高中数学3.3幂函数教案苏教版必修1
- 格式:doc
- 大小:148.83 KB
- 文档页数:4
幂函数教学目标:1.使学生理解幂函数的概念,能够通过图象研究幂函数的性质;2.在作幂函数的图象及研究幂函数的性质过程中,培养学生的观察能力,概括总结的能力;3.通过对幂函数的研究,培养学生分析问题的能力.教学重点:常见幂函数的概念、图象和性质;教学难点:幂函数的单调性及其应用.教学方法:采用师生互动的方式,由学生自我探索、自我分析,合作学习,充分发挥学生的积极性与主动性,教师利用实物投影仪及计算机辅助教学.教学过程:一、问题情境情境:我们以前学过这样的函数:y=x,y=x2,y=x 1,试作出它们的图象,并观察其性质.问题:这些函数有什么共同特征?它们是指数函数吗?1.幂函数的定义:一般的我们把形如y=xα(α∈R)的函数称为幂函数,其中底数x是变量,指数α是常数.2.幂函数y=x α图象的分布与α的关系:对任意的α∈ R,y=xα在第I象限中必有图象;若y=xα为偶函数,则y=xα在第II象限中必有图象;若y=xα为奇函数,则y=xα在第III象限中必有图象;对任意的α∈ R,y=xα的图象都不会出现在第VI象限中.3.幂函数的性质(仅限于在第一象限内的图象):(1)定点:α>0时,图象过(0,0)和(1,1)两个定点;α≤0时,图象过只过定点(1,1).(2)单调性:α>0时,在区间[0,+∞)上是单调递增;α<0时,在区间(0,+∞)上是单调递减.三、数学运用例1 写出下列函数的定义域,并判断它们的奇偶性(1)y=12x;(2)y=2x-;(3)y=22x x-+;(4)y=1122x x-+.例2 比较下列各题中两个值的大小.(1)1.50.5与1.70.5(2)3.14 1与π 1(3)(-1.25)3与(-1.26)3(4)314与221例3 幂函数y=x m;y=x n;y=x 1与y=x在第一象限内图象的排列顺序如图所示,试判断实数m,n与常数-1,0,1的大小关系.练习:(1)下列函数:①y=0.2x;②y=x0.2;③y=x 3;④y=3·x 2.其中是幂函数的有(写出所有幂函数的序号).(2)函数122(2)y x x-=-的定义域是.(3)已知函数21()(1)a af x a x+-=-,当a=时,f(x)为正比例函数;当a=时,f(x)为反比例函数;当a=时,f(x)为二次函数;当a=时,f(x)为幂函数.(4)若a=231()2,b=231()5,c=131()2,则a,b,c三个数按从小到大的顺序排列为.四、要点归纳与方法小结1.幂函数的概念、图象和性质;2.幂值的大小比较方法.五、作业课本P90-2,4,6.。
明目标、知重点 1.通过具体实例了解幂函数的概念.2.会画幂函数y =x ,y =x 2,y =x 3,y =x -1,12y x =的图象,并通过其图象了解幂函数的图象和性质,并能进行初步的应用.1.幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 2.幂函数的图象与性质由幂函数y =x 、12y x =、y =x 2、y =x -1、y =x 3的图象,可归纳出幂函数的如下性质:(1)幂函数在(0,+∞)上都有定义; (2)幂函数的图象都过点(1,1);(3)当α>0时,幂函数图象都过点(0,0)与(1,1),且在(0,+∞)上单调递增; (4)当α<0时,幂函数的图象都不过点(0,0),在(0,+∞)上单调递减.[情境导学]我们知道对于N =a b ,N 随b 的变化而变化,我们建立了指数函数y =a x ;如果a 一定,b 随N 的变化而变化,我们建立了对数函数y =log a x .设想:如果b 一定,N 随a 的变化而变化,是不是也应该可以确定一个函数呢?本节我们就来探讨这个问题. 探究点一 幂函数的概念问题 (1)如果张红购买了每千克1元的蔬菜w 千克,那么她需要支付p =w 元,这里p 是w 的函数;(2)如果正方形的边长为a ,那么正方形的面积S =a 2,这里S 是a 的函数; (3)如果立方体的边长为a ,那么立方体的体积V =a 3,这里V 是a 的函数;(4)如果一个正方形场地的面积为S ,那么这个正方形的边长12a s =,这里a 是S 的函数;(5)如果某人t s 内骑车行进了1 km ,那么他骑车的平均速度v =t -1 km/s ,这里v 是t 的函数.思考1 上述5个问题中函数的对应关系分别是什么?答 (1)乘以1;(2)求平方;(3)求立方;(4)求算术平方根;(5)求-1次方. 思考2 上述5个问题中的函数有什么共同特征?答 问题中涉及到的函数,都是形如:y =x α的函数,其中x 是自变量,α是常数. 小结 幂函数定义:一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 思考3 判断一个函数是不是幂函数的标准是什么?答 幂函数与指数函数、对数函数的定义类似,只有满足函数解析式右边的系数为1,底数为自变量x ,指数为一常数这三个条件,才是幂函数.