高中生物 第六章第1、2节 杂交育种与诱变育种 基因工程及其应用知识点总结
- 格式:doc
- 大小:160.50 KB
- 文档页数:6
遗传与进化第六章从杂交育种到基因工程第一节杂交育种与诱变育种杂交育种【概念】杂交育种是将两个或多个品种的优良性状通过交配集中在一起,再经过选择和培育,获得新品种的方法。
【原理】基因重组(自由组合或交叉互换),即控制不同优良性状的基因通过减数分裂和受精作用重新组合在一起,产生新的基因型,从而使人们所需要的位于不同个体上的优良性状集中到一个个体上。
【过程】(1)具有优良性状的两个亲本杂交。
(2)F1表现出显性性状,让F1自交,获得F2。
(3)从F2中选出符合要求的性状进行多次自交纯化获得新品种。
【优缺点】(1)优点:可以将两个或多个品种的优良性状集中在一起。
(2)缺点:不会创造新物种,且杂交后代会出现性状分离,育种过程漫长,操作复杂。
杂交育种的适用范围和技术要求(1)适用范围:同一物种不同品种的个体间。
亲缘关系较近的不同物种个体间(为了使后代可育,应做染色体加倍处理,得到的个体即是异源多倍体),如八倍体小黑麦的培育、萝卜和甘蓝杂交。
(2)技术要求:①材料的选择,要求所选育的材料分别具有我们所期望的个别性状;所选的原始材料,是能稳定遗传的品种,一般是纯合子。
②杂交一次,获得的F1是杂合子,不管在性状上是否完全符合要求,一般情况下,都不能直接用于扩大栽培。
③让F1自交得到F2。
性状的重新组合一般是在F2中出现,选出性状上符合要求的品种,这些品种有纯合子也有杂合子。
④把初步选出的品种进行隔离自交,根据F3是否出现性状分离,确定被隔离的亲本是否是纯合子。
如果是纯合子,F3不会出现性状分离,且基因型与亲本相同。
诱变育种【概念】利用物理因素(如X射线、Y射线、紫外线、激光等)或化学因素(如亚硝酸、硫酸二乙酯)等处理生物,使生物发生基因突变。
【原理】基因突变。
基因在自然条件下的突变率很低,人们利用物理或化学的方法处理生物,诱发基因突变,提高变异的频率,然后从获得的大量突变个体中选择出具有优良性状的个体。
【诱变因素】(1)物理因素:X射线、Y射线、紫外线以及激光等的照射都可以使生物在DNA复制过程中发生基因突变。
三一文库()/高一〔高一必修二生物第六章知识点〕为大家整理的高一必修二生物第六章知识点文章,供大家学习参考!更多最新信息请点击第六章从杂交育种到基因工程第1节杂交育种与诱变育种一、杂交育种1.概念:是将两个或多个品种的优良性状通过交配集中一起,再经过选择和培育,获得新品种的方法。
2.原理:基因重组。
产生新的基因型3.优点:可以将两个或多个优良性状集中在一起。
4.缺点:不会产生新基因,且杂交后代会出现性状分离,育种过程缓慢,过程复杂。
二、诱变育种1.概念:指利用物理或化学因素来处理生物,使生物产生基因突变,利用这些变异育成新品种的方法。
2.诱变原理:基因突变3.诱变因素:(1)物理:X射线,紫外线,γ射线等。
(2)化学:亚硝酸,硫酸二乙酯等。
4.优点:可以在较短时间内获得更多的优良性状。
5.缺点:因为基因突变具有不定向性且有利的突变很少,所以诱变育种具有一定盲目性,所以利用理化因素出来生物提高突变率,且需要处理大量的生物材料,再进行选择培育。
三、四种育种方法的比较杂交育种诱变育种多倍体育种单倍体育种处理P F1 F2在F2中选育用射线、激光、化学药物处理用秋水仙素处理萌发后的种子或幼苗花药离体培养原理基因重组,组合优良性状人工诱发基因突变染色体数目变异染色体数目变异优缺点方法简单,可预见强,但周期长加速育种,改良性状,但有利个体不多,需大量处理器官大,营养物质含量高,但发育延迟,结实率低缩短育种年限,但方法复杂,成活率较低例子水稻的育种高产量青霉素菌株。
第1节杂交育种与诱变育种知识梳理1.杂交育种(1)概念:是将两个或多个品种的优良性状通过交配集中在一起,再经过选择和培育,获得新品种的方法。
(2)原理:基因重组。
(3)优点:使位于不同个体的优良性状集中于一个个体上,预见性强。
(4)缺点:时间长,须及时发现优良性状。
2.诱变育种(1)概念:利用物理因素(如X射线、γ射线、紫外线、激光等)或化学因素(如硝酸、硫酸二乙酯等)来处理生物,使生物发生基因突变。
