【解析版】济宁市曲阜市2018-2019学年七年级下期末数学试卷
- 格式:doc
- 大小:399.00 KB
- 文档页数:18
2018—2019学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号12345678 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,△ABC=500,△ACB=800,BP 平分△ABC ,CP 平分△ACB ,则△BPC的大小是( )A .1000B .1100C .1150D .1200(1) (2) (3)PCBA 小刚小军小华得分 评卷人C 1A 1ABB 1CD7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(△0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x -9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,△为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,△则△ABC=_______度.16.如图,AD△BC,△D=100°,CA 平分△BCD,则△DAC=_______.17.给出下列正多边形:△ 正三角形;△ 正方形;△ 正六边形;△ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.C B A D20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD△BC , AD 平分△EAC,你能确定△B 与△C 的数量关系吗?请说明理由。
试卷类型A2018—2019学年度第二学期期末教学质量检测七年级数学试题第Ⅰ卷 (选择题 共30分)一、选择题(本题共10个小题,每小题3分,共30分.) 1. 3的绝对值是( )A .3B .﹣3C .±3D .3 2. 若m <1,则下列各式中错误的是( ) A .3<2+mB .0<1-mC .2<2mD .0>1+m3. 如图,因为直线AB ⊥l 于点B ,BC ⊥l 于点B ,所以直线AB 和BC 重合,则其中蕴含的数学 原理是( )AB .垂线段最短C .过一点只能作一条垂线D .两点确定一条直线4. 2019年6月济宁市有7万多名初中毕业生参加了中考,为了了解7万多名考生的中考数学成绩,从中抽取7000名考生的数学成绩进行统计分析,以下说法正确的是( ) A .这7000名考生是总体的一个样本 B .这7万多名考生的数学成绩是总体C .每位考生是个体D .抽取的7000名考生是样本容量5. 已知点A (4-2x,x -3)在第一象限,则x 的取值范围在数轴上可表示为( )A ..C.. l6. 在方程组2122x y mx y +=-⎧⎨+=⎩中,未知数x y ,满足0x y >+,则m 的取值范围为( )A.3>mB.3≤mC.3≥mD.3<m 7. 如图,下列命题是假命题的是( )A.如果∠1=∠4,那么AB ∥DEB.如果∠2=∠3,那么AD ∥BEC.如果∠5=∠A ,那么AB ∥DED.如果∠ADE+∠BED=180°,那么AD ∥BE第7题图 第8题图8. 如图,在长为20m,宽为16m 的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则花圃的面积是 ( ) A. 64m2B. 32m2C. 128m 2D. 96m 29. 已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为( )A. 3B. 2C. 1D. 410. 若关于x 的不等式组40651x x x m +⎧>++<⎪⎨⎪⎩的解集为4<x ,则m 的取值范围为( )A .4<mB .-4<mC . 4-≤ mD .4m ≥ 二、填空题(本大题共5个小题;每小题3分,共15分.把答案写在题中横线上) 11. 统计得到一组数据,最大值是136,最小值是52,取组距为10,可以分成_________组. 12. 如图,已知AB ∥CD,NP 平分∠MNB,∠1=20°,则∠2=_______________.13. 又是一年毕业季,某班同学到学校门口拍照留念,已知冲一张底片需0.6元,洗一张照片 需要0.4元,每人都要一张照片,要求每人分担的钱不超过0.5元,那么参加合影的同学至少有 人. 14. 已知方程组2237x ay x y +=⎧⎨+=⎩的解也是二元一次方程1x y -=的一个解,则a = .15. 在平面直角坐标系中,对于平面内任意一点y),(x ,若规定以下两种变换:①y)f(x,=y)2,+(x ; ②y)g(x,=(-x,-y),例如按照以上变换有:f(1,1)=(3,1);g(f(1,1)) =g(3,1)=(-3,-1).则f(g(2,5)) = .三、解答题(本大题共7个小题;共55分) 16.计算:(每小题3分,满分6分) (1)()22-3+ (2)3-58-953+++17.(本小题满分6分)完成证明并写出推理根据(在括号中注明理由)如图,已知AB ∥CD ,AE 平分∠BAD ,CD 与AE 相交于点F ,∠CFE =∠E . 求证:AD ∥BC .证明:∵AE 平分∠BAD (已知),∴∠1= ( ). 又∵AB ∥CD (已知),∴∠1=∠CFE ( ).F∴ = (等量代换). 又∵∠CFE =∠E(已知), ∴∠2=∠E (等量代换).∴AD ∥BC ( ). 18.(本小题满分8分)为了传承中国传统文化,我县教体局在全县范围内组织了一次全体学生的“汉字听写”大赛,每位学生听写汉字39个,随机抽取了部分学生的听写结果作为样本进行整理,绘制成如下的统计图表:组别 正确字数x 人数 A 0≤x <8 10 B 8≤x <16 15 C 16≤x <24 25 D 24≤x <32 m E32≤x <40n根据以上信息完成下列问题:(1)统计表中的m = ,n = ,并补全条形统计图; (2)扇形统计图中“C 组“所对应的圆心角的度数是 ;(3)已知该校共有600名学生,如果听写正确的字的个数不少于24个定为合格,请你估计该各组别人数分布比例校本次听写比赛合格的学生人数.19.(本小题满分7分)已知关于x y ,的二元一次方程y kx b =+的解有34x y =⎧⎨=⎩和12x y =-⎧⎨=⎩.(1)求k b ,的值;(2)当2x =时,求y 的值; (3)当x 为何值时,3>y ?20.(本小题满分8分) 【阅读材料,获取新知】在平面直角坐标系中,两点)y ,x (P 111,)y ,x (P 222,则这两点间的距离为:21221221)-()-(y y x x P P +=.同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于。
2017-2018学年下学期期末考试七年级数学试卷一、选择题:本大题共12小题,每小题3分,共36分,每小题给出的四个选项中,只有一项是正确的1.(3分)下列各数中,是无理数的是()A.﹣2 B.0 C.D.【分析】无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【解答】解:A、-2是有理数,不是无理数,故A错误;B、0是有理数,不是无理数,故B错误;C、是无理数,故C正确;D、是有理数,不是无理数,故D错误.故选:C.【点评】本题考查了对无理数的应用,注意:无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.2.(3分)满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.【分析】-1<x≤2表示不等式x>-1与不等式x≤2的公共部分.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】解:由于x>-1,所以表示-1的点应该是空心点,折线的方向应该是向右.由于x≤2,所以表示2的点应该是实心点,折线的方向应该是向左.所以数轴表示的解集为故选:B.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集,有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(3分)下列调查中,适合采用全面调查(普查)方式的是()A.对漓江水质情况的调查B.对端午节期间市场上粽子质量情况的调查.C.对某班55名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查【专题】常规题型;数据的收集与整理.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对漓江水质情况的调查适合抽样调查;B、对端午节期间市场上粽子质量情况的调查适合抽样调查;C、对某班55名同学体重情况的调查适合全面调查;D、对某类烟花爆竹燃放安全情况的调查适合抽样调查;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(3分)下列数据不能确定物体位置的是()A.5楼6号B.北偏东30°C.大学路19号D.东经118°,北纬36°【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【解答】解:A、5楼6号,是有序数对,能确定物体的位置,故本选项不合题意;B、北偏东30°,不是有序数对,能确定物体的位置,故本选项符合题意;C、大学路19号,“大学路”相当于一个数据,是有序数对,能确定物体的位置,故本选项不合题意;D、东经118°北纬36°,是有序数对,能确定物体的位置,故本选项不合题意.故选:B.【点评】本题考查了坐标确定点的位置,要明确,一个有序数对才能确定一个点的位置.5.(3分)a、b都是实数,且a<b,则下列不等式的变形正确的是()A.ac<bc B.a+x>b+x C.﹣a>﹣b D.【分析】根据不等式的性质逐个判断即可.【解答】解:A、当c为0和负数时,不成立,故本选项错误;B、∵a<b,∴a+x<b+x,故本选项错误;C、∵a<b,∴-a>-b,故本选项正确;D、当c为负数和0时不成立,故本选项错误;故选:C.【点评】本题考查了不等式的性质的应用,能熟记不等式的性质是解此题的关键.6.(3分)下列语句不是命题的是()A.画两条相交直线B.互补的两个角之和是180°C.两点之间线段最短 D.相等的两个角是对顶角【专题】几何图形.【分析】根据命题的定义对四个语句分别进行判断即可.【解答】解:A、画两条相交直线不是对一件事情的判断,不是命题;B、互补的两个角之和是180°是命题;C、两点之间线段最短是命题;D、相等的两个角是对顶角是命题;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.8.(3分)若m是任意实数,则点P(m﹣1,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【专题】平面直角坐标系.【分析】先判断点P的横坐标与纵坐标的大小关系,然后根据各象限内点的坐标特征解答.【解答】解:∵(m+2)-(m-1)=m+2-m+1=3>0,∴点P的纵坐标一定大于横坐标,第一象限的点的横坐标是正数,纵坐标是负数,∴纵坐标一定小于横坐标,∴点P一定不在第四象限,故选:D.【点评】本题考查了点的坐标,利用作差法求出点P的横坐标大于纵坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.(3分)若方程组的解x和y的值相等,则k的值为()A.4 B.11 C.10 D.12【分析】x和y的值相等,把第一个式子中的y换成x,就可求出x与y的值,这两个值代入第二个方程就可得到一个关于k的方程,从而求得k的值.【解答】解:把y=x代入4x+3y=1得:7x=1,解得:k=11故选:B.【点评】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.10.(3分)若点P为直线外一点,点A、B、C、D为直线L上的不同的点,其中PA=4,PB=4.5,PC=5,PD=6,那么点P到直线L的距离是()A.小于4 B.4 C.不大于4 D.不小于4.5【分析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【解答】解:A、[0)=1,故本项错误;B、若[x)-x=0.5,则x不一定等于0.5,故本项错误;C、[x)-x>0,但是取不到0,故本项错误;D、[x)-x≤1,即最大值为1,故本项正确;故选:D.【点评】此题考查了一元一次不等式组的应用,实数的运算,仔细审题,理解[x)表示大于x的最小整数是解答本题的关键.11.(3分)设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是()A.[0)=0 B.若[x)﹣x=0.5,则x=0.5C.[x)﹣x的最小值是0 D.[x)﹣x的最大值是1【分析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【解答】解:A、[0)=1,故本项错误;B、若[x)-x=0.5,则x不一定等于0.5,故本项错误;C、[x)-x>0,但是取不到0,故本项错误;D、[x)-x≤1,即最大值为1,故本项正确;故选:D.【点评】此题考查了一元一次不等式组的应用,实数的运算,仔细审题,理解[x)表示大于x的最小整数是解答本题的关键.12.(3分)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个【专题】压轴题.【分析】本题是一道找规律的题目,这类题型在中考中经常出现.【解答】根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个正三角形.此后,每层都比前一层多12个.依此递推,第8层中含有正三角形个数是6+12×7=90个.故选:B.【点评】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题:(本大题共6小题,每小题3分,共18分,).13.(3分)如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是.【分析】此题为数学知识的应用,由实际出发,老师测量跳远成绩的依据是垂线段最短.【解答】解:体育课上,老师测量跳远成绩的依据是垂线段最短.故答案为:垂线段最短.【点评】此题考查知识点垂线段最短,关键是掌握垂线段的性质:垂线段最短.14.(3分)将点A(1,1)先向左平移2个单位,再向下平移3个单位得到点B,则点B的坐标是.【分析】让点A的横坐标减2,纵坐标减3即可得到平移后点B的坐标.【解答】解:点B的横坐标为1-2=-1,纵坐标为1-3=-2,所以点B的坐标是(-1,-2).故答案为:(-1,-2).【点评】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.15.(3分)方程2x+y=9在正整数范围内的解有组.【分析】把x看做已知数表示出y,即可确定出方程的正整数解.【解答】解:方程2x+y=9,解得:y=-2x+9,当x=1时,y=7;x=2时,y=5;x=3时,y=3;x=4时,y=1,则方程的正整数解有4组,故答案为:4【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.16.(3分)某市为了了解该市6万名七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%.这次检测的样本容量是.分析】根据样本容量的定义进行填空即可.【解答】解:调查的对象是七年级学生的身体素质情况,样本是500名学生的身体素质情况,则样本容量是500.故答案为500.【点评】本题考查了总体、个体、样本、样本容量,注意样本容量无单位.17.(3分)老张与老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的.一年前老张至少买了只种兔?【专题】一元一次不等式(组)及应用.【分析】设一年前老张买了x只种兔,则老李也买了x只种兔,根据“一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的”,列出关于x的一元一次不等式,解之即可.【解答】解:设一年前老张买了x只种兔,则老李也买了x只种兔,根据题意得:一年后老张的兔子数量为:x+2(只),一年后老李的兔子数量为:2x-1(只),则:x+2≤2x-1,解得:x≥3,即一年前老张至少买了3只种兔,故答案为:3.【点评】本题考查一元一次不等式的应用,正确找出等量关系,列出一元一次不等式是解题的关键.18.(3分)已知不等式组的整数解为1、2、3,如果把适合这个不等式组的整数a、b组成有序数对(a,b),那么对应在平面直角坐标系上的点共有的个数为.【分析】根据不等式组的整数解为1,2,3,即可确定a,b的范围,即可确定a,b的整数解,即可求解.∴b=10,11,12,共3个.2×3=6(个).故适合这个不等式组的整数a,b的有序数对(a,b)共有6个.故答案为6.【点评】本题考查了一元一次不等式组的整数解,注意各个不等式的解集的公式部分就是这个不等式组的解集.