如:y =3x 2,y =(2x )3,y =⎝⎛⎭⎫x 24都不是幂函数.例1 在函数y =1x 2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为________.答案 1解析 ∵y =1x 2=x -2,所以是幂函数;y =2x 2由于出现系数2,因此不是幂函数;y =x 2+x 是两项和的形式,不是幂函数;y =1=x 0(x ≠0),可以看出,常函数y =1的图象比幂函数y =x 0的图象多了一个点(0,1), 所以常函数y =1不是幂函数.反思与感悟 只有在形式上完全符合幂函数的定义的式子,才是幂函数,否则就不是. 跟踪训练1 已知y =(m 2+2m -2)x21m -+2n -3是定义域为R 的幂函数,求m ,n 的值.解 由题意得⎩⎪⎨⎪⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎪⎨⎪⎧m =-3n =32,所以m =-3,n =32.探究点二 幂函数的图象和性质问题 如图在同一坐标系内作出函数(1)y =x ;(2)y =x 12;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象,思考下列问题:思考1你能从这五个具体的函数图象中,发现什么规律?答(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸;(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数;(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y=x对称;(5)在第一象限,作直线x=a(a>1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.思考2例2证明幂函数f(x)=x在[0,+∞)上是增函数.证明 任取x 1,x 2∈[0,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1-x 2=(x 1-x 2)(x 1+x 2)x 1+x 2=x 1-x 2x 1+x 2,因为x 1-x 2<0,x 1+x 2>0,所以f (x 1)<f (x 2),即幂函数f (x )=x 在[0,+∞)上是增函数.反思与感悟 证明函数的单调性,一般是利用单调性的定义进行证明,证明的关键是通过变形,能够得出各因式的正负,从而能判断出f (x 1)-f (x 2)的正负. 跟踪训练2 求证:函数f (x )=-x 3+1在(-∞,+∞)上是减函数. 证明 设x 1,x 2∈(-∞,+∞)且x 1<x 2,则f (x 1)-f (x 2)=(-x 31+1)-(-x 32+1) =x 32-x 31=(x 2-x 1)(x 21+x 1x 2+x 22).∵x 1<x 2,∴x 2-x 1>0,又∵x 21+x 1x 2+x 22=⎝⎛⎭⎫x 1+x 222+34x 22 且⎝⎛⎭⎫x 1+x 222≥0,34x 22≥0. 上式中两等号不能同时取得(否则x 1=x 2=0与x 1<x 2矛盾),∴x 21+x 1x 2+x 22>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴函数f (x )=-x 3+1在(-∞,+∞)上为减函数. 例3 比较大小:(1) 11221.5,1.7;(2)(-1.2)3,(-1.25)3; (3)5.25-1,5.26-1,5.26-2.解 (1)∵12y x =在[0,+∞)上是增函数,1.5<1.7, ∴11221.5 1.7<;(2)∵y =x 3在R 上是增函数,-1.2>-1.25, ∴(-1.2)3>(-1.25)3;(3)∵y =x -1在(0,+∞)上是减函数,5.25<5.26, ∴5.25-1>5.26-1;∵y =5.26x 是增函数,-1>-2,∴5.26-1>5.26-2. 综上,5.25-1>5.26-1>5.26-2.反思与感悟 比较两个幂的大小要仔细观察它们的异同点,指数相同底数不同时,要利用幂函数的单调性比较,底数相同而指数不同时,要利用指数函数的单调性比较,指数与底数都不同时,要通过增加一个数起桥梁作用时进行比较. 跟踪训练3 比较下列各组数的大小:(1) 778818()9---和;(2)(-2)-3和(-2.5)-3;(3)(1.1)-0.1和(1.2)-0.1;(4) 223535(4.1),(3.8)( 1.9)--和解 (1) 778818()8--=-,函数78y x =在(0,+∞)上为增函数,又18>19,则778811()()89>,从而778818()9--<-. (2)幂函数y =x -3在(-∞,0)和(0,+∞)上为减函数, 又∵-2>-2.5,∴(-2)-3<(-2.5)-3. (3)幂函数y =x -0.1在(0,+∞)上为减函数, 又∵1.1<1.2,∴1.1-0.1>1.2-0.1. (4)2255(4.1)1;<= 2233350(3.8)11;( 1.9)0,--<<=-<∴322535( 1.9)(3.8)(4.1).