 不能直接得出方程的根,给一个猜测值 得 又可取x1为猜测值,进一步得:收敛到一个非常精确的解。
而且其迭代次数与所计算网络的规模基本无关。
2. 具有良好的收敛可靠性,对于前面提到的对以节点导纳矩阵为基础的高斯一塞德尔法呈病态的系统,牛顿法均能可靠地收敛。
3. 牛顿法所需的内存量及每次迭代所需时间均较前述的高斯一塞德尔法为多,并与程序设计技巧有密切关系。
缺点:牛顿法的可靠收敛取决于有一个良好的启动初值。
如果初值选择不当,算法有可能根本不收敛或收敛到一个无法运行的解点上。
解决方法:对于正常运行的系统,各节点电压一般均在额定值附近,偏移不会太大,并且各节点间的相位角差10()x x ϕ=0x ()x x ϕ=()0f x =也不大,所以对各节点可以采用统一的电压初值(也称为“平直电压”),“平直电压”法假定:︒==0100i i U θ 或 );,...,2,1(0100s i n i f e i i ≠===这样一般能得到满意的结果。
但若系统因无功紧张或其它原因导致电压质量很差或有重载线路而节点间角差很大时,仍用上述初始电压就有可能出现问题。
可以先用高斯一塞德尔法迭代1-2次;以此迭代结果作为牛顿法的初值,也可以先用直流法潮流求解一次以求得一个较好的角度初值,然后转入牛顿法迭代。
三、P-Q 分解法:电力系统中常用的PQ 分解法派生于以极坐标表示的牛顿—拉夫逊法,其基本思想是把节点功率表示为电压向量的极坐标形式,以有功功率误差作为修正电压向量角度的依据,以无功功率误差作为m 阶不变速度, 原理:a) 当i b) 当i 在以认为 δij cos ≈ ⎭∆''=∆V B Q 原P —Q 分解法的修正方程的简化形式为: ⎪⎭⎪⎬⎫∆''=∆∆'=∆V B V Q V B V Pδ PQ 分解法的修正方程式的特点:1. 以一个(n-1)阶和一个(m-1)阶系数矩阵B B '''、替代原有的系数矩阵J ,提高了计算速度,降低了对贮存容量的要求。
计算方法教学大纲计算方法是一门应用性很强的课程,是许多理工科专业都开设的一门专业基础课程,随着计算机技术的发展, 计算方法目前已被广泛应用于科学技术和国民经济的各个部门,如石油的勘探与开发、航天器的设计与控制、大型水利工程的设计与建筑、反应堆的计算、天气预报与风暴潮预报等。
课程概述1、课程简介计算方法是一门研究求解数学问题数值近似解的专业基础课。
作为一门数学课程,计算方法与其它基础数学课程有着本质上的区别,它不仅研究自身的理论,而且更多地与实际问题相结合,提供具有应用价值的理论成果。
因此,不仅理科专业广泛开设计算方法课程,而且很多工科专业也开设该课程。
计算方法课程将数学理论及方法与计算机程序设计紧密结合,它既有数学专业课理论上的抽象性和严谨性,又有解决实际问题的实用性,在培养学生的抽象思维和解决实际问题能力方面具有举足轻重的作用。
本课程不仅要求学生掌握数值计算方法的基本概念、基本理论和基本方法,还要求学生明确解决典型数学问题的数值计算方法的优劣,进行各计算方法进行误差分析、收敛性和算法稳定性分析,并根据不同的数据对象选择合适的数值计算方法,结合计算机程序设计完成复杂工程问题的求解任务。
2、课程教学内容计算方法课程教学内容由七个模块组成:误差、非线性方程的求根、线性方程组的直接法、线性方程组的的迭代法、插值函数,数值积分、常微分方程的数值解,按32学时教学安排。
3、课堂教学方法课堂讲授以讲解式、启发式、互动式教学为主,综合使用问题教学法、类比法、模型教学法,并借助于多媒体辅助教学手段,提高教学效果。
在教学过程中注重启发学生的思维,采用循循善诱的方式引导学生自己发现问题,并逐步解决问题,培养学生思考问题、分析问题和解决问题的能力。
这极大调动了学生的主观能动性,培养了学生分析和解决问题的能力。
数值计算方法的每一种算法都直接或间接与工程应用有关,引入新的方法,可通过对实际应用背景的描述激发学生学习数值计算方法的兴趣,提供数值计算方法的实际应用思路。
高斯牛顿和牛顿法
高斯-牛顿法和牛顿法都是优化算法中常用的方法,它们都被用来寻找函数的最小值。
牛顿法是一种基于一阶导数信息的迭代算法,通过不断利用函数的局部信息逼近函数的极值。
其基本思想是在当前点处,利用一阶导数信息构造一个局部的二次模型,并求出该二次模型的极小值点,将其作为下一步的搜索点。
这个过程可以被表示为以下迭代公式:
x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}
其中,x_k表示第k次迭代时的搜索点,f(x)表示要求解的目标函数,f'(x)和f''(x)分别表示目标函数的一阶和二阶导数。
高斯-牛顿法是牛顿法的一种变形,用于求解最小二乘问题。
在最小二乘问题中,我们需要找到使得残差平方和最小的参数向量。
高斯-牛顿法通过在每次迭代中使用雅可比矩阵(残差对参数的一阶导数矩阵)来逼近目标函数,其迭代公式为:
x_{k+1} = x_k - [J(x_k)^T J(x_k)]^{-1} J(x_k)^T f(x_k)
其中,J(x_k)是函数f(x)在x_k处的雅可比矩阵,f(x_k)是x_k处的残差向量。
总之,高斯-牛顿法和牛顿法都是常用的优化算法,用于寻找函数的最小值,但它们的应用范围略有不同。
牛顿法可以处理一般的无约束问题,而高斯-牛顿法则更适合求解最小二乘问题。
数学史资料数学史期末复习资料数学史的三⼤危机:初等:第⼀次危机:毕达哥拉斯学派主张←万物皆数(有理数)→⽆理数→欧多克斯→近代(17C):第⼆次:微积分→极限→柯西→运动与变化→函数现代(19C下半叶):第三次危机:罗素悖论(集合)→公理化0-数学史1.数学史的分期通常采⽤的线索:(1)按时代顺序(2)按数学对象、⽅法等本⾝的质变过程(3)按数学发展的社会背景。
2.数学史的四个分期:I数学的起源与早期发展(萌芽时期,公元前6世纪前)II初等数学时期(公元前6世纪-16世纪)(1)古希腊数学(公元前6世纪-16世纪)(2)中世纪东⽅数学(3世纪-15世纪)(3)欧洲⽂艺复兴时期(15世纪-16世纪)III近代数学时期(或称变量数学建⽴时期,17世纪-18世纪)IV现代数学时期(1820-现在)(1)现代数学酝酿时期(1820-1870)(2)现代数学形成时期(1870-1940)(3)现代数学繁荣时期(或称当代数学时期,1950-现在)3.使⽤位值制的两种数字:巴⽐伦楔形数字和中国筹算数码。
最早使⽤位值制的国家是古巴⽐伦,最早使⽤⼗进制位值得国家是中国。
4.埃及数学:古埃及⼈⽤纸莎草书写,关于古埃及数学知识主要依据莱茵德纸草书和莫斯科纸草书。
5.美索不达⽶亚数学:主要著作泥版⽂书。
2.古代希腊数学1.泰勒斯证明了四条定理:(1)圆的直径将圆分为两个相等的部分(2)等腰三⾓形两底⾓相等(3)两直线相交形成的对顶⾓相等(4)如果⼀三⾓形有两⾓、⼀边分别与另⼀三⾓形的对应⾓、边相等,那么这两个三⾓形全等。
他是最早的希腊数学家和古希腊论证⼏何学⿐祖。
2.毕达哥拉斯学派的基本信条是:万物皆数。
毕达哥拉斯可公度量:对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
3.普鲁塔克的⾯积剖分法证明勾股定理。
4..雅典时期的希腊数学学派:(1)伊利亚学派(2)诡辩学派(3)雅典学院(柏拉图学派)(4)亚⾥⼠多德学派5.三⼤⼏何问题:(1)化圆为⽅,即做⼀个与给定⾯积相等的正⽅形。
高斯-牛顿法
高斯-牛顿法(Gauss-Newton Method,简称G-N方法)是一种用于求解非线性方程的迭代算法。
它结合了高斯消元法(Gaussian Elimination)和牛顿法(Newton's Method)的思想,通过在每次迭代过程中对非线性方程进行高斯消元,以提高收敛速度和精度。
高斯-牛顿法的基本步骤如下:
1. 初始化:给定一个初始近似解x_0 和迭代次数n。
2. 高斯消元:
a. 对非线性方程进行高斯消元,得到下三角形式的线性方程组Ax = b,其中A 是系数矩阵,b 是未知数向量,x_(k+1) 是当前近似解。
b. 计算误差平方和||x_(k+1) - x_0||^2 并更新近似解:
x_(k+1) = x_0 - (1/m) * (Ax_0)^(-1) * (df/dx_0)
其中:
m 是A 的行数,df/dx_0 是x_0 的导数,即雅可比矩阵(Jacobian)的逆矩阵的行列式。
注意:为了避免奇异情况(如雅可比矩阵的行列式为零),需要在求逆之前对雅可比矩阵进行一定的处理,以
保证其可逆。
3. 重复步骤2,直到满足停止条件或近似解的误差足够小。
停止条件可以是:迭代次数达到设定值;误差小于设定的阈值;算法运行时间达到最大值等。
高斯-牛顿法具有良好的收敛性和计算速度,因此在许多实际问题中都得到了广泛应用,如数值线性代数、机器学习、图像处理等。