(2)原理:基因突变。
(3)优点:可以提高变异频率或出现新性状,加速育种进程。
(4)缺点:有利变异少,需大量处理实验材料,具有不确定性。
知识导学1.本节课的学习,可以选用典型的育种实例作为切入点,针对育种实践中遇到的实际问题和解决方法,分析其中蕴含的遗传学规律。
2.应用遗传学规律和遗传图解,对特定的杂交组合进行理论分析,推测可能的选育过程和结果。
3.分析讨论这两种育种方法的不足之处及其解决方法。
疑难突破1.举例说明杂交育种的过程是怎样的?剖析:某作物的高秆(A)对矮秆(a)为显性,感病(R)对抗病(r)为显性。
A a和Rr是位于非同源染色体上的两对等位基因。
今有高秆抗病和矮秆感病纯种,人们希望利用杂交育种的方法在最少的世代培育出矮秆抗病新类型。
应该采取的步骤是:(1)先让两纯种亲本进行杂交,得到F1;(2)再将F1进行自交,得到F2;(3)直接从中选取矮秆抗病类型即可,因为矮秆抗病是双隐性基因型,因此必然是人们期望的基因型,直接投入使用即可;若我们能选择的性状有一种为显性,则需进一步自交,在下一代中选择无性状分离发生的表现型才行。
2.诱变育种有什么特点?剖析:人工诱变大大提高突变的频率,大幅度地改良某些性状,从而加快了育种的进程。
由于突变的多方向性,以及突变个体大多是有害的,因此需要处理大量的供试材料。
1。
第六章 从杂交育种到基因工程第一节 杂交育种与诱变育种 一、杂交育种1.杂交育种是将两个或多个品种的优良性状通过交配集中在一起,再经过选择和培育,获得新品种的方法,它依据的主要遗传学原理是基因重组 。
2.过程:现有两个纯种的小麦,一为高秆(D)抗锈病(T);另一为矮秆(d)易染锈病(t),这两对性状独立遗传,如何获得矮秆抗锈病的新类型?(1) 应采取的步骤是:①先让两纯种亲本进行 杂交 ,得到F 1。
②再将F 1进行 自交 ,得到F 2。
③将F 2种植,从中选育出 矮秆抗锈病 新类型。
(2)过程如右图,请回答:①过程表示 ;②过程表示 ; ③过程表示 。
④写出图中F 2表现型及其比例。
⑤从F 2代中选出矮秆抗锈病的个体,基因型为 ,能否立即推广,为什么? ⑥怎样处理才能得到比较纯的矮秆抗锈病个体?3、杂交育种依据的遗传学原理是基因重组4、杂交育种的优点:使位于不同个体上的_优点_集中在 同一个体 上,即“集优”。
预见性强。
5、杂交育种的不足:不能创造出新的__基因__,进程缓慢,过程繁琐,后代易出现 性状分离 。
6、应用:在农业生产中,杂交育种是 改良作物品质,提高农作物单位面积产量 的常规方法。
杂交育种的方法也用于 家畜、家禽 的育种。
思考:在杂交育种工作中,选择通常从哪一代开始,理由是什么?深入拓展:若该生物靠有性生殖繁殖后代,则必须选育出优良性状的纯种,以免后代发生性状分离;若该生物靠无性生殖产生后代,那么只要得到该优良性状就可以了,纯种、杂种并不影响后代性状的表达。
二、诱变育种 1.诱变育种是利用物理因素 (如X 射线、γ射线、紫外线、激光等)或化学因素(如亚硝酸、硫酸二乙酯等)来处理生物,使生物发生基因突变。
2、诱变育种的原理是 基因突变 。
3、诱变育种的优点:提高了 突变率 ,在短时间内获得更多的优良变异类型,加速 产生新基因 的进程,创造生物新品种、新类型。
其优点是提高突变率、短时间内获得更多的优良变异类型、抗病力强、产量高、品质好 。
第六章从杂交育种到基因工程
第一节杂交育种与诱变育种
1、育种方法列表比较
主要有:诱变育种、杂交育种、多倍体育种、单倍体育种、基因工程育种、细胞工程育种、植物激素育种等,涉及到的知识点不但多而广,也是高考的重点和难点之一。
1.诱变育种与杂交育种
诱变育种能产生新的基因,创造出新类型,而后者不能产生新的基因,是原有基因的重新组合。
2.杂交育种与基因工程
两者的不同点是,在动物杂交育种的过程中,获得纯合子不能通过逐代自交,应为测交检测,比植物杂交育种所需时间短。
第六章从杂交育种到基因工程第1节杂交育种与诱变育种一、杂交育种1.概念:是将两个或多个品种的优良性状通过交配集中一起,再经过选择和培育,获得新品种的方法。
2.原理:基因重组。
产生新的基因型3.优点:可以将两个或多个优良性状集中在一起。