但本题是要求整数解的,所以要找出在这范围内的整数.三、解答题:(本大题共8小题,满分66分,写出演算步骤或推理过程19.(17分)计算或解方程(1)计算:(﹣1)2018+﹣3+×(2)解方程组(3)解不等式(3x﹣4)﹣3(2x+1)<﹣1(4)解不等式组并把它的解集表示在数轴上.【专题】方程与不等式.【分析】(1)先算乘方、二次根式化简,三次根式化简,再计算即可求解;(2)根据加减消元法解方程即可求解;(3)去括号、移项、合并同类项、化系数为1,依此即可求解;(4)先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:(1)(﹣1)2018+﹣3+×=1+2﹣3+1=1.(2),①+②,得4x=12,解得:x=3,将x=3代入①,得9﹣2y=11,解得y=﹣1.故方程组的解是;(3)(3x﹣4)﹣3(2x+1)<﹣1,3x﹣4﹣6x﹣3<﹣1,3x﹣6x<﹣1+4+3,﹣3x<6,x>﹣2;(4),解不等式①,得x≥﹣2,解不等式②,得x<﹣,∴原不等式组的解集为:﹣2≤x<﹣,把它的解集表示在数轴上为:【点评】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.同时考查了实数的运算,解二元一次方程组.20.(6分)在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE∥BC,交AC于E;(3)求证:∠EDC=∠GFB.【专题】计算题;作图题.【分析】(1)以C为圆心画弧,与AB交于两点,分别以两点为圆心,大于两点距离一半长为半径画弧,两弧交于一点,作出垂直CD即可;(2)以D为顶点,作∠ADE=∠B,利用同位角相等两直线平行即可确定出DE;(3)由FG与CD都与AB垂直,得到FG与CD平行,利用两直线平行同位角相等得到一对角相等,再由DE与BC平行,得到一对内错角相等,等量代换即可得证.【解答】解:(1)画CD⊥AB,如图所示;(2)画DE∥BC,如图所示;(3)证明:∵FG⊥AB,CD⊥AB,∴∠FGB=∠CDB=90°,∴FG∥CD,∴∠DFB=∠DCB,∵DE∥BC,∴∠EDC=∠DCB,∴∠EDC=∠GFB.【点评】此题考查了作图-复杂作图,以及平行线的判定与性质,作出正确的图形是解本题的关键.21.(8分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.【分析】(1)根据折线统计图可得出本次接受问卷调查的学生总人数是20+60+30+10,再计算即可;(2)用360°乘以“了解”占的百分比即可求出所对应扇形的圆心角的度数,用基本了解的人数除以接受问卷调查的学生总人数即可求出m的值;(3)用该校总人数乘以对足球的了解程度为“基本了解”的人数所占的百分比即可.【解答】解:(1)本次接受问卷调查的学生总人数是20+60+30+10=120(人);故答案为:120;故答案为:30°,25;(3)若该校共有学生1500名,则该校学生对足球的了解程度为“基本了解”的人数为:1500×25%=375.【点评】本题考查的是扇形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(6分)如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=75°,求∠AGC的度数.【专题】线段、角、相交线与平行线.【分析】(1)根据平行线的性质得出∠D+∠BHD=180°,求出∠B=∠DHB,根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°,根据邻补角的定义求出即可.【解答】解:(1)∵AB∥DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠BHD,∴DE∥BC;(2)∵DE∥BC,∴∠AGB=∠AMD,即∠AMD=75°,∴∠AGB=75°,∴∠AGC=180°-∠AGB=180°-75°=105°.【点评】本题考查了平行线的性质和判定,邻补角的定义的应用,能求出DE∥BC 是解此题的关键.23.(5分)已知a是的整数部分,b是的小数部分,求(﹣a)3+(2+b)2的值.【分析】先估计的近似值,然后得出的整数部分和小数部分,进而得出答案.【解答】解:∵4<8<9,∴2<<3,∴的整数部分和小数部分分别为a=2,b=﹣2.∴(﹣a)3+(2+b)2=(﹣2)3+()2=0.【点评】此题主要考查了估算无理数的大小,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.24.(8分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:A型B型价格(万元/台) a b处理污水量(吨/月)220 180经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【分析】(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多3万元,购买2台A型设备比购买3台B型号设备少3万元,可列方程组求解.(2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式;(3)利用每月要求处理污水量不低于1880吨,可列不等式求解.解:(1)根据题意得:,解得:;(2)设购买污水处理设备A型设备x台,B型设备(10﹣x)台,根据题意得,12x+9(10﹣x)≤100,∴x≤,∵x取非负整数,∴x=0,1,2,3∴10﹣x=10,9,8,7∴有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.④A型设备3台,B型设备7台;(3)由题意:220x+180(10﹣x)≥1880,∴x≥2,又∵x≤,∴x为2,3.当x=2时,购买资金为12×2+9×8=96(万元),当x=3时,购买资金为12×3+9×7=99(万元),∴为了节约资金,应选购A型设备2台,B型设备8台.【点评】本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多3万元,购买2台A型设备比购买3台B型号设备少3万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.25.(6分)已知|a﹣1|=1﹣a,若a为整数时,方程组的解x为正数,y为负数,求a的值?【分析】根据“|a-1|=1-a”得到a-1≤0,解方程组得到x和y关于a的解,根据“x 为正数,y为负数”,列出关于a的不等式组,结合a-1≤0,得到a的取值范围,根据a为整数,即可得到a的值.解:∵|a﹣1|=1﹣a,∴a﹣1≤0,解得:a≤1,解方程组得:,∵x为正数,y为负数,∴,解不等式组得:a,即﹣<a≤1,又∵a为整数,∴a=0或a=1,即a的值为0或1.【点评】本题考查解一元一次不等式组和解二元一次方程组,正确掌握解一元一次不等式组和二元一次方程组得方法是解题的关键.26.(10分)解答题如图,已知AB∥CD,∠A=∠C=100°,E,F在CD上,满足∠DBF=∠ABD,BE平分∠CBF.(1)试说明∠FDB=∠DBF(2)求∠DBE的度数.(3)若平行移动AD,那么∠BFC:∠BDC的比值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.【分析】(1)由AB∥CD知∠ABD=∠FDB,结合∠DBF=∠ABD可得答案;(2)由直线AB∥CD,根据两直线平行,同旁内角互补,即可求得∠ABC的度数,(3)由AB∥CD知∠BFC=∠ABF=2∠ABD、∠ABD=∠BDC,据此可得∠BFC=2∠BDC,即可得出答案.解:(1)∵AB∥CD,∴∠ABD=∠FDB,又∵∠DBF=∠ABD,∴∠FDB=∠DBF;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵BE平分∠CBF,∴∠EBF=∠FBC,∵∠DBF=∠ABD,∴∠DBF=∠ABF,∴∠DBE=∠DBF+∠EBF=∠FBC+∠ABF=∠ABC=40°;(3)∠BFC:∠ BDC的比值不会随之发生变化,∵AB∥CD,∴∠BFC=∠ABF=2∠ABD,∠ABD=∠BDC,∴∠BFC=2∠BDC,∴∠BFC:∠BDC=2,即∠BFC:∠BDC的比值不会随之发生变化.【点评】本题主要考查了平行线、角平分线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。
期末检测试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.(2018北京)方程组的解为( D )(A)(B)(C)(D)解析:法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得x=y+3,③把③代入②得,3(y+3)-8y=14,解得y=-1,将y=-1代入③得x=2.所以方程组的解为故选D.2.(2018烟台)下列说法正确的是( A )(A)367人中至少有2人生日相同(B)任意掷一枚均匀的骰子,掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为90%,则明天一定会下雨(D)某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解析:一年最多366天,所以367人中至少有2人生日相同,选项A正确;任意掷一枚均匀的骰子,掷出的点数是偶数的概率应是,选项B错误;天气预报说明天的降水概率为90%,只是说降雨的可能性较大,但不能说明天一定会下雨,选项C错误;某种彩票中奖的概率是1%,并不是说买100张彩票一定有1张中奖,选项D错误.故选A.3.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1等于( D )(A)30°(B)25°(C)20°(D)15°解析:因为一副直角三角板的两条斜边互相平行,所以∠3=∠2=45°,因为∠4=30°,所以∠1=∠3-∠4=15°.故选D.4.(2018镇江)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( C )(A)36 (B)30 (C)24 (D)18解析:因为事件“指针所落区域标注的数字大于8”的概率是,所以=.解得n=24.故选C.5. 如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE 的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( A )(A)①②③④ (B)①②③(C)②③ (D)④解析:因为点P到AE,AD,BC的距离相等,所以点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P是∠BAC,∠CBE,∠BCD的平分线的交点,故④正确,综上所述,正确的是①②③④.故选A.6.如图,AB,CD交于O点,且互相平分,则图中全等三角形有( C )(A)2对(B)3对(C)4对(D)5对解析:题图中的全等三角形有△AOC≌△BOD,△BOC≌△AOD,△ABC≌△BAD,△ACD≌△BDC,共4对.故选C.7.已知点P(a+1,-+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )解析:因为点P(a+1,-+1)关于原点的对称点在第四象限,所以点P在第二象限,所以解不等式组得a<-1.故选C.8.如图,△ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB边上取一点E,使BE=DC,则∠EDF的度数为( C )(A)30°(B)45°(C)60°(D)70°解析:易证△BED≌△CDF(SAS),得∠BED=∠CDF,又因为∠EDF+∠CDF=∠B+∠BED,所以∠EDF=∠B=60°.故选C.9.(2018台州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( A )(A) (B)(C) (D)解析:根据题意49座客车x辆,37座客车y辆,可知x+y=10,根据对应车辆载人数可知49x+37y=466,故选A.10.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时恰好和第一次拐弯之前的道路平行,则∠C的度数为( C )(A)100° (B)120° (C)150° (D)160°解析:法一延长AB,EC交于点D,根据题意∠D=∠A=120°;在△BCD中,∠BCD=∠ABC-∠D=150°-120°=30°,所以∠BCE=180°-∠BCD=180°-30°=150°,故选C.法二过点B作BD∥AE,因为AE∥CF,所以AE∥BD∥CF,所以∠ABD=∠A=120°,因为∠ABC=150°,所以∠CBD=∠CBA-∠ABD=150°-120°=30°,因为已证得CF∥BD,所以∠CBD+∠C=180°,所以∠C=180°-∠CBD=180°-30°=150°.故选C.11.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是( B )(A)3 (B)2 (C)1 (D)解析:解不等式①得x≤a,解不等式②得x>-a.则不等式组的解集是-a<x≤a.因为不等式组至少有5个整数解,所以a-(-a)≥5,解得a≥2.所以正数a的最小值是2.故选B.12.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( C )(A)()n·75° (B)()n-1·65°(C)()n-1·75° (D)()n·85°解析:因为A1B=CB,∠B=30°,所以∠C=∠BA1C=75°.又因为A1A2=A1D,所以∠A1A2D=∠A1DA2=∠DA1C=×75°=()2-1×75°;同理,∠A2A3E=∠A2EA3=∠DA2A1=××75°=()3-1×75°;∠A3A4F=()4-1×75°;…第n个三角形中以A n为顶点的内角度数是()n-1×75°.故选C.二、填空题(每小题4分,共24分)13.(2018绥化)如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.解析:设小正方形的边长为1,所以击中黑色区域的概率是=.14.(2018菏泽)不等式组的最小整数解是0 .解析:解不等式组,得-1<x≤2,所以其最小整数解是0.15.(2018镇江一模)如图,l1∥l2,△ABC的顶点B,C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为100°.解析:因为l1∥l2,所以∠3=∠1=60°,因为∠A=40°,所以∠2=∠A+∠3=100°.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为2a+3b .解析:由题意,得AC=AB=a+b,∠B=∠ACB=(180°-36°)÷2=72°,因为DE垂直平分线段AC,所以EA=EC,所以∠ECA=∠A=36°,所以∠ECB=36°,∠BEC=72°,所以CB=CE=b,故△ABC的周长为2a+3b.17.(2018滨州)若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析:观察两个方程组的结构特点,a+b相当于x,a-b相当于y,故可直接得出解得从而得出二元一次方程组的解是18.若不等式组无解,则m的取值范围是m<.解析:解不等式2x-3≥0,得x≥,要使不等式组无解,则m<.三、解答题(共78分)19.(10分)解方程组与不等式组:(1)(2018武汉)(2)(2018宁夏)解:(1)②-①,得x=6,把x=6代入①,得y=4.所以原方程组的解为(2)解不等式①得,x≤-1,解不等式②得,x>-7,所以,原不等式组的解集为-7<x≤-1.20.(8分)如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:在Rt△AFG中,∠AGF=90°-∠A=90°-40°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°.21.(8分)如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.解:因为BD平分∠ABE,∠1=20°,所以∠ABC=2∠1=40°.因为CD∥AB,所以∠DCE=∠ABC=40°.因为∠ACB=90°,所以∠2=90°-40°=50°.22.(8分)(2018高青期末)如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线,求证:∠DAB=∠ACE.证明:因为AC=BC,CE为△ACB的中线,所以∠CAB=∠B,CE⊥AB,所以∠CAB+∠ACE=90°.因为AD为△ACB的高线,所以∠D=90°.所以∠DAB+∠B=90°,所以∠DAB=∠ACE.23.