--<<1.下列函数中不是幂函数的是________.(填序号) ①y =x ;②y =x 3;③y =2x ;④y =x -1.答案 ③解析 根据幂函数的定义:形如y =x α的函数称为幂函数,③中自变量x 的系数是2,不符合幂函数的定义,所以③不是幂函数. 2.已知幂函数f (x )=x α的图象经过点⎝⎛⎭⎫2,22,则f (4)的值等于________. 答案 12解析 由f (x )=x α的图象经过点⎝⎛⎭⎫2,22,得22=2α,所以α=-12,则1121(4)422f --===. 3.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 的所有α的值为________.答案 1,3解析 y =x -1的定义域为x ≠0,12y x =的定义域为x >0,只有y =x ,y =x 3的定义域为R . 4.当α∈{-1,12,1,3}时,幂函数y =x α的图象不可能经过第________象限.答案 二、四解析 幂函数y =x -1,y =x ,y =x 3的图象分布在第一、三象限,12y x =的图象分布在第一象限.所以幂函数y =x α(α∈{-1,12,1,3})的图象不可能经过第二、四象限.[呈重点、现规律]1.幂函数y =x α(α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数,这是判断一个函数是否是幂函数的重要依据和唯一标准.2.比较多个幂值的大小,一般采用媒介法,即先判断这组数中每个幂值与0,1等数的大小关系,据此将它们分成若干组,然后将同一组内的各数再利用相关方法进行比较,最终确定各数之间的大小关系.3.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α>0时,图象过(0,0),(1,1)在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立.(2)曲线在第一象限的凹凸性α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸.一、基础过关1.已知12()f x x =,若0<a <b <1,则下列各式中正确的是________.(填序号)①f (a )<f (b )<f (1a )<f (1b);②f (1a )<f (1b)<f (b )<f (a );③f (a )<f (b )<f (1b )<f (1a);④f (1a )<f (a )<f (1b )<f (b ).答案 ③解析 因为函数12()f x x =在(0,+∞)上是增函数,又0<a <b <1b <1a,故答案为③.2.函数121y x =-的图象关于x 轴对称的图象大致是________.答案 ②解析 12y x =的图象位于第一象限且为增函数,所以函数图象是上升的,函数121y x =-的图象可看作由12y x =的图象向下平移一个单位得到的(如①中的图所示),将121y x =-的图象关于x 轴对称后即为②.3.下列是23y x =的图象的是________.答案 ② 解析 2323y x x ==∴x ∈R ,y ≥0, f (-x )=3(-x )2=3x 2=f (x ),即23y x =是偶函数,又∵23<1,∴图象上凸.4.设232555322(),(),()555a b c ===,则a ,b ,c 的大小关系是________.答案 a >c >b解析 根据幂函数与指数函数的单调性直接可以判断出来,25y x =在x >0时是增函数,所以a >c ,y =(25)x 在x >0时是减函数,所以c >b .5.已知幂函数f (x )=(n 2+2n -2)xn 2-3n (n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为________. 答案 1解析 由于f (x )为幂函数,所以n 2+2n -2=1, 解得n =1或n =-3,经检验只有n =1适合题意. 6.给出以下结论:①当α=0时,函数y =x α的图象是一条直线; ②幂函数的图象都经过(0,0),(1,1)两点;③若幂函数y =x α的图象关于原点对称,则y =x α在定义域内y 随x 的增大而增大; ④幂函数的图象不可能在第四象限,但可能在第二象限. 则正确结论的序号为________. 答案 ④解析 当α=0时,函数y =x α的定义域为{x |x ≠0,x ∈R },故①不正确;当α<0时,函数y =x α的图象不过(0,0)点,故②不正确;幂函数y =x -1的图象关于原点对称,但其在定义域内不是增函数,故③不正确. ④正确.7.已知幂函数y =x m -2(m ∈N )的图象与x ,y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的图象.解 ∵图象与x ,y 轴都无交点, ∴m -2≤0,即m ≤2. 