4.缺点:不会产生新基因,且杂交后代会出现性状分离,育种过程缓慢,过程复杂。
二、诱变育种【1.概念:指利用物理或化学因素来处理生物,使生物产生基因突变,利用这些变异育成新品种的方法。
2.诱变原理:基因突变3.诱变因素:(1)物理:X射线,紫外线,γ射线等。
(2)化学:亚硝酸,硫酸二乙酯等。
4.优点:可以在较短时间内获得更多的优良性状。
5.缺点:因为基因突变具有不定向性且有利的突变很少,所以诱变育种具有一定盲目性,所以利用理化因素出来生物提高突变率,且需要处理大量的生物材料,再进行选择培育。
三、四种育种方法的比较第二节基因工程及其应用~1.概念:按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。
2. 原理:基因重组3.工具:A.基因的“剪刀”:限制酶①分布:主要在微生物中。
②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。
③结果:产生黏性未端(碱基互补配对)。
B.基因的“针线”:DNA连接酶:①连接的部位:磷酸二酯键,不是氢键。
②结果:两个相同的黏性未端的连接。
C.基因的“运载工具”:运载体①作用:将外源基因送入受体细胞。
②具备的条件:a、能在宿主细胞内复制并稳定地保存。
b、具有多个限制酶切点。
c、有某些标记基因。
③种类:质粒、噬菌体和动植物病毒。
④最常用的运载体:质粒(是拟核或细胞核外能够自我复制的很小的环状DNA分子,存在细菌和酵母菌等生物细胞中)。
.4.基因操作的基本步骤:①提取目的基因:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、②目的基因与运载体结合(以质粒为运载体):用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒)③将目的基因导入受体细胞④目的基因检测与鉴定5.转基因生物和转基因食品的安全性两种观点是:1、转基因生物和转基因食品不安全,要严格控制2、转基因生物和转基因食品是安全的,应该大范围推广。
一、杂交育种
1.概念:将两个或多个品种的优良性状集中在一起,进而获得新品种的方法
2.原理:基因重组
3.方法:杂交
4.目的:培育动、植物优良品种
5.特点:只能利用已有的基因重组,不能创造新基因;育种过程缓慢。
杂交水稻、黑白花奶牛
注意:杂种优势主要是利用杂种F1的优良性状,并不要求遗传上的稳定。
只能利用一次,后代出现性状分离,需年年购买种子,如玉米。
杂种优势:指杂交子代在生长活力、育性和种子产量等方面都优于双亲均值的现象。
遗传学中指杂交子代在生长、成活、繁殖能力或生产性能等方面均优于双亲均值的现象。
二、诱变育种
1.概念:利用物理或化学因素处理生物,使生物发生基因突变。
2.原理:基因突变
3.方法:物理诱变、化学诱变
4.特点:提高突变率,缩短育种进程;盲目性大。
黑农五号大豆、高产青霉素菌株
注意:诱变育种与杂交育种的最大的区别是诱变育种能创造出新基因。
三、基因工程及其应用
1、概念:又叫基因拼接技术或DNA重组技术。
按照人们的意愿,把一种生物的某种基因提
取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。
2、原理:基因重组
(1)限制性核酸内切酶——基因的“剪刀”
①存在场所:主要是存在于微生物细胞中。
②特性:一种限制性核酸内切酶只能识别一种特定的核苷酸序列(专一性),并且能够在
特定的切点上切割DNA分子。
③作用结果:得到平末端或黏性末端。
如:EcoRI
(2)DNA连接酶——基因的“针线”
①作用:连接限制性核酸内切酶切开的断口。
②常用的种类及来源:
基因工程的三种工具中,限制性核酸内切酶、DNA连接酶是基因操作过程中的酶工具,化学本质是蛋白质。
但它们的功能不同,前者切割磷酸二酯键,后者连接磷酸二酯键,要想从DNA 上切下某个基因,应切2个切口。
4、运载体——基因的运输工具
作为常用的运载体必须具备的条件:
①能够在宿主细胞内复制并稳定地保存;
②含有多个限制酶切点,以便和外源基因相连;
③含有标记基因,以便于筛选。
5、将外源基因导入受体细胞时,常用的运载体有?