(10分)为了解学生的体能情况,随机选取了1 000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑,则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?解:(1)同时喜欢短跑和跳绳的概率为=.(2)同时喜欢三个项目的概率为=.(3)喜欢长跑的700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24.(10分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③; ④.(2)如果点C的坐标为(1,3),求不等式kx+b≤k1x+b1的解集.解:(1)①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知,不等式kx+b≤k1x+b1的解集是x≥1.25.(12分)蔬菜经营户老王,近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表,老王用600元批发白菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发白菜和西兰花共200市斤.但在运输中白菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给白菜定售价?(精确到0.1元)解:(1)设老王批发了白菜x市斤和西兰花y市斤,根据题意得,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答:当天售完后老王一共能赚250元钱.(2)设白菜的售价为t元.100×(1-10%)t+100×4.5-600≥250,t≥≈4.44.答:白菜的售价不低于4.5元/市斤.26.(12分)(2018高青期末)已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).如图,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连接AM交BF于点H,连接GA,GM.(1)求证:AH=HM;(2)请判断△GAM的形状,并给予证明;(3)请用等式表示线段AM,BD,DF的数量关系,不必说明理由.(1)证明:因为MF⊥GF,所以∠GFM=90°,因为△ABD与△GDF都是等腰直角三角形,所以∠DFG=∠ABD=45°,所以∠HFM=90°-45°=45°,所以∠ABD=∠HFM,因为AB=MF,∠AHB=∠MHF,所以△AHB≌△MHF,所以AH=HM.(2)解:△GAM是等腰直角三角形,理由是:因为△ABD与△GDF都是等腰直角三角形,所以AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ADG=∠GFM=90°,因为AB=FM,所以AD=FM,又DG=FG,所以△GAD≌△GMF,所以AG=MG,∠AGD=∠MGF,所以∠AGD+∠DGM=∠MGF+∠DGM=90°,所以△GAM是等腰直角三角形.(3)解:AM2=BD2+DF2.。
山东省济宁市曲阜市七年级下学期期末数学试卷一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.9的平方根为( )A.3 B.﹣3 C.±3 D.2.在平面直角坐标系中,点(1,﹣3)在( )A.第一象限B.第二象限C.第三象限D.第四象限3.下列调查方式,你认为最合适的是( )A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民日平均用水量,采用全面调查方式D.了解北京市每天的流动人口数,采用抽样调查方式4.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠ABE C.∠C=∠ABC D.∠A=∠EBD5.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)6.若m>n,则下列不等式中成立的是( )A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n7.在方程组中,如果是它的一个解,那么a,b的值是( ) A.a=4,b=0 B.a=,b=0 C.a=1,b=2 D.a,b不能确定8.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )A.点A B.点B C.点C D.点D9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )A.B.C.D.10.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是( ) A.a<﹣1 B.a<1 C.a>﹣1 D.a>1二、填空题(每小题3分,共15分)11.﹣64的立方根是__________.12.若关于x的不等式的整数解共有4个,则m的取值范围是__________.13.如图,AB∥CD,AF交CD于E,∠CEF=140°,那么∠A=__________°.14.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★,这个数★=__________,●=__________.15.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是__________(用含n的代数式表示)三、解答题(共55分)16.(1)计算:|﹣|+﹣.(2)解方程组:.17.解不等式组,并把解集在数轴上表示出来.18.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?19.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直接写出点P的坐标;若不存在,说明理由.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?22.阅读探索(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为__________.23.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.山东省济宁市曲阜市2019-2020学年七年级下学期期末数学试卷一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.9的平方根为( )A.3 B.﹣3 C.±3 D.考点:平方根.专题:计算题.分析:根据平方根的定义求解即可,注意一个正数的平方根有两个.解答:解:9的平方根有:=±3.故选C.点评:此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.在平面直角坐标系中,点(1,﹣3)在( )A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(1,﹣3)在第四象限.故选D.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.下列调查方式,你认为最合适的是( )A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民日平均用水量,采用全面调查方式D.了解北京市每天的流动人口数,采用抽样调查方式考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式所有灯管都报废,这样就失去了实际意义,故本选项错误;B、旅客上飞机前的安检,是精确度要求高的调查,适于全面调查,故本选项错误.C、了解北京市居民日平均用水量,采用全面调查方式,所费人力、物力和时间较多,适合抽样调查,故本选项错误;D、了解北京市每天的流动人口数采用全面调查方式,所费人力、物力和时间较多,适合抽样调查,故本选项正确.故选:D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠ABE C.∠C=∠ABC D.∠A=∠EBD考点:平行线的判定.分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;故选:B.点评:本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)考点:坐标确定位置.分析:根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.解答:解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.点评:本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.6.若m>n,则下列不等式中成立的是( )A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边加的数不同,错误;B、不等式两边乘的数不同,错误;C、当a=0时,错误;D、不等式两边都乘﹣1,不等号的方向改变,都加a,不等号的方向不变,正确;故选D.点评:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.在方程组中,如果是它的一个解,那么a,b的值是( )A.a=4,b=0 B.a=,b=0 C.a=1,b=2 D.a,b不能确定考点:二元一次方程组的解.分析:将x,y的值代入原方程组,得到关于a,b的方程组,然后求解此方程组得到a,b的值.解答:解:将x,y的值代入原方程组,得关于a,b的方程组,解此方程组得a=4,b=0.故选A.点评:解此类方程组首先将已知的x,y值代入原方程组得到关于a,b的方程组,求解关于a,b的方程组即可得到a,b的值.8.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )A.点A B.点B C.点C D.点D考点:实数与数轴;估算无理数的大小.分析:先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.解答:解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )A.B.C.D.考点:由实际问题抽象出二元一次方程组.专题:应用题.分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,根据题意得,.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是( ) A.a<﹣1 B.a<1 C.a>﹣1 D.a>1考点:解二元一次方程组;解一元一次不等式.分析:解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.解答:解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.点评:本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.二、填空题(每小题3分,共15分)11.﹣64的立方根是﹣4.考点:立方根.分析:根据立方根的定义求解即可.解答:解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选﹣4.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.若关于x的不等式的整数解共有4个,则m的取值范围是6<m≤7.考点:一元一次不等式组的整数解;不等式的性质;解一元一次不等式;解一元一次不等式组.专题:计算题.分析:关键不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得到6≤m<7即可.解答:解:,由①得:x<m,由②得:x≥3,∴不等式组的解集是3≤x<m,∵关于x的不等式的整数解共有4个,故答案为:6<m≤7.点评:本题主要考查对解一元一次不等式,不等式的性质,解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到6<m≤7是解此题的关键.13.如图,AB∥CD,AF交CD于E,∠CEF=140°,那么∠A=40°.考点:平行线的性质.分析:根据邻补角的知识,求出∠CEA的度数,然后根据平行线的性质,得出∠A=∠CEA,即可求解.解答:解:∵∠CEF=140°,∴∠CEA=180°﹣∠CEF=40°,∵AB∥CD,∴∠A=∠CEA=40°(两直线平行,内错角相等).故答案为:40.点评:本题考查了平行线的性质以及邻补角的知识,解答本题的关键是掌握平行线的性质:两直线平行,内错角相等.14.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★,这个数★=﹣2,●=8.考点:二元一次方程组的解.专题:计算题.分析:把x=5代入方程组第二个方程求出y的值,将x与y的值代入第一个方程左边即可得到结果.解答:解:把x=5代入2x﹣y=12中,得:y=﹣2,当x=5,y=﹣2时,2x+y=10﹣2=8,故答案为:﹣2;8.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)考点:算术平方根.专题:规律型.分析:观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n﹣1行的数据的个数,再加上n﹣2得到所求数的被开方数,然后写出算术平方根即可.解答:解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.点评:本题考查了算术平方根,观察数据排列规律,确定出前(n﹣1)行的数据的个数是解题的关键.三、解答题(共55分)16.(1)计算:|﹣|+﹣.(2)解方程组:.考点:实数的运算;解二元一次方程组.分析:(1)本题涉及绝对值、二次根式化简、三次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)先将方程组整理为一般形式,再根据加减消元法解二元一次方程组即可求解.解答:解:(1)|﹣|+﹣=3﹣2﹣=.(2),方程组整理得,①×3﹣②得:4x=12,解得x=3,将x=3代入①得:y=3.故原方程组的解为.点评:本题考查实数的综合运算能力,是各地2015届中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式、绝对值等考点的运算.同时考查了加减消元法解二元一次方程组.17.解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.解答:解:解不等式①得x<3,解不等式②得x≥,∴不等式组的解集为≤x<3.其解集在数轴上表示为:.点评:解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.18.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?考点:条形统计图;扇形统计图;加权平均数.分析:(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)用总里程除以汽车总辆数,即可解答.解答:解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:230)=217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.点评:此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.19.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直接写出点P的坐标;若不存在,说明理由.考点:作图-平移变换.分析:(1)根据图形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出点A′、B′的坐标;(3)设P(0,y),再根据三角形的面积公式求出y的值即可.解答:解:(1)如图所示:(2)由图可知,A'(0,4),B'(﹣1,1);(3)存在.设P(0,y),则y=1或y=﹣5,故点P的坐标是(0,1)或(0,﹣5).点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.考点:平行线的性质.分析:由AC丄AB,∠1=60°,易求得∠B的度数,又由直线a∥b,根据两直线平行,同位角相等,即可求得∠2的度数.解答:解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°﹣∠1﹣∠BAC=30°,∵a∥b,∴∠2=∠B=30°.点评:此题考查了平行线的性质与垂直的定义.此题难度不大,注意掌握数形结合思想的应用.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:应用题.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B 型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.22.阅读探索(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为.考点:解二元一次方程组.专题:阅读型.分析:(1)知识累计观察阅读材料的解题方法,理解换元法;(2)拓展提高设﹣1=x,+2=y,根据(1)中的结论确定出关于x与y方程组,求出解得到x与y的值,即可求出a与b的值;(3)能力运用设,根据已知方程组的解确定出m与n的值即可.解答:解:(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法;(2)拓展提高设﹣1=x,+2=y,方程组变形得:,解得:,即,解得:;(3)能力运用设,可得,解得:,故答案为:点评:此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.23.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.考点:不等式的解集;解二元一次方程组.分析:首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围,然后再化简(2),最后求得m的值.解答:解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得,(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.点评:主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。