又m ∈N ,∴m =0,1,2.∵幂函数图象关于y 轴对称,∴m =0,或m =2.当m =0时,函数为y =x -2,图象如图1;当m =2时,函数为y =x 0=1(x ≠0),图象如图2.二、能力提升8.函数53y x 的图象大致是________.答案 ②解析函数53y x ==是定义域为R 的奇函数,且此函数在定义域上是增函数,其图象关于原点对称,排除①③.另外,因为25552333331111(),1,22222222y y y ==⨯<====⨯>,所以当x ∈(0,1)时,函数53y x =的图象在直线y =x 的下方;当x ∈(1,+∞)时,函数53y x =的图象在直线y =x 的上方.故答案为②.9.幂函数f (x )=x 3m -5(m ∈N )在(0,+∞)上是减函数,且f (-x )=f (x ),则m =________.答案 1解析 因为f (x )=x 3m -5(m ∈N )在(0,+∞)上是减函数,所以3m -5<0,故m <53.又因为m ∈N ,所以m =0或m =1,当m =0时,f (x )=x -5,f (-x )≠f (x ),不符合题意; 当m =1时,f (x )=x -2,f (-x )=f (x ),符合题意. 综上知,m =1. 10.若1122(1)(32)a a --+<-,则a 的取值范围是________.答案 ⎝⎛⎭⎫23,32 解析 1122(1)(32)a a --+<- ⇔112211()()132a a<+-,函数12y x =在[0,+∞)上是增函数, 所以⎩⎪⎨⎪⎧a +1>0,3-2a >0,a +1>3-2a ,解得23<a <32.11.已知函数f (x )=1x2+1.(1)判断函数f (x )在区间(0,+∞)上的单调性并证明; (2)求f (x )在区间[1,3]上的最大值和最小值. 解 (1)函数f (x )在区间(0,+∞)上是减函数.证明如下:设x 1,x 2是区间(0,+∞)上任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=(1x 21+1)-(1x 22+1)=(x 1+x 2)(x 2-x 1)(x 1x 2)2,∵x 2>x 1>0,∴x 1+x 2>0,x 2-x 1>0,(x 1x 2)2>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x )在区间(0,+∞)上减函数. (2)由(1)知函数f (x )在区间[1,3]上是减函数, 所以当x =1时,取最大值,最大值为f (1)=2,当x =3时,取最小值,最小值为f (3)=109.12.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解 (1)m 2+m =m (m +1),m ∈N *, 而m 与m +1中必有一个为偶数, ∴m (m +1)为偶数.∴函数f (x )=x (m 2+m )-1(m ∈N *)的定义域为[0,+∞),并且在定义域上为增函数. (2)∵函数f (x )经过点(2,2), ∴2=2(m2+m )-1,即121222()m m -=+.∴m 2+m =2. 解得m =1或m =-2. 又∵m ∈N *,∴m =1.由f (2-a )>f (a -1)得⎩⎪⎨⎪⎧2-a ≥0,a -1≥02-a >a -1.解得1≤a <32.∴a 的取值范围为[1,32).三、探究与拓展13.已知幂函数f (x )=x m -3(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足33(1)(32)m m a a --+<-的a 的取值范围.解 ∵函数在(0,+∞)上递减,∴m -3<0,解得m <3.∵m ∈N *,∴m =1,2.又函数的图象关于y 轴对称,∴m -3是偶数,而2-3=-1为奇数,1-3=-2为偶数,∴m =1. 而13()f x x-=在(-∞,0),(0,+∞)上均为减函数, ∴1313(1)(32)a a --+<-等价于a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a .解得a <-1或23<a <32. 故a 的取值范围为{a |a <-1或23<a <32}.。
幂函数一、教学目标1、了解简单幂函数的概念,巩固画函数图像的方法,培养学生识图和画图的能力。
2、会利用定义证明简单函数的奇偶性,提高学生的逻辑思维能力。
3、了解利用奇偶性画函数图像和研究函数的方法,培养学生分析问题和解决问题的能力。
二、重难点重点是奇函数和偶函数的概念及函数奇偶性的判定。
难点是幂函数的概念及判断函数的奇偶性。
(一)新课引入:在初中我们已学过正比例函数、反比例函数、一次函数、二次函数,这一节课我们将再学习一种新的函数——幂函数,引出课题。
(二)新课讲授:1、先看下面几个具体问题:(1)如果张红购买了每千克1元的蔬菜x 千克,那么她需要支付y=x 元,这里y 是x 的函数。