常用的运载体有质粒、噬菌体、农杆菌、动植物病毒等。
(质粒是最常用的运载体,不要把质粒同运载体等同)
5.提取目的基因的方法:直接分离法、反转录法、根据氨基酸序列人工合成法。
6.操作步骤:1、获取目的基因、2、目的基因与运载体结合、3、将目的基因导入受体细胞、
4、目的基因的检测和表达。
7.目的基因检测依据运载体上的标记基因,成功表达的标志是合成出相应的蛋白质。
一、基因工程的操作步骤
二、转基因生物和转基因食品的优、缺点及应用
1.优点
(1)解决粮食短缺问题;
(2)减少农药使用,从而减少环境污染;
(3)节省生产成本,降低粮食售价;
(4)增加食物营养,提高附加价值;
(5)增加食物种类,提升食物品质;
(6)促进生产效率,带动相关产业发展。
2.缺点
(1)可能产生新毒素和新过敏原;
(2)可能产生抗除草剂的杂草;
(3)可能使疾病的散播跨越物种障碍;
(4)可能会损害农作物的生物多样性;
(5)可能干扰生态系统的稳定性。
3.应用
作物育种、药物研制、环境保护等等。
(1)基因工程与作物育种:如转基因抗虫棉、转基因鱼、转基因牛等
获得高产、稳产和具有优良品质的农作物和具有抗逆性的作物新品种
转黄瓜抗青枯病基因的甜椒、转鱼抗寒基因的番茄
(2)基因工程与药物研制
许多药品的生产是从生物组织中提取的。
受材料来源限制产量有限,其价格往往十分昂贵。
微生物生长迅速,容易控制,适于大规模工业化生产。
若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。
胰岛素从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。
将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生
100g胰岛素!使其价格降低了30%-50%!
(3)环境保护
基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。
通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。
有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。
感悟拓展
1.诱变育种与杂交育种相比,前者能产生前所未有的新基因,创造变异新类型;后者不能产生新基因,只是实现原有基因的重新组合。
2.在所有育种方法中,最简捷、常规的育种方法——杂交育种。
3.根据不同育种需求选择不同的育种方法
(1)将两亲本的两个不同优良性状集中于同一生物体上,可利用杂交育种,亦可利用单倍体育
种
(2)要求快速育种,则运用单倍体育种。
(3)要求大幅度改良某一品种,使之出现前所未有的性状,可利用诱变育种和杂交育种相结合的
方法。
(4)要求提高品种产量,提高营养物质含量,可运用多倍体育种。
4.杂交育种选育的时间是F2,原因是从F2开始发生性状分离;选育后是否连续自交取决于所选优良性状是显性还是隐性。
5.杂交育种是通过杂交培育具有优良性状且能稳定遗传(纯合子)的新品种,而杂种优势则是通过杂交获得种子一般不是纯合子,在杂种后代上表现出多个优良性状,但只能用杂种一代,因为后代会发生性状分离。
6.诱变育种尽管提高突变率,但处理材料时仍然是未突变的远远多于突变的;突变的不定向性和一般有害的特性决定了在突变的个体中有害仍多于有利,只是与自然突变相比较,二者都增多。