2018-2019学年度第二学期期末学情分析样题七年级数学(满分:100分 考试时间:100分钟)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡...相应位置上.....) 1.下列计算正确的是( ▲ ) A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .a 3÷a 2=a D .(a 3 ) 2=a 92.若a <b ,则下列不等式中,一定正确的是( ▲ )A . a +2>b +2B .-a <-bC .a -2<b +2D .a 2<ab3 -2204.下列各式能用平方差公式计算的是( ▲ ) A .(-a +b ) (a -b ) B .(a +b ) (a -2b ) C .(a +b ) (-a -b ) D .(-a -b ) (-a +b )5.下列命题中,真命题的有 ( ▲ ) (1)内错角相等; (2)锐角三角形中任意两个内角的和一定大于第三个内角; (3)相等的角是对顶角; (4)平行于同一直线的两条直线平行.6.若某n 边形的每个内角都比其外角大120°,则n 等于( ▲ )7.如图,给出下列条件:①∠1=∠2; ②∠3=∠4;③AD ∥BE ,且∠D =∠B ;④AD ∥BE ,∠DCE =∠DA . c >a >bB .b >c >aC .a >c >bD . a >b >c A .(1)(2)B .(2)(3)C .(2)(4)D .(3)(4)A .6B .10C .12D .15A . ①②B .②③C . ③④D .②③④A . a ≤3B .-3<a ≤3C . -3≤a <3D .-3 <a <3 (第7题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷...相应位置....上) 9.计算: 30+ (13)-2= ▲ .10.不等式-2x +1 ≤ 3的解集是 ▲ .11.命题“同旁内角互补,两直线平行”的逆命题是 ▲ .12. 某种感冒病毒的直径是0. 000 000 12米,用科学记数法表示为 ▲ 米.13. 若⎩⎨⎧x =2,y =1,是关于x 、y 的二元一次方程kx -y =k 的解,则k 的值为 ▲ .14. 已知a -b =2 ,a +b =3.则a 2+b 2= ▲ .15. 关于x 的方程﹣2x +5=a 的解小于3,则a 的范围 ▲ .16. 如图,a ∥b ,将30°的直角三角板的30°与60°的内角顶点分别放在直线a 、b 上,若∠1+∠2=110°,则∠1= ▲ °.17. 如图,∠A =32°,则∠B +∠C +∠D +∠E = ▲ °.18. 若不等式组⎩⎨⎧≥-≤02x ax 有3个整数解,则a 的范围为 ▲ .(第17题)(第16题)21 abA CDB三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)因式分解:(1)a 3-a ; (2)m 3-2m 2+m .20. (5分)先化简,再求值:(x -1)2 -2(x +1)(x -1),其中x =-1.21. (5分)解方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5.22.(6分)解不等式组 ⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.23.(6分) 运输两批救灾物资,第一批360t ,用6节火车车皮和15辆汽车正好装完;第二批440t , 用8节火车车皮和10辆汽车正好装完。
2018-2019学年七年级(下)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .47.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .210.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)11.(3分)如果点(3,1)P m m ++在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,4)-12.(3分)如图,若12∠=∠,//DE BC ,则:①//FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠,⑥FGC DEC DCE ∠=∠+∠,其中正确的结论是( )A .①②③B .①②⑤⑥C .①③④⑥D .③④⑥13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .626314.(3分)定义:直线a 与直线b 相交于点O ,对于平面内任意一点M ,点M 到直线a 与直线b 的距离分别为p 、q ,则称有序实数对(,)p q 是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( )A .1B .2C .3D .4二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 .16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 .17.(3分)点(,)p q 到y 轴距离是 .18.(3 3.65 1.91036.5 6.042365000≈ .19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 .三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= ( )又1A ∠=∠(已 知) ,//AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .26.(12分)ABC ∆与△A B C '''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ;B ' ;C ' ;(2)说明△A B C '''由ABC ∆经过怎样的平移得到? .(3)若点(,)P a b 是ABC ∆内部一点,则平移后△A B C '''内的对应点P '的坐标为 ;(4)求ABC ∆的面积.参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对【分析】根据垂线段的性质,可得答案.【解答】解:把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是垂线段最短,故选:A .【点评】本题考查了垂线段最短,利用垂线段的性质是解题关键.2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 【分析】根据立方根的定义进行解答.【解答】解:3(3)27-=-,27∴-3273-=-,故选:A .【点评】本题主要考查了立方根的定义,找出立方等于27-的数是解题的关键.3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--【分析】根据平面直角坐标系内各象限内点的坐标特点解答即可.【解答】解:由图可知小猫位于坐标系中第四象限,所以小猫遮住的点的坐标应位于第四象限,故选:C .【点评】本题主要考查点的坐标,掌握平面直角坐标系内各象限内点的坐标特点是解题的关键.4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠【分析】利用同位角、内错角及同旁内角的定义分别判断后即可确定正确的选项.【解答】解:A 、BAC ∠和ACB ∠是同旁内角,不符合题意;B 、B ∠和DCE ∠是同位角,符合题意;C 、B ∠和BAD ∠是同旁内角,不符合题意;D 、B ∠和ACD ∠不属于同位角、内错角及同旁内角的任何一种,不符合题意,故选:B .【点评】本题考查了同位角、内错角及同旁内角的知识,牢记它们的定义是解答本题的关键,难度不大.5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .【分析】根据对等角相等可得13∠=∠,再由12∠=∠,可得32∠=∠,根据同位角相等, 两直线平行可得//AB CD .【解答】解:13∠=∠,12∠=∠,32∴∠=∠,//AB CD ∴,故选:B .【点评】此题主要考查了平行线的判定, 关键是掌握平行线的判定定理 .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .4【分析】(1)根据无理数的定义即可判定;(2)根据无理数的定义即可判定;(3)根据无理数的分类即可判定;(4)根据无理数和数轴上的点对应关系即可判定.【解答】解:(1)开方开不尽的数是无理数,但是无理数不仅仅是开方开不尽的数,故(1)说法错误;(2)无理数是无限不循环小数,故(2)说法正确;(3)0是有理数,故(3)说法错误;(4)无理数都可以用数轴上的点来表示,故(4)说法正确.故选:B .【点评】此题主要考查了无理数的定义.无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001⋯,等有这样规律的数.7.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-【分析】首先根据题意得到P 点的横坐标为负,纵坐标为正,再根据到x 轴的距离与到y 轴的距离确定横纵坐标即可. 【解答】解:点P 在第二象限,P ∴点的横坐标为负,纵坐标为正,到x 轴的距离是4,∴纵坐标为:4,到y 轴的距离是3,∴横坐标为:3-,(3,4)P ∴-,故选:C .【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒【分析】先根据135∠=︒,//a b 求出3∠的度数,再由AB BC ⊥即可得出答案.【解答】解://a b ,135∠=︒,3135∴∠=∠=︒.AB BC ⊥,290355∴∠=︒-∠=︒.故选:C .【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 80不是无理数;3π3273=不是无理数;227不是无理数;1.1010010001⋯是无理数,故选:C .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.10.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 【分析】根据A 点的坐标及对应点的坐标可得线段AB 向右平移4个单位,然后可得B '点的坐标.【解答】解:(1,1)A --平移后得到点A '的坐标为(3,1)-,∴向右平移4个单位,(1,2)B ∴的对应点坐标为(14,2)+,即(5,2).故选:B .【点评】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(3分)如果点(3,1)++在x轴上,则点P的坐标为()P m mA.(0,2)B.(2,0)C.(4,0)D.(0,4)-【分析】根据点P在x轴上,即0y=,可得出m的值,从而得出点P的坐标.【解答】解:点(3,1)++在x轴上,P m m∴=,y∴+=,m10解得:1m=-,∴+=-+=,3132m∴点P的坐标为(2,0).故选:B.【点评】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m 的值是解题关键.12.(3分)如图,若12∠=∠,//∠=∠;③CD平FG DC;②AED ACBDE BC,则:①//分ACB∠=∠+∠,其中正∠=∠,⑥FGC DEC DCE∠+∠=︒;⑤BFG BDC∠;④190B确的结论是()A.①②③B.①②⑤⑥C.①③④⑥D.③④⑥【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出∠=∠,得出//FG DC,①正确;由平行线的性质得出⑤正确;进而得出⑥2DCB∠=∠+∠正确,即可得出结果.FGC DEC DCE【解答】解://DE BC,∠=∠,故②正确;1∴∠=∠,AED ACBDCB∠=∠,12∴∠=∠,2DCBFG DC∴,故①正确;//∴∠=∠,故⑤正确;BFG BDC∴∠=∠+∠,故⑥正确;FGC DEC DCE而CD不一定平分ACB∠,1B∠+∠不一定等于90︒,故③,④错误;故选:B.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为()A.2531B.3635C.47D.6263【分析】观察数据,发现第n个数为221nn-,再将6n=代入计算即可求解.【解答】解:观察该组数发现:1,43,97,1615,⋯,第n个数为221nn-,当6n=时,22664 21217nn==--.故选:C.【点评】本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为221nn-.14.(3分)定义:直线a与直线b相交于点O,对于平面内任意一点M,点M到直线a与直线b的距离分别为p、q,则称有序实数对(,)p q是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4【分析】画出两条相交直线,到a的距离为1的直线有2条,到b的距离为2的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数.【解答】解:如图所示,所求的点有4个,故选:D.【点评】综合考查点的坐标的相关知识;得到到直线的距离为定值的直线有2条是解决本题的突破点.二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 3± .【分析】根据平方根、算术平方根的定义即可解决问题.【解答】解:819=,9的平方根是3±,∴81的平方根是3±.故答案为3±.【点评】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型.16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 7 .【分析】根据角平分线的定义可得EBD EBC ∠=∠,ECF ECB ∠=∠,再根据两直线平行,内错角相等可得EBC BED ∠=∠,ECB CEF ∠=∠,然后求出EBD DEB ∠=∠,ECF CEF ∠=∠,再根据等角对等边可得ED BD =,EF CF =,即可得出DF BD CF =+;求出ADF ∆的周长AB AC =+,然后代入数据进行计算即可得解.【解答】解:E 是ABC ∠,ACB ∠平分线的交点,EBD EBC ∴∠=∠,ECF ECB ∠=∠,//DF BC ,DEB EBC ∴∠=∠,FEC ECB ∠=∠,DEB DBE ∴∠=∠,FEC FCE ∠=∠,DE BD ∴=,EF CF =,DF DE EF BD CF ∴=+=+,即DE BD CF =+,ADF ∴∆的周长()()AD DF AF AD BD CF AF AB AC =++=+++=+,4AB =,3AC =,ADF ∴∆的周长437=+=,故答案为7.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.17.(3分)点(,)p q 到y 轴距离是 ||p .【分析】点到y 轴的距离等于横坐标的绝对值.【解答】解:点(,)p q 到y 轴距离||p =故答案为||P .【点评】本题考查点的坐标,记住点到坐标轴的距离与坐标的关系是解题的关键.18.