(2)如果正方形的边长为a ,那么正方形的面积S=a 2,这里S 是a 的函数。
(3)如果一个正方形场地的面积为S ,那么这个正方形的边长21S a ,这里a 是S 的函数。
(4)如果某人t 秒内骑车行进了1km ,那么他骑车的平均速度V= t-1km/S ,这里V 是t 的函数。
请同学们思考:这些函数有什么共同的特征?(主要观察函数中的常数和变量的位置,右边解析式的形式)结果:他们有以下共同特点(1)指数为常数;(2)均是以自变量为底的幂;(3)幂的系数为1,由此可得:一般地,函数y=x a 叫做幂函数,其中x 是自变量,a 是常数。
注:幂函数中a 的值可以为任意实数例1:判断下列函数是否为幂函数(1)y= x 4;(2)y=21x ; (3)y=-x 2; (4)y=21x ; (5)y=2x 2; (6)y=x 3+2;2、观察下图,思考并讨论以下问题:(1)这两个函数图象有什么共同特征吗?(2)函数中自变量取相反的两个数时对应的两个函数值之间有何关系?f(x)=x 2 f(x)=|x|f(-3)=9=f(3) f(-3)=3=f(3)f(-2)=4=f(2) f(-2)=2=f(2)f(-1)=1=f(1) f(-1)=1=-f(1)结论:一般地,图象关于y 轴对称的函数叫做偶函数,在偶函数中f(-x)=f(x)。
3.3 幂函数教学目标:1.使学生理解幂函数的概念,能够通过图象研究幂函数的性质;2.在作幂函数的图象及研究幂函数的性质过程中,培养学生的观察能力,概括总结的能力;3.通过对幂函数的研究,培养学生分析问题的能力.教学重点:常见幂函数的概念、图象和性质;教学难点:幂函数的单调性及其应用.教学方法:采用师生互动的方式,由学生自我探索、自我分析,合作学习,充分发挥学生的积极性与主动性,教师利用实物投影仪及计算机辅助教学.教学过程:一、问题情境情境:我们以前学过这样的函数:y =x,y=x2,y=x1,试作出它们的图象,并观察其性质.问题:这些函数有什么共同特征?它们是指数函数吗?二、数学建构1.幂函数的定义:一般的我们把形如y=xα(α∈R)的函数称为幂函数,其中底数x是变量,指数α是常数.2.幂函数y=x α图象的分布与α的关系:对任意的α∈ R,y=xα在第I象限中必有图象;若y=xα为偶函数,则y=xα在第II象限中必有图象;若y=xα为奇函数,则y=xα在第III象限中必有图象;对任意的α∈ R,y=xα的图象都不会出现在第VI象限中.3.幂函数的性质(仅限于在第一象限内的图象):(1)定点:α>0时,图象过(0,0)和(1,1)两个定点;α≤0时,图象过只过定点(1,1).(2)单调性:α>0时,在区间[0,+∞)上是单调递增;α<0时,在区间(0,+∞)上是单调递减.三、数学运用例1 写出下列函数的定义域,并判断它们的奇偶性(1)y=12x;(2)y=2x-;(3)y=22x x-+;(4)y=1122x x-+.例2 比较下列各题中两个值的大小.(1)1.50.5与1.70.5(2)3.141与π1(3)(-1.25)3与(-1.26)3(4)314与221例3 幂函数y=x m;y=x n;y=x1与y=x在第一象限内图象的排列顺序如图所示,试判断实数m,n与常数-1,0,1的大小关系.练习:(1)下列函数:①y=0.2x;②y=x0.2;③y=x3;④y=3·x2.其中是幂函数的有(写出所有幂函数的序号).(2)函数122(2)y x x-=-的定义域是.(3)已知函数21()(1)a af x a x+-=-,当a=时,f(x)为正比例函数;当a=时,f(x)为反比例函数;当a=时,f(x)为二次函数;当a=时,f(x)为幂函数.(4)若a=231()2,b=231()5,c=131()2,则a,b,c三个数按从小到大的顺序排列为.四、要点归纳与方法小结1.幂函数的概念、图象和性质;2.幂值的大小比较方法.五、作业课本P90-2,4,6.x 1。
★教学设计★幂函数(一)教材分析本节课选自新课程苏教版必修1第二章第4节,幂函数是继指数函数和对数函数后研究的又一基本函数。
通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待231,,y x y x y x y x====,等以前已经接触的函数,进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合检测。
(二)学情分析学生通过对指数函数和对数函数的学习,已经初步掌握了如何去研究一类函数的方法,即由几个特殊的函数的图象,归纳出此类函数的一般的性质这一方法,为学习本节课打下了基础。
(三)设计思想由于幂函数的性质随幂指数的轻微改变会出现较大的变化,因此要学生在一节课中象指数函数和对数函数那样完全掌握这类函数的性质是比较困难的,因此本人采用了从特殊到一般、再从一般到特殊的方法安排教学:先重点研究了几个常见的幂函数的图象和性质,然后通过几何画板软件动态演示幂函数的图象(在第一象限)随幂指数连续变化情况,让学生归纳幂函数性质随幂指数改变的变化情况(其他象限内的情况,可结合奇偶性得到),最后再通过改变画板中的幂函数的幂指数(用参数的方法),让学生预测将要出现什么样的图象,让学生检测自己探索成果的有效性,体验成功,享受学习的乐趣。