(3 3.65 1.91036.5 6.042365000≈ 604.2 .【分析】根据被开方数扩大100倍,算术平方根扩大10倍,可得答案. 3.65 1.910≈36.5 6.042≈365000604.2,故答案为:604.2.【点评】本题考查了算术平方根,利用被开方数与算术平方根的关系是解题关键.19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 (1,2)或(7,2)- .【分析】在平面直角坐标系中与x 轴平行,则它上面的点纵坐标相同,可求B 点纵坐标;与x 轴平行,相当于点A 左右平移,可求B 点横坐标.【解答】解://AB x 轴,∴点B 纵坐标与点A 纵坐标相同,为2,又4AB =,可能右移,横坐标为341-+=-;可能左移横坐标为347--=-,B ∴点坐标为(1,2)或(7,2)-,故答案为:(1,2)或(7,2)-.【点评】此题考查平面直角坐标系中平行特点和平移时坐标变化规律,解决本题的关键是分类讨论思想.三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= C ∠ ( )又1A ∠=∠(已 知) , //AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)【分析】先根据两直线平行, 得出同位角相等, 再根据内错角相等, 得出两直线平行, 进而得出内错角相等, 最后根据等量代换得出结论 .【解答】证明://BE CD (已 知)2C ∴∠=∠(两 直线平行, 同位角相等)又1A ∠=∠(已 知)//AC DE ∴(内 错角相等, 两直线平行)2E ∴∠=∠(两 直线平行, 内错角相等)C E ∴∠=∠(等 量代换)【点评】本题主要考查了平行线的性质, 解题时注意区分平行线的性质与平行线的判定的区别, 条件与结论不能随意颠倒位置 .21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.【分析】(1)利用平方根的定义,即可求得32x +,即可转化成一元一次方程即可求得x 的值;(2)利用立方根的定义,即可转化成一元一次方程即可求得x 的值.【解答】解:(1)2(32)16x +=,324x +=±, 23x ∴=或2x =;(2)3(21)27x -=-,213x -=-,1x ∴=-.【点评】本题考查了平方根与立方根的定义,理解定义是关键.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: BOD ∠ ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.【分析】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出BOD ∠的度数,再根据:2:3BOE EOD ∠∠=求出BOE ∠的度数,然后利用互为邻补角的两个角的和等于180︒即可求出AOE ∠的度数.【解答】解:(1)AOC ∠的对顶角是BOD ∠,EOB ∠的邻补角是AOE ∠,故答案为:BOD ∠,AOE ∠;(2)70AOC ∠=︒,70BOD AOC ∴∠=∠=︒,:2:3BOE EOD ∠∠=, 2702832BOE ∴∠=⨯︒=︒+, 18028152AOE ∴∠=︒-︒=︒.AOE ∴∠的度数为152︒.【点评】本题主要考查了对顶角和邻补角的定义,利用对顶角相等的性质和互为邻补角的两个角的和等于180︒求解是解答此题的关键.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.【分析】根据题意建立平面直角坐标系进而得出各点坐标即可.【解答】解:如图所示:实验楼(2,2)-,行政楼(2,2)--,大门(0,4)-,食堂(3,4),图书馆(4,2)-.【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .【分析】根据平行线的性质及三角形内角定理解答 .【解答】解: 由三角板的性质, 可知45EAD ∠=︒,30C ∠=︒,90BAC ADE ∠=∠=︒.因为//AE BC ,所以30EAC C ∠=∠=︒,所以453015DAF EAD EAC ∠=∠-∠=︒-︒=︒,所以180180901575AFD ADE DAF ∠=︒-∠-∠=︒-︒-︒=︒.【点评】本题考查的是平行线的性质及三角形内角和定理, 解题时注意: 两直线平行, 内错角相等 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .【分析】先根据题意得出132E ∠+∠=∠+∠,再由25E ∠+∠=∠可知,135∠+∠=∠,即5ADC ∠=∠,据此可得出结论.【解答】证明:12∠=∠,3E ∠=∠,132E ∴∠+∠=∠+∠.25E ∠+∠=∠,135∴∠+∠=∠,5ADC ∴∠=∠,//AD BE ∴.【点评】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.26.(12分)ABC∆与△A B C'''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'(3,1)-;B';C';(2)说明△A B C'''由ABC∆经过怎样的平移得到?.(3)若点(,)P a b是ABC∆内部一点,则平移后△A B C'''内的对应点P'的坐标为;(4)求ABC∆的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A'的变化写出平移方法即可;(3)根据平移规律逆向写出点P'的坐标;(4)利用ABC∆所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)(3,1)A'-;(2,2)B'--;(1,1)C'--;(2)先向左平移4个单位,再向下平移2个单位;或:先向下平移2个单位,再向左平移4个单位;(3)(4,2)P a b'--;(4)ABC∆的面积111 23131122 222=⨯-⨯⨯-⨯⨯-⨯⨯6 1.50.52=---2=.故答案为:(1)(3,1)-,(2,2)--,(1,1)--;(2)先向左平移4个单位,再向下平移2个单位;(3)(4,2)a b--.【点评】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.。
2018-2019学七年级数学下学期期末试题 本试卷包括两道大题,共24道小题。
共4页。
全卷满分120分。
考试时间为90分钟。
考试结束后,将答题卡交回。
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共24分)1.不等式12x ->的解集是( )A .1x >B .2x >C .3x >D .3x <2.下列图形,既是轴对称图形又是中心对称图形的是( )3.方程315x -=的解是( )A . 3x =B . 4x =C .2x =D . 6x =4.方程组53x y x y +=-⎧⎨-=⎩的解是()A .14x y =⎧⎨=⎩B . 14x y =-⎧⎨=-⎩C .41x y =⎧⎨=⎩D . 41x y =-⎧⎨=-⎩5.下列计算正确的是( ).A .()22224ab a b -=B .236a a a = C .()325a a = D .222233ab a b ab ÷= 6.已知2a b +=,则224a b b -+的值( ).A .2B .3C .6D . 47.若24m -与31m -是正数a 的两个平方根,则4m a +的立方根为( ).A . 2B . ±2C . 2D . 48.如图,在△ABC 中,∠CAB=65°,将△ABC 在平面内绕点A 旋转到△AB 'C '的位置.若∠CAB '=25°则∠ACC ''的度数为( )A .25°B .40°C .65°D .70°二、填空题(每小题3分,共18分)9.因式分解:2a ab -= __________.10.计算:()()12x x +-= __________.11.已知三角形的三边长分别为3、a 、5,那么a 的取值范围是 .12.如图,在△ABC 中,∠B =90°,AB =10.将△ABC 沿着BC 的方向平移至△DEF ,若平移的距离是4,则图中阴影部分图形的面积为__________.13.已知△ACE ≌△DBF ,CE =BF ,AE =DF ,AD =8,BC =2,则AC = cm .14.如图,在△ABC 中,点D 是BC 边上的一点,∠B =48°,∠BAD =28°,将△ABD 沿AD 折叠得到△AED ,AE 与BC 交于点F ,则∠AFC = °.第12题 第13题 第14题三、解答题(共78分)15.(6分)计算:(1) 5137x x -=+; (2)20132x x x -⎧⎪⎨+-⎪⎩>≥ . 16.(6分)将下列各式因式分解:(1) 22363ax axy ay ++ ; (2) 32aab -. 17.(6分)若220x y y -++=,求()()()22x y x y x y x ⎡⎤-++-÷⎣⎦的值.18.(7分)甲、乙两人从相距26千米的两地同时相向而行,甲每小时走3.5千米,4小时后两人相遇 ,求乙行走的速度.19.(7分)已知,一个多边形的每一个外角都是它相邻的内角的12. 试求出:(1)这个多边形的每一个外角的度数;(2)求这个多边形的内角和.20.(7分)如图,在△ABC 中,∠ABC =40°,∠ACB =80°,AD 是BC 边上的高,AE 平分∠BAC .(1)求∠BAE 的度数;(2)求∠DAE 的度数.21.(8分)如图,正方形ABCD ,点F 为正方形ABCD 内一点,△BFC 逆时针旋转后能与△BEA 重合.(1)旋转中心是点 ,旋转角度为 度;(2)判断△BEF 的形状为 ;(3)若∠BFC =90°,说明AE ∥BF .22.(9分)若m2-2mn+2n2-8n+16=0,求m、n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2m n+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题设等腰三角形ABC的三边长a、b、c,且满足a2+b2-4a-6b+13=0,求△ABC的周长.23.(10分“世界杯”期间,某娱乐场所举办“消夏看球赛”活动,需要对会场进行布置,计划在现场安装小彩灯和大彩灯.已知安装5个小彩灯和4个大彩灯共需150元;安装7个小彩灯和6个大彩灯共需220元.(1)安装1个小彩灯和1个大彩灯各需多少元?(2)若场地共需安装小彩灯和大彩灯300个,费用不超过4350元,则最多安装大彩灯多少个?24.(12分)如图,长方形ABCD中,AD=BC=6,AB=CD=4.点P从点A出发,以每秒1个单位的速度沿A→B→C→D→A的方向运动,回到点A停止运动.设运动时间为t秒.(1)当t= 时,点P到达点C;当t= 时,点P回到点A;(2)△ABP面积取最大值时t的取值范围;(3)当△ABP的面积为3时,求t的值;(4)若点P出发时,点Q从点A出发,以每秒2个单位的速度沿A→D→C→B→A的方向运动,回到点A停止运动.请问:P、Q何时相距1个单位长度?A C 如BD数学试卷答案1.C2.B3.C4.B5.A6.D7.A8.D9.a(a-b) 10.x2-x-2 11.2<a<8 12.40 13.5 14.104 15.(1)x=4(2)2<x≤8 16.(1)3a(x+y)2 (2)a(a+b)(a-b) 17.1 18.3千米 /小时19.(1)60°(2)720°20.(1)30°(2)20° 21.点B 90°等腰直角三角形∠AEF=∠EFB=45°,所以AE∥BF 22. n2-8n+16 m-n n-4 4(a-2)2+(b-3)2=0 所以a=2 ,b=3 第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8 23.(1)解:设小彩灯每个x元,大彩灯每个y 元,5x+4y=150 x=107x+6y=220 y=25(2)设安装a个大彩灯,则安装(300-a)个小彩灯10(300-a)+25a≤4350a≤90所以最多安装90个大彩灯24.(1)t=10,点p到点C,t=20,点p到点A(2)10≤t≤14(3)t=5.5或t=18.5(4)t=19/3,t=7。
2018~2019学年度初一下学期期末考试数学试题参考答案一、选择题:(本大题共10小题,每小题3分,共30分.)二、填空题:本大题共10小题,每小题3分,共30分.)11. 6 12.○3④ 13.1/2 、4 14.55° 15.116. 6 17.3 18.11或5 19.-14、-2、0 20.12-3x三、解答题(本大题共8小题,共60分.)21、作图:图略,(1)、(2)(3)各2分。
………………6分22、计算:(1)-45;………………5分(2)9.………………5分23、(1)-a3-3a2+4a+5;………………3分原式=-1 ………………3分(2)x=8 ;………………4分24、 (1)M=25/4 -………………4分(2) M=-4/3 ………………3分25、解:(1)10 …………………………2分(2)图略,每图各2分…………………………6分(3)32×5×5=800cm2 …………………………8分26、解:(1 )+5-3+10-8-9+12-10=-3 (厘米),所以小虫最后没有回到出发点,在出发点左3厘米处。
…………………………3分(2 )经计算比较得+5-3+10=12是最远的。
……………………6分(3 )│+5 │+ │-3 │+ │10 │+ │-8 │+ │-9 │+ │12 │+ │-10 │=57 厘米57 ×2=114( 粒) ,故小虫一共能得到114粒芝麻。
…………………9分27、解:(1)∵AB=16cm,C点为AB的中点∴AC=BC=8cm∵点D、E分别是AC和BC的中点∴CD=CE=4cm∴DE=8cm …………………3分(2)∵AB=16cm∴AC=4cm∴BC=12cm∵点D、E分别是AC和BC的中点∴CD=2cm,CE=6cm说明:如果学生有不同的解题方法。
只要正确,可参照本评分标准,酌情给分.。
2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。
2018-2019学年山东省济宁市曲阜市七年级(下)期末数学试卷一、选择题:本大题共12小题,每小题2.5分,共30分在每小题给出的四个选项中,只有一项符合题目要求1.(2.5分)的算术平方根为()A.B.C.D.﹣2.(2.5分)二元一次方程2x﹣y=5的解是()A.B.C.D.3.(2.5分)如果a>b,则下列不等式中不正确的是()A.a+2>b+2B.a﹣2>b﹣2C.﹣2a>﹣2b D.4.(2.5分)下列调查中,适合抽样调查的是()A.了解某班学生的身高情况B.检测朝阳区的空气质量C.选出某校短跑最快的学生参加全市比赛D.全国人口普查5.(2.5分)解方程组时,由②﹣①得()A.2y=8B.4y=8C.﹣2y=8D.﹣4y=86.(2.5分)在数轴上表示不等式﹣x+2≤0的解集,正确的是()A.B.C.D.7.(2.5分)如图,若AB,CD相交于点O,过点O作OE⊥AB,则下列结论不正确的是()A.∠1与∠2互为余角B.∠3与∠2互为余角C.∠2与∠AOE互为补角D.∠AOC与∠BOD是对顶角8.(2.5分)为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43%B.50%C.57%D.73%9.(2.5分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1B.m>2C.﹣1<m<2D.m>﹣110.(2.5分)如图,BD平分∠ABC,点E为BA上一点,EG∥BC交BD于点F.若∠1=35°,则∠ABF的度数为()A.25°B.70°C.35°D.17.5°11.(2.5分)我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A.B.C.D.=12.(2.5分)实数m的平方根分别是3a﹣22和2a﹣3,且t=,则不等式﹣≥的解集为()A.x≤B.x≤C.x≥D.x≤二、填空题(每小题3分,共18分;只要求填写最后结果)。
2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)2.4的平方根是()A.2B.﹣2C.±2D.163.不等式组的解集在数轴上表示为()A.B.C.D.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°7.下列方程组是二元一次方程组的是()A.B.C.D.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是.12.5(填“>”或“<”).13.的相反数是.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果,那么.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为.17.点A在x轴上,到原点的距离为3,则点A的坐标为.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=,b=,C=,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是,这个组距选择得(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有户.21.(7分)解不等式组,并求它的整数解.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B()又∵∠B=55°(已知)∠C=°()∵∠D=125°(已知)∴∴BC∥DE()23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=.②若∠A=25°,∠C=40°,则∠AEC=.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)【分析】根据第一象限内点的横坐标与纵坐标都是正数即可求解.【解答】解:点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是(,5).故选:B.【点评】本题考查了点的坐标,掌握第一象限内点的坐标特征是解题的关键.2.4的平方根是()A.2B.﹣2C.±2D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.不等式组的解集在数轴上表示为()A.B.C.D.【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出来即可求解.【解答】解:不等式组的解集在数轴上表示为.故选:D.【点评】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查春节联欢晚会收视率适宜用抽样调查,错误;B、要调查一批灯泡的使用寿命适宜用抽样调查,错误;C、要调查七年一班学生的年龄适宜全面调查,正确;D、要调查第一小组一次数测评学成绩适宜用全面调查,错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个【分析】根据无理数的定义进行解答即可.【解答】解:在实数,π,,3.5,,0,3.02002,中,无理数有,π,,,共有4个.故选:A.【点评】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键.6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°,故选:D.【点评】此题主要考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②邻补角互补,即和为180°.7.下列方程组是二元一次方程组的是()A.B.C.D.【分析】分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.【解答】解:A、此方程组有3个未知数x,y,z.不符合二元一次方程组的定义;B、不是整式方程,不符合二元一次方程组的定义;C、此方程组正好符合二元一次方程组的定义;D、此方程组属于二次.不符合二元一次方程组的定义;故选:C.【点评】本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根【分析】根据垂线段的性质、对顶角、同旁内角和立方根的概念判断即可.【解答】解:A、垂线段最短,是真命题;B、相等的角不一定是对顶角,是假命题;C、两直线平行,同旁内角互补,是假命题;D、0有立方根,它的立方根是0,是假命题;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向【分析】根据地点的位置确定应该有方向角以及相对距离据此回答.【解答】解:根据地点确定的方法得出:只有东南方向,距此800米,可以确定一个地点的位置,其它选项都不准确.故选:B.【点评】此题主要考查了坐标确定位置,根据已知得出一个地点确定需要两个元素得出是解题关键.10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;【解答】解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.【点评】本题考查坐标与图形的性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是x<﹣1.【分析】不等式经过移项即可得到答案.【解答】解:x+3<2,移项得:x<﹣1,即不等式的解集为:x<﹣1,故答案为:x<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.12.<5(填“>”或“<”).【分析】直接利用二次根式的性质比较得出答案.【解答】解:∵5=,∴<5.故答案为:<.【点评】此题主要考查了实数大小比较,正确得出5=是解题关键.13.的相反数是﹣2.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,主要利用了负数的绝对值等于它的相反数,是基础题.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=50°.【分析】运用垂线的定义,对顶角的性质进行计算即可.【解答】解:∵直线AB、CD相交于点O,∴∠BOC=∠AOD=140°,又∵OE⊥AB,∴∠DOE=140°﹣90°=50°,故答案为:50°.【点评】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.【分析】先分清命题“内错角相等,两直线平行”的题设与结论,然后把题设写在如果的后面,结论部分写在那么的后面.【解答】解:“内错角相等,两直线平行”改写成“如果…那么…”的形式为如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,截得的内错角相等;这两条直线平行.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;命题由题设和结论两部分组成.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为5.【分析】在样本数据中最大值与最小值的差为16,已知组距为4,那么由于16÷4=4,且要求包含两个端点在内;故可以分成5组.【解答】解:∵16÷4=4,∴组数为5,故答案为:5.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.17.点A在x轴上,到原点的距离为3,则点A的坐标为(±3,0).【分析】根据在x轴上点的纵坐标是0,横坐标是±3解答.【解答】解:∵点A在x轴上,到原点的距离为3,∴此点的坐标是(±3,0).故答案为:(±3,0).【点评】本题考查了点的坐标,主要利用了x轴上点的坐标特征.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为2n﹣1.【分析】从特殊到一般探究规律后,利用规律即可解决问题;【解答】解:点A1的横坐标为1=21﹣1,点A2的横坐为标3=22﹣1,点A3:的横坐标为7=23﹣1,点A4的横坐标为15=24﹣1,按这个规律平移得到点A n为2n﹣1,故答案为2n﹣1【点评】本题考查坐标与图形变化﹣平移、规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).【分析】直接利用绝对值以及二次根式、立方根的性质分别化简得出答案.【解答】解:原式=﹣0.2﹣2≈1.414﹣0.2﹣2≈﹣0.79.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=12,b=8,C=20%,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择得好(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有350户.【分析】(1)由频数之和等于总数及频率=频数÷总数求解可得;(2)根据频数分布直方图可得组距,结合数据分布情况解答即可;(3)用总户数乘以大于3000元不足6000元的百分比之和可得.【解答】解:(1)a=40×30%=12、b=40﹣(3+5+12+8+4)=8,则c=8÷40=0.2=20%,补全图形如下:(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择的好,理由是:这个组距选择得比较合理,确保了数据不重不漏且没有数据为空白的组,比较好地展示了数据的分布情况;故答案为:1000、好.(3)用样本估计总体中的中等收入家庭大约有500×(30%+20%+20%)=350(户),故答案为:350.【点评】此题考查了频数(率)分布直方图,用样本估计总体,以及频数(率)分布表,弄清题意是解本题的关键.21.(7分)解不等式组,并求它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4x﹣1<5x+1,得:x>﹣2,解不等式x﹣2≤5﹣x,得:x≤,则不等式组的解集为﹣2<x≤,所以不等式组的整数解为﹣1、0、1、2、3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B(两直线平行,内错角相等)又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行)【分析】先根据AB∥CD得出∠C的度数,再由∠C+∠D=180°即可得出结论.【解答】证明:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行).故答案为:两直线平行,内错角相等,55,等量代换;∠C+∠D=180°,同旁内角互补,两直线平行.【点评】本题主要考查了平行线的性质与判定的综合应用,解题时注意:两直线平行,内错角相等;同旁内角互补,两直线平行.23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是7;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为(5,3).【分析】(1)直接利用已知点在坐标系中位置得出各点坐标即可;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质进而分析得出答案.【解答】解:(1)点A的坐标为:(﹣1,﹣1)、C点的坐标为:(1,3);(2)三角形ABC的面积是:4×5﹣×2×4﹣×1×3﹣×3×5=7;故答案为:7;(3)如图所示:△A′B′C’即为所求,点B′的坐标为:(5,3).故答案为:(5,3).【点评】此题主要考查了平移变换以及三角形的面积,正确得出三角形面积是解题关键.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.【分析】把k看做已知数表示出方程组的解,根据x比y的值大1,确定出k的值,进而求出方程组的解即可.【解答】解:,把x=y+1代入①得:2y+1=k③,代入②得:y+1﹣2y=3﹣k④,联立③④,解得:,把y=1代入①得:x=2,则方程组的解为,k的值为3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?【分析】(1)设购买的科普书的单价是x元,文学书的单价是y元,根据20本某种科普书和30本某种文学书共花了1080元;购买的科普书的单价比文学书的单价多4元;可列方程组求解.(2)根据用800元再购进一批科普书和文学书,得出不等式求解即可.【解答】解:(1)设购买的科普书的单价是x元,文学书的单价是y元,根据题意得,解得.故购买的科普书的单价是24元,文学书的单价是20元.(2)设还能购进a本科普书,根据题意得24a+20×25≤800,解得a≤12,∵图书的数量为正整数,∴a的最大值为12.答:至多还能购进12本科普书.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,根据题意设出单价,找到等量关系列方程组求解是解题关键.26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=70°.②若∠A=25°,∠C=40°,则∠AEC=65°.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.【分析】(1)①过点E作EF∥AB,再由平行线的性质即可得出结论;②、③根据①的过程可得出结论;(2)根据题意画出图形,再根据平行线的性质即可得出∠EMB、∠END、∠MEN的关系.【解答】解:(1)①如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠C=50°,∴∠1=∠A=20°,∠2=∠C=50°,∴∠AEC=∠1+∠2=70°;故答案为:70°;②同理可得,∴∠AEC=∠1+∠2=65°;故答案为:65°;③猜想:∠AEC=∠EAB+∠ECD.理由:如图1,过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠ECD(两直线平行,内错角相等),∴∠AEC=∠1+∠2=∠EAB+∠ECD(等量代换).(2)当点E位于区域Ⅰ时,∠EMB+∠END+∠MEN=360°,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BME+∠MEF=180°,∠DNE+∠NEF=180°,∴∠EMB+∠END+∠MEN=360°;当点E位于区域Ⅱ时,∠EMB+∠END=∠MEN,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BMN=∠FEM,∠DNE=∠FEN,∴∠EMB+∠END=∠MEF+∠NEF=∠MEN.【点评】本题考查的是平行线的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.。
2018-2019学年人教版七年级第二学期期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在下列各组数中2,π-,17-,25,0.131131113⋯(相邻两个3之间多一个1),无理数有()A.2个B.3个C.4个D.52.(3分)如图,下列说法中,正确的是()A.因为180A D∠+∠=︒,所以//AD BC B.因为180C D∠+∠=︒,所以//AB CD C.因为180A D∠+∠=︒,所以//AB CD D.因为180A C∠+∠=︒,所以//AB CD 3.(3分)下列各组数中互为相反数的是()A.3-与13B.(2)--与|2|--C.5与25-D.2-与38-4.(3分)同一个平面内,若a b⊥,c b⊥,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对5.(3分)81的算术平方根是()A.9±B.3±C.9D.36.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C,D的位置上,EC交AD于点G,已知58EFG∠=︒,则BEG∠等于()A.58︒B.116︒C.64︒D.74︒7.(3分)如图,直线//a b,射线DC与直线a相交于点C,过点D作DE b⊥于点E,已知125∠=︒,则2∠的度数为()A .115︒B .125︒C .155︒D .165︒8.(3分)下列方程组中是二元一次方程组的是( )A .22102x y y x +=⎧⎨=⎩B .150x y x y ⎧+=⎪⎨⎪+=⎩ C .00x y y z +=⎧⎨+=⎩ D .31x y =⎧⎨=⎩9.(3分)已知实数a 在数轴上的位置如图,则化简2|1|a a -+的结果为()A .1B .1-C .12a -D .21a -10.(3分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,将ABC ∆沿CB 向右平移得到DEF ∆,若四边形ABED 的面积等于8,则平移距离等于( )A .2B .4C .8D .1611.(3分)已知坐标平面内的点(2,4)A -,如果将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,那么平移后点A 的坐标是( )A .(1,6)B .(5,6)-C .(5,2)-D .(1,2)12.(3分)有一个数值转换器,程序如图所示,当输入的数x 为81时,输出的数y 的值是()A .9B .3C .3D .3± 二、填空题(本题8小题,每小题3分,共24分)13.(3分)若方程||1(2)5a x a y -+-=是关于x ,y 的二元一次方程,则a 的值为 .14.(3分)比较大小:3718- 13-. 15.(3分)已知一个数的平方根为3a +与215a -,则这个数是 .16.(3分)若点(24,33)P m m ++在x 轴上,则点P 的坐标为 .17.(3分)把命题“同旁内角互补”写成“如果⋯,那么⋯.”的形式为 .18.(3分)已知5的小数部分是a ,7的整数部分是b ,则a b += .19.