(四)教学目标 1.知识目标(1)了解幂函数的概念;(2)会画简单幂函数的图象,并能根据图象得出这些函数的性质; (3)了解幂函数随幂指数改变的性质变化情况。
2.能力目标在探究幂函数性质的活动中,培养学生观察和归纳能力,培养学生数形结合的意识和思想。
3. 情感目标通过师生、生生彼此之间的讨论、互动,培养学生合作、交流、探究的意识品质,同时让学生在探索、解决问题过程中,获得学习的成就感。
(五)教学重点常见的幂函数的图象和性质 (六)教学难点幂函数的图象和性质的总结 (七)教学用具多媒体平台,几何画板课件(八)教学过程 【创设情境】(多媒体投影)问题1.某人买每千克1元的蔬菜,则其需付的钱数p (元)和购买的蔬菜的量(千克)w 之间的有何关系?2.正方形的面积S 和它的边长a 之间有何关系?3.正方体的边长V 和它的边长a 之间有何关系?4.问题2中,边长a 是S 的函数吗?5.问题3中,边长a 是V 的函数吗?6.某人在t 秒内行进了1千米,那么他的行进的平均速度v 为多少? 学生很容易回答出这六个关系式(都是函数关系式)分别是:1123132,,,,,p w S a V a a S a Vv t -======【提出问题 启发建构】问:这六个函数关系式从结构上看有什么共同的特点吗?这时,学生观察可能有些困难,老师提示,可以用x 表示自变量,用y 表示函数值,上述函数式变成:1123132,,,,,y x y x y x y x y xy x -======,便于看出特征它们都是形如y x α=的函数。
2019-2020年高中数学幂函数教案(1)苏教版必修1教学目标1.了解幂函数的概念,会画出幂函数2132,1,,,x y x y x y x y x y =====的图象,根据上述幂函数的图象,了解幂函数的变化情况和性质。
2.了解几个常见幂函数的性质。
教学重点常见幂函数的概念和性质。
教学难点幂函数的单调性与幂函数的指数关系。
一. 问题情境1.每斤1元的蔬菜w 斤,那么所需付的钱数p 和购买蔬菜量w 的关系如何?2.如果正方形的边长为,那么正方形的面积与边长的关系是?3.如果正方体的边长为,那么正方体的体积与边长的关系是?4.如果正方形场地的面积为,那么正方形的边长为?例1写出下列函数的定义域,并分别指出它们的奇偶性。
(1) (2) (3)思考: ,,的单调性如何?例2根据下列条件对于幂函数的有关性质的叙述,分别指出幂函数的图象具有下列特点之一时的的值,其中}3,2,1,21,31,2,11,2{---∈α (1)图象过原点,且随的增大而上升;(2)图象不过原点,不与坐标轴相交,且随的增大而下降;(3)图象关于轴对称,且与坐标轴相交;(4)图象关于轴对称,但不与坐标轴相交;(5)图象关于原点对称,且过原点;(6)图象关于原点对称,但不过原点。
四.课堂练习1.下列函数是幂函数的是( )A. B. C. D.2.函数的图象大致是( )A. B. C. D.3.写出下列函数的定义域,并分别指出它们的奇偶性。
(1) (2) (3)五.课后小结2019-2020年高中数学幂函数教案(I)苏教版必修1教学目标:能较为熟练的运用幂函数的图象和性质解决有关比较大小问题和求变量范围的问题。
教学重点,教学难点:幂函数的概念的进一步理解以及用幂函数的性质比较两个或多个幂指数相同的幂函数的大小。
一. 复习回顾1. 下列函数中,不是幂函数的是( )A. B. C. D.2. 函数的图象是( )A. B. C. D.例1比较下列各组书的大小:(1),,1 (2),,反思:例2已知幂函数的图象与轴、轴都无交点,且关于原点对称,求的值。
3.3幂函数学习目标 1.了解幂函数的概念,会求幂函数的解析式(难点);2.结合幂函数y=x,y=x2,y=x3,y=1x,y=的图象,掌握它们的性质(重点);3.能利用幂函数的单调性比较指数幂的大小(重点).预习教材P88-89,完成下面问题:知识点一幂函数的概念一般地,我们把形如y=xα的函数叫做幂函数,其中x是自变量,α是常数.【预习评价】1.下列函数是幂函数的为________(填序号).①y=ax m(a,m为非零常数,且a≠1);②y=x-1+x2;③y=x n(n∈Z);④y=(x-2)3.答案③2.若函数f(x)=(a2-3a-3)x2是幂函数,则a的值为________.解析根据幂函数定义,有a2-3a-3=1,a2-3a-4=0,所以a=4或a=-1.答案4或-1知识点二幂函数的图象与性质幂函数y=x y=x2y=x3y=y=x-1图象定义域R R R[0,+∞)(-∞,0)∪(0,+∞)续表 值域 R [0,+∞)R [0,+∞) {y |y ∈R ,且 y ≠0} 奇偶性奇偶 奇非奇非偶奇单调性增x ∈[0,+∞)增, x ∈(-∞, 0]减增 增x ∈(0,+∞)减, x ∈(-∞,0)减定点 (1,1)【预习评价】1.