(3分)已知第二象限内的点A 到x 轴的距离为6,到y 轴的距离为3,则点A 的坐标 .20.(3分)如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),⋯,按这样的运动规律,经过第2018次运动后,动点P 的坐标是 .三、解答题(共60分)21.(10分)如图,ABC ∆在直角坐标系中,(1)请写出ABC ∆各点的坐标;(2)若把ABC ∆向上平移2个单位,再向左平移1个单位得到△A B C ''',在图中画出三角形ABC 变化后的位置,写出A '、B '、C '的坐标;(3)求出ABC ∆的面积.22.(12分)计算:(1)2(1)(23)|32|---+-(2)22312()2564|2|2-⨯++-÷- 23.(8分)已知21a b =⎧⎨=⎩是方程组2(1)21a mb na b +-=⎧⎨+=⎩的解,求2018()m n +的平方根. 24.(8分)阅读下列解答过程,在横线上填入恰当内容.解方程:2(1)4x -=解:2(1)4x -=Q (1)12x ∴-=,(2) 3x ∴=.(3) 上述过程中有没有错误?若有,错在步骤 (填序号)原因是请写出正确的解答过程.25.(10分)已知:如图,在ABC ∆中,BD AC ⊥于点D ,E 为BC 上一点,过E 点作EF AC ⊥,垂足为F ,过点D 作//DH BC 交AB 于点H .(1)请你补全图形.(2)求证:BDH CEF ∠=∠.26.(12分)如图,已知//AB CD ,//EF MN ,1115∠=︒.(1)求2∠和4∠的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来.(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的2倍多6 ,求这两个角的大小.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在下列各组数中2,π-,17-,25,0.131131113⋯(相邻两个3之间多一个1),无理数有( )A .2个B .3个C .4个D .5【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有2,π-,0.131131113⋯(相邻两个3之间多一个1),共3个, 故选:B .【点评】本题考查了无理数的定义,能理解无理数的定义的内容是解此题的关键,注意:无理数包括三方面的数:①开方开不尽的根式,②含π的,③一些有规律的根式.2.(3分)如图,下列说法中,正确的是( )A .因为180A D ∠+∠=︒,所以//AD BCB .因为180CD ∠+∠=︒,所以//AB CDC .因为180AD ∠+∠=︒,所以//AB CD D .因为180A C ∠+∠=︒,所以//AB CD【分析】A 、B 、C 、根据同旁内角互补,判定两直线平行;D 、A ∠与C ∠不能构成三线八角,因而无法判定两直线平行.【解答】解:A 、C 、因为180A D ∠+∠=︒,由同旁内角互补,两直线平行,所以//AB CD ,故A 错误,C 正确;B 、因为180CD ∠+∠=︒,由同旁内角互补,两直线平行,所以//AD BC ,故B 错误; D 、A ∠与C ∠不能构成三线八角,无法判定两直线平行,故D 错误.故选:C .【点评】平行线的判定:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.3.(3分)下列各组数中互为相反数的是( )A .3-与13B .(2)--与|2|--C .5D .2-【分析】首先根据绝对值的定义化简,然后根据相反数的定义即可解答.【解答】解:A 、3-与13不符合相反数的定义,故选项错误; B 、(2)2--=,|2|2--=-只有符号相反,故是相反数,故选项正确.C 无意义,故选项错误;D 、22-=-2=-相等,不符合相反数的定义,故选项错误.故选:B .【点评】此题主要考查相反数的定义:只有符号相反的两个数互为相反数,0的相反数是其本身.4.(3分)同一个平面内,若a b ⊥,c b ⊥,则a 与c 的关系是( )A .平行B .垂直C .相交D .以上都不对【分析】由已知a b ⊥,c b ⊥进而得出a 与c 的关系.【解答】解:a b ⊥Q ,c b ⊥,//a c ∴.故选:A .【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5.(3( )A .9±B .3±C .9D .3【解答】解:Q9=,又2(3)9±=Q ,9∴的平方根是3±,9∴的算术平方根是3.3.故选:D .【点评】此题主要考查了算术平方根的定义,解题的关键是知道81实际上这个题是求9的算术平方根是3.注意这里的双重概念.6.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C,D的位置上,EC交AD于点G,已知58∠等于()EFG∠=︒,则BEGA.58︒B.116︒C.64︒D.74︒【分析】根据平行线的:两直线平行,内错角相等.可知58∠=∠=︒,再根据EFAFE FEC 是折痕可知58∠=︒利用平角的性质就可求得所求的角.FEG【解答】解://Q,AD BC58∴∠=∠=︒.AFE FEC而EF是折痕,∴∠=∠.FEG FEC又58Q,∠=︒EFG∴∠=︒-∠=︒-⨯︒=︒.180218025864BEG FEC故选:C.【点评】本题考查平行线的性质、翻折变换、矩形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(3分)如图,直线//⊥于点E,已a b,射线DC与直线a相交于点C,过点D作DE b知125∠的度数为()∠=︒,则2A.115︒B.125︒C.155︒D.165︒【分析】如图,过点D作//c a.由平行线的性质进行解题.【解答】解:如图,过点D作//c a.则125CDB ∠=∠=︒.又//a b ,DE b ⊥,//b c ∴,DE c ⊥,290115CDB ∴∠=∠+︒=︒.故选:A .【点评】本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.8.(3分)下列方程组中是二元一次方程组的是( )A .22102x y y x+=⎧⎨=⎩ B .150x y x y ⎧+=⎪⎨⎪+=⎩ C .00x y y z +=⎧⎨+=⎩ D .31x y =⎧⎨=⎩【分析】直接利用二元一次方程组的定义进而分析得出答案.【解答】解:A 、22102x y y x +=⎧⎨=⎩,是二元二次方程组,故此选项错误; B 、150x y x y ⎧+=⎪⎨⎪+=⎩,含有分式方程,故此选项错误; C 、00x y y z +=⎧⎨+=⎩,是三元一次方程组,故此选项错误; D 、31x y =⎧⎨=⎩,是二元一次方程组,故此选项正确. 故选:D .【点评】此题主要考查了二元一次方程组的定义,正确把握定义是解题关键.9.(3分)已知实数a 在数轴上的位置如图,则化简2|1|a a -+( )A .1B .1-C .12a -D .21a -【分析】直接利用二次根式的性质化简得出答案.【解答】解:由数轴可得:10a -<<, 则2|1|112a a a a a -+=--=-.故选:C .【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.10.(3分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,将ABC ∆沿CB 向右平移得到DEF ∆,若四边形ABED 的面积等于8,则平移距离等于( )A .2B .4C .8D .16【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED 是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:Q 将ABC ∆沿CB 向右平移得到DEF ∆,四边形ABED 的面积等于8,4AC =, ∴平移距离842=÷=.故选:A .【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.(3分)已知坐标平面内的点(2,4)A -,如果将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,那么平移后点A 的坐标是( )A .(1,6)B .(5,6)-C .(5,2)-D .(1,2)【分析】根据题意,将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,依据坐标的变化规律即可求解.【解答】解:Q 坐标平面内点(2,4)A -,将坐标系先向左平移3个单位长度,再向上平移2个单位长度,∴点A 的横坐标增大3,纵坐标减小2,∴点A 变化后的坐标为(1,2).故选:D .【点评】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.将坐标系向右、向上平移,相当于将原来坐标系中的点向左、向下平移.12.(3分)有一个数值转换器,程序如图所示,当输入的数x 为81时,输出的数y 的值是()A .9B .3C 3D .3±【分析】根据开方运算,可得算术平方根. 81993=,3y =故选:C .【点评】本题考查了算术平方根,求算术平方根,依据程序进行计算是解题的关键.二、填空题(本题8小题,每小题3分,共24分)13.(3分)若方程||1(2)5a x a y -+-=是关于x ,y 的二元一次方程,则a 的值为 2- .【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程. 【解答】解:根据题意得:1120a a ⎧-=⎨-≠⎩, 解得:2a =-.故答案是:2-.【点评】要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.14.(33718- 13-.【分析】利用立方根定义,以及两个负数比较大小方法判断即可.12-, 11||||23->-Q , 1123∴-<-, 故答案为:<【点评】此题考查了实数大小比较,熟练掌握运算法则是解本题的关键.15.(3分)已知一个数的平方根为3a +与215a -,则这个数是 49 .【分析】根据两个平方根互为相反数,即可列方程得到a 的值,然后根据平方根的定义求得这个数.【解答】解:根据题意得:3(215)0a a ++-=,解得:4a =,则这个数是22(3)(43)49a +=+=.故答案是:49.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,正确求得a 的值是关键.16.(3分)若点(24,33)P m m ++在x 轴上,则点P 的坐标为 (2,0) .【分析】根据x 轴上点的坐标的特点0y =,计算出m 的值,从而得出点P 坐标.【解答】解:Q 点(24,33)P m m ++在x 轴上,330m ∴+=,1m ∴=-,242m ∴+=,∴点P 的坐标为(2,0),故答案为(2,0).【点评】本题主要考查了在x 轴上的点的坐标的特点0y =,难度适中.17.(3分)把命题“同旁内角互补”写成“如果⋯,那么⋯.”的形式为 如果两个角是同旁内角.那么这两个角是互补 .【分析】任何一个命题都可以写成“如果⋯那么⋯”的形式,如果是条件,那么是结论.分清题目的条件与结论,即可解答.【解答】解:把命题“同旁内角互补”改写为“如果⋯那么⋯”的形式是:如果两个角是同旁内角.那么这两个角是互补;故答案为:如果两个角是同旁内角.那么这两个角是互补.【点评】本题考查了命题与定理,命题由题设和结论两部分组成,命题可写成“如果⋯那么⋯”的形式,其中如果后面的部分是题设,那么后面的部分是结论,难度适中.18.(3的小数部分是a b,则a b++计算即可.a、b的值,再代入a b【解答】解:23<<,Q,23∴=,2a2b=,+=+a b22.键.19.(3分)已知第二象限内的点A到x轴的距离为6,到y轴的距离为3,则点A的坐标-.(3,6)【分析】根据坐标的表示方法由点A到x轴的距离为6,到y轴的距离为3,且它在第二象限内即可得到点A的坐标为(3,6)-.【解答】解:Q点A到x轴的距离为6,到y轴的距离为3,且它在第二象限内,-.∴点A的坐标为(3,6)故答案为(3,6)-.【点评】本题考查了点的坐标:在直角坐标系中,过一点分别作x轴和y轴的垂线,用垂足在x轴上的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标;在第二象限,横坐标为负数,纵坐标为正数.20.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),⋯,按这样的运动规律,经过第2018次运动后,动点P的坐标是(2018,0).【分析】利用点的坐标变换得到点的横坐标与运动的次数相同,纵坐标为1,0,2,0循环,则利用201845042=⨯+可确定第2018次运动后的纵坐标,问题得解.【解答】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则201850442=⨯+,所以,前504次循环运动点P共向右运动50442016⨯=个单位,剩余两次运动向右走2个单位,且在x轴上.故点P坐标为(2018,0)故答案为:(2018,0).【点评】本题考查了规律型:点的坐标:解答此题的关键是确定运动的点的横、纵坐标的循环变换规律.三、解答题(共60分)21.(10分)如图,ABC∆在直角坐标系中,(1)请写出ABC∆各点的坐标;(2)若把ABC∆向上平移2个单位,再向左平移1个单位得到△A B C''',在图中画出三角形ABC变化后的位置,写出A'、B'、C'的坐标;(3)求出ABC∆的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A'、B'、C'的位置,然后顺次连接即可,再根据平面直角坐标系写出点A'、B'、C'的坐标;(3)利用ABC∆所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【解答】解:(1)(2,2)A --,B (3,1),(0,2)C ;(2)△A B C '''如图所示,(3,0)A '-、(2,3)B ',(1,4)C '-;(3)ABC ∆的面积11154245313222=⨯-⨯⨯-⨯⨯-⨯⨯, 2047.5 1.5=---,2013=-,7=.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 22.(12分)计算:(12(1)(23)32|-+(2)22312()2564|2|2-⨯-- 【分析】(1)先计算算术平方根、去括号、去绝对值符号,再计算加减可得;(2)先计算乘方、算术平方根、立方根、取绝对值符号,再计算乘法和加减可得.【解答】解:(1)原式123231=-;(2)原式145424=-⨯+-÷ 152=-+-2=.【点评】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序和运算法则及绝对值的性质.23.(8分)已知21a b =⎧⎨=⎩是方程组2(1)21a mb na b +-=⎧⎨+=⎩的解,求2018()m n +的平方根. 【分析】将a 与b 代入值代入方程组计算求出m 与n 的值即可.【解答】解:将21a b =⎧⎨=⎩代入方程组2(1)21a mb na b +-=⎧⎨+=⎩, 可得:412211m n +-=⎧⎨+=⎩, 解得:1m =-,0n =,所以2018()1m n +=,所以2018()m n +的平方根是1±.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(8分)阅读下列解答过程,在横线上填入恰当内容.解方程:2(1)4x -=解:2(1)4x -=Q (1)12x ∴-=,(2) 3x ∴=.(3) 上述过程中有没有错误?若有,错在步骤 (2) (填序号)原因是请写出正确的解答过程.【分析】本题考查了解一元二次方程,能选择适当的方程解一元二次方程是解此题的关键.【解答】解:上述过程中有没有错误?若有,错在步骤(2),原因是正数的平方根有两个,它们互为相反数,正确的解答过程为:2(1)4x -=,12x -=±,13x =,21x =-,故答案为:(2),正数的平方根有两个,它们互为相反数.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.25.(10分)已知:如图,在ABC⊥,∆中,BD AC⊥于点D,E为BC上一点,过E点作EF AC 垂足为F,过点D作//DH BC交AB于点H.(1)请你补全图形.(2)求证:BDH CEF∠=∠.【分析】(1)根据题意,完成几何图形;(2)根据垂直的定义和平行线的判定得到//DH BC得∠=∠,再由//BD EF,则CEF CBD到BDH CBD∠=∠.∠=∠,于是有BDH CEF【解答】解:(1)如图,(2)证明:BD AC⊥,⊥Q,EF AC∴,//BD EF∴∠=∠,CEF CBDDH BCQ,//∴∠=∠,BDH CBD∴∠=∠.BDH CEF【点评】本题考查了平行线的判定与性质:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.也考查了垂线.26.(12分)如图,已知//∠=︒.AB CD,//EF MN,1115(1)求2∠的度数;∠和4(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的2倍多6︒,求这两个角的大小.【分析】(1)由平行线的性质可求得2∠,再求得4∠;(2)由(1)的结果可得到这两个角相等或互补;(3)根据(2)的规律可知这两个角互补,利用方程可求得这两个角.【解答】解:(1)//AB CD Q ,21115∴∠=∠=︒,//EF MN Q ,42180∴∠+∠=︒,4180265∴∠=︒-∠=︒;(2)由(1)可知:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故答案为:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补;(3)由(2)可知这两个角互补,设一个角为x ︒,则另一个角为26x ︒+︒,根据两个角互补可得,26180x x ++=,解得58x =,∴这两个角分别为58︒和122︒.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,解题时注意:①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.。