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 的所有α的值为________.解析 y =x -1的定义域为{x |x ≠0},y =的定义域为{x |x >0},只有y =x ,y =x 3的定义域为R . 答案 1,32.当α∈{-1,12,1,3}时,幂函数y =x α的图象不可能经过第________象限. 解析 幂函数y =x -1,y =x ,y =x 3的图象分布在第一、三象限,y =x 12的图象分布在第一象限,所以幂函数y =x α(α∈{-1,12,1,3})的图象不可能经过第二、四象限. 答案 二、四题型一 幂函数的概念【例1】 (1)已知(2,2)在幂函数f (x )的图象上,求f (2)的值; (2)已知函数f (x )=(a 2-3a +3)x a2-5a +5(a 为常数)为幂函数,且在(0,+∞)上单调递减,求实数a的值.解(1)设f(x)=xα,∵(2,2)在f(x)的图象上,∴f(2)=(2)α=2,∴α=2.故f(x)=x2,f(2)=22=4.(2)∵f(x)为幂函数,∴a2-3a+3=1,得a=1或a=2.当a=1时,f(x)=x,在(0,+∞)上单调递增,不合题意.当a=2时,f(x)=x-1,在(0,+∞)上单调递减,符合题意.综上,得a的值为2.规律方法(1)幂函数的特点:系数为1,底数为自变量,指数为常数.(2)当α>0时,幂函数在第一象限内单调递增;当α<0时,幂函数在第一象限内单调递减.【训练1】已知函数f(x)=(m2-m-1)x-5m-3,m为何值时,f(x)是:①幂函数;②正比例函数;③反比例函数;④二次函数?解①∵f(x)是幂函数,故m2-m-1=1,即m2-m-2=0,解得m=2或m=-1.②若f(x)是正比例函数,则-5m-3=1,解得m=-4 5,此时m2-m-1≠0,故m=-4 5.③若f(x)是反比例函数,则-5m-3=-1,解得m=-25,此时m2-m-1≠0,故m=-25.④若f(x)是二次函数,则-5m-3=2,得m=-1.此时m2-m-1≠0,故m=-1.题型二幂函数的图象及应用【例2】讨论函数f(x)=的定义域、值域、奇偶性,作出它的图象,并根据图象求出函数的单调区间.解∵y==13x2,∴定义域为(-∞,0)∪(0,+∞),值域为(0,+∞).令f(x)=13x2,∴f(-x)=13(-x)2=13x2=f(x).∴y=是偶函数.其图象如图所示.由图可知,函数在(-∞,0)上是增函数,在(0,+∞)上是减函数.规律方法幂函数y=xα的图象和性质由于α的值不同而比较复杂,一般从两个方面考查:(1)α的正负:α>0时,图象过(0,0)和(1,1),在第一象限图象上升是增函数;α<0时,图象过(1,1),不过(0,0),在第一象限图象下降是减函数,反之也成立.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸,0<α<1时,曲线上凸;α<0时,曲线下凸.【训练2】若点(2,2)在幂函数f(x)的图象上,点(-2,14)在幂函数g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).解设f(x)=xα,因为点(2,2)在幂函数f(x)的图象上,所以,将点(2,2)代入f(x)=xα中,得2=(2)α,解得α=2,则f(x)=x2.同理可求得g(x)=x-2.在同一坐标系里作出函数f(x)=x2和g(x)=x-2的图象(如图所示),观察图象可得:(1)当x>1或x<-1时,f(x)>g(x);(2)当x=1或x=-1时,f(x)=g(x);(3)当-1<x<1且x≠0时,f(x)<g(x).互动探究题型三幂函数性质的综合应用【探究1】函数y=在[-1,1]上是________(填“增函数”或“减函数”)且是________(填“奇函数”或“偶函数”).解析由幂函数的性质知当α>0时,y=xα在第一象限内是增函数,∴y=在x∈[0,1]上是增函数.设f(x)=,x∈[-1,1],则f(-x)=(-x)59=-x59=-f(x),∴f(x)=是奇函数.∵奇函数的图象关于原点对称,∴x∈[-1,0]时,y=也是增函数.当x=0时,y=0,故y=在[-1,1]上是增函数且是奇函数.答案增函数奇函数【探究2】比较下列各组数的大小.(1);(2);(2)(34)-2和3-4;(4)(-13)-3和.解(1)函数y=在(0,+∞)上为减函数,又3<3.1,所以.(2)函数y=在(0,+∞)上为增函数,又18>19,所以(3)3-4=(32)-2=9-2,函数y=x-2在(0,+∞)上为减函数,又34<9,所以(34)-2>9-2,即(34)-2>3-4.(4)因为(-13)-3<0,>0,所以(-13)-3<.【探究3】若,则a的取值范围是________.解析函数f(x)=在区间(0,+∞)内是减函数,所以等价于⎩⎪⎨⎪⎧a+1>0,3-2a>0,a+1>3-2a,解得23<a<32.所以a的取值范围是(23,32).答案(23,32)【探究4】已知函数f(x)=x-1,若f(a+1)<f(10-2a),则a的取值范围是________.