山东省济宁市曲阜市2019-2019学年七年级下学期期末数学试卷一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.9的平方根为( )A.3 B.﹣3 C.±3 D.2.在平面直角坐标系中,点(1,﹣3)在( )A.第一象限B.第二象限C.第三象限D.第四象限3.下列调查方式,你认为最合适的是( )A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民日平均用水量,采用全面调查方式D.了解北京市每天的流动人口数,采用抽样调查方式4.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠ABE C.∠C=∠ABC D.∠A=∠EBD5.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)6.若m>n,则下列不等式中成立的是( )A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n 7.在方程组中,如果是它的一个解,那么a,b的值是( )A.a=4,b=0 B.a=,b=0 C.a=1,b=2 D.a,b不能确定8.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )A.点A B.点B C.点C D.点D9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )A.B.C.D.10.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是( )A.a<﹣1 B.a<1 C.a>﹣1 D.a>1二、填空题(每小题3分,共15分)11.﹣64的立方根是__________.12.若关于x的不等式的整数解共有4个,则m的取值范围是__________.13.如图,AB∥CD,AF交CD于E,∠CEF=140°,那么∠A=__________°.14.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★,这个数★=__________,●=__________.15.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是__________(用含n的代数式表示)三、解答题(共55分)16.(1)计算:|﹣|+﹣.(2)解方程组:.17.解不等式组,并把解集在数轴上表示出来.18.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?19.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直接写出点P 的坐标;若不存在,说明理由.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?22.阅读探索(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为__________.23.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.山东省济宁市曲阜市2019-2019学年七年级下学期期末数学试卷一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.9的平方根为( )A.3 B.﹣3 C.±3 D.考点:平方根.专题:计算题.分析:根据平方根的定义求解即可,注意一个正数的平方根有两个.解答:解:9的平方根有:=±3.故选C.点评:此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.在平面直角坐标系中,点(1,﹣3)在( )A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(1,﹣3)在第四象限.故选D.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.下列调查方式,你认为最合适的是( )A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民日平均用水量,采用全面调查方式D.了解北京市每天的流动人口数,采用抽样调查方式考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式所有灯管都报废,这样就失去了实际意义,故本选项错误;B、旅客上飞机前的安检,是精确度要求高的调查,适于全面调查,故本选项错误.C、了解北京市居民日平均用水量,采用全面调查方式,所费人力、物力和时间较多,适合抽样调查,故本选项错误;D、了解北京市每天的流动人口数采用全面调查方式,所费人力、物力和时间较多,适合抽样调查,故本选项正确.故选:D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠ABE C.∠C=∠ABC D.∠A=∠EBD考点:平行线的判定.分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;故选:B.点评:本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)考点:坐标确定位置.分析:根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.解答:解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.点评:本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.6.若m>n,则下列不等式中成立的是( )A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边加的数不同,错误;B、不等式两边乘的数不同,错误;C、当a=0时,错误;D、不等式两边都乘﹣1,不等号的方向改变,都加a,不等号的方向不变,正确;故选D.点评:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.在方程组中,如果是它的一个解,那么a,b的值是( )A.a=4,b=0 B.a=,b=0 C.a=1,b=2 D.a,b不能确定考点:二元一次方程组的解.分析:将x,y的值代入原方程组,得到关于a,b的方程组,然后求解此方程组得到a,b 的值.解答:解:将x,y的值代入原方程组,得关于a,b的方程组,解此方程组得a=4,b=0.故选A.点评:解此类方程组首先将已知的x,y值代入原方程组得到关于a,b的方程组,求解关于a,b的方程组即可得到a,b的值.8.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )A.点A B.点B C.点C D.点D考点:实数与数轴;估算无理数的大小.分析:先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.解答:解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )A.B.C.D.考点:由实际问题抽象出二元一次方程组.专题:应用题.分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,根据题意得,.故选:D.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是( )A.a<﹣1 B.a<1 C.a>﹣1 D.a>1考点:解二元一次方程组;解一元一次不等式.分析:解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a 的取值范围.解答:解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.点评:本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.二、填空题(每小题3分,共15分)11.﹣64的立方根是﹣4.考点:立方根.分析:根据立方根的定义求解即可.解答:解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选﹣4.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.若关于x的不等式的整数解共有4个,则m的取值范围是6<m≤7.考点:一元一次不等式组的整数解;不等式的性质;解一元一次不等式;解一元一次不等式组.专题:计算题.分析:关键不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得到6≤m<7即可.解答:解:,由①得:x<m,由②得:x≥3,∴不等式组的解集是3≤x<m,∵关于x的不等式的整数解共有4个,∴6<m≤7,故答案为:6<m≤7.点评:本题主要考查对解一元一次不等式,不等式的性质,解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到6<m≤7是解此题的关键.13.如图,AB∥CD,AF交CD于E,∠CEF=140°,那么∠A=40°.考点:平行线的性质.分析:根据邻补角的知识,求出∠CEA的度数,然后根据平行线的性质,得出∠A=∠CEA,即可求解.解答:解:∵∠CEF=140°,∴∠CEA=180°﹣∠CEF=40°,∵AB∥CD,∴∠A=∠CEA=40°(两直线平行,内错角相等).故答案为:40.点评:本题考查了平行线的性质以及邻补角的知识,解答本题的关键是掌握平行线的性质:两直线平行,内错角相等.14.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★,这个数★=﹣2,●=8.考点:二元一次方程组的解.专题:计算题.分析:把x=5代入方程组第二个方程求出y的值,将x与y的值代入第一个方程左边即可得到结果.解答:解:把x=5代入2x﹣y=12中,得:y=﹣2,当x=5,y=﹣2时,2x+y=10﹣2=8,故答案为:﹣2;8.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)考点:算术平方根.专题:规律型.分析:观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n﹣1行的数据的个数,再加上n﹣2得到所求数的被开方数,然后写出算术平方根即可.解答:解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.点评:本题考查了算术平方根,观察数据排列规律,确定出前(n﹣1)行的数据的个数是解题的关键.三、解答题(共55分)16.(1)计算:|﹣|+﹣.(2)解方程组:.考点:实数的运算;解二元一次方程组.分析:(1)本题涉及绝对值、二次根式化简、三次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)先将方程组整理为一般形式,再根据加减消元法解二元一次方程组即可求解.解答:解:(1)|﹣|+﹣=3﹣2﹣=.(2),方程组整理得,①×3﹣②得:4x=12,解得x=3,将x=3代入①得:y=3.故原方程组的解为.点评:本题考查实数的综合运算能力,是各地2019届中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式、绝对值等考点的运算.同时考查了加减消元法解二元一次方程组.17.解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.解答:解:解不等式①得x<3,解不等式②得x≥,∴不等式组的解集为≤x<3.其解集在数轴上表示为:.点评:解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.18.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?考点:条形统计图;扇形统计图;加权平均数.分析:(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)用总里程除以汽车总辆数,即可解答.解答:解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:230)=217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.点评:此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.19.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直接写出点P 的坐标;若不存在,说明理由.考点:作图-平移变换.分析:(1)根据图形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出点A′、B′的坐标;(3)设P(0,y),再根据三角形的面积公式求出y的值即可.解答:解:(1)如图所示:(2)由图可知,A'(0,4),B'(﹣1,1);(3)存在.设P(0,y),则y=1或y=﹣5,故点P的坐标是(0,1)或(0,﹣5).点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.考点:平行线的性质.分析:由AC丄AB,∠1=60°,易求得∠B的度数,又由直线a∥b,根据两直线平行,同位角相等,即可求得∠2的度数.解答:解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°﹣∠1﹣∠BAC=30°,∵a∥b,∴∠2=∠B=30°.点评:此题考查了平行线的性质与垂直的定义.此题难度不大,注意掌握数形结合思想的应用.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:应用题.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.22.阅读探索(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为.考点:解二元一次方程组.专题:阅读型.分析:(1)知识累计观察阅读材料的解题方法,理解换元法;(2)拓展提高设﹣1=x,+2=y,根据(1)中的结论确定出关于x与y方程组,求出解得到x与y的值,即可求出a与b的值;(3)能力运用设,根据已知方程组的解确定出m与n的值即可.解答:解:(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法;(2)拓展提高设﹣1=x,+2=y,方程组变形得:,解得:,即,解得:;(3)能力运用设,可得,解得:,故答案为:点评:此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.23.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.考点:不等式的解集;解二元一次方程组.分析:首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围,然后再化简(2),最后求得m的值.解答:解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得,(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.点评:主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。