解析 函数f (x )=x -1的大致图象如图,由题意可知应分三种情况讨论: ①当a +1<0,10-2a >0时,f (a +1)<0<f (10-2a ),此时解得a <-1.②当a +1>0,10-2a >0时,得a +1>10-2a , 故⎩⎪⎨⎪⎧a +1>10-2a ,10-2a >0, ∴3<a <5.③当a +1<0,10-2a <0时,得a +1>10-2a ,故⎩⎪⎨⎪⎧a +1>10-2a ,a +1<0,无解.综上可知,a 的取值范围是(-∞,-1)∪(3,5). 答案 (-∞,-1)∪(3,5)规律方法 比较幂式的大小时,首先判断所比较的两个幂式的底数和指数是否相同.若指数相同,底数不同,则考查幂函数;若底数相同,指数不同,则考查指数函数;若底数和指数均不同,要引进中间量,综合考查指数函数和幂函数.课堂达标1.已知函数f (x )=(m 2+m +1)x m2-2m -1是幂函数,则实数m =________. 解析 由函数f (x )=(m 2+m +1) x m 2-2m -1是幂函数可得m 2+m +1=1,解得m =0或m =-1. 答案 0或-12.已知幂函数f (x )=x m 的图象经过点(3,13),则f (6)=________. 解析 依题意13=(3)m =,所以m2=-1,m =-2,所以f (x )=x -2,所以f (6)=6-2=136.答案1 363.若y=x a2-4a-9是偶函数,且在(0,+∞)内是减函数,则整数a的值是________.解析由题意得,a2-4a-9应为负偶数,即a2-4a-9=(a-2)2-13=-2k(k∈N*),(a-2)2=13-2k,当k=2时,a=5或-1;当k=6时,a=3或1.答案1,3,5,-14.设α∈{-2,-1,12,1,2,3},则使y=xα为奇函数且在(0,+∞)上单调递减的α的值为________.解析要使y=xα为奇函数,需α=-1,1,3,又在(0,+∞)上单调递减,所以α=-1.答案-15.函数f(x)=(m2-m-1)x m2+m-3是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.解根据幂函数定义得,m2-m-1=1,解得m=2或m=-1,当m=2时,f(x)=x3在(0,+∞)上是增函数,当m=-1时,f(x)=x-3在(0,+∞)上是减函数,不合题意.∴f(x)的解析式为f(x)=x3.课堂小结1.幂函数y=xα的底数是自变量,指数是常数,而指数函数正好相反,底数是常数,指数是自变量.2.幂函数在第一象限内指数变化规律在第一象限内直线x=1的右侧,图象从上到下,相应的指数由大变小;在直线x=1的左侧,图象从下到上,相应的指数由大变小.3.简单幂函数的性质(1)所有幂函数在(0,+∞)上都有定义,并且当自变量为1时,函数值为1,即f(1)=1.(2)如果α>0,幂函数在[0,+∞)上有意义,且是增函数.(3)如果α<0,幂函数在x=0处无意义,在(0,+∞)上是减函数.。
幂函数
教学目标:
1、了解幂函数的概念,会画出幂函数,的图像,根据上述幂函数-的图像,了解
幂函数的变化情况和性质。
2、了解几个常见的幂函数的性质,会用它们的单调性比拟两个底数不同而指数
相同的指数式值得大小。
3、进一步体会数形结合的思想。
教学过程:
一、知识回忆:
问题1.请在同一个坐标系下作出以下幂函数图像:,
问题2结合图像比拟上述函数的性质。
二、诊断练习
1比拟以下各数的大小:
1 ;
2 ;
3 ;
2假设幂函数的图象经过点,那么=
3幂函数的图象不经过原点,那么实数=
三、例题讲解:
例1:假设,且求实数的取值范围。
变式:函数在时随增大而增大,求实数的取值范围。
例2:一个幂函数的图象过点,另一个幂函数的图象过点。
(1)求这两个幂函数的解析式;
(2)判断这两个函数的奇偶性;
(3)作出这两个函数的图象,直接写出的解集。
四、当堂反应
1.幂函数过点,那么
2.假设点在函数的图像上,那么的值为
3设,幂函数在的上方,那么的取值范围是
五、课堂小结:。
3.3 幂函数幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y =x ,y =x 2,y =x 3,y =x -1,y =x 的图象; 2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质; 3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力. 数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。
重点:常见幂函数的概念、图象和性质; 难点:幂函数的单调性及比较两个幂值的大小.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、 情景导入学生阅读课本89页五个实例,求解析式?观察五个解析式有什么共同特征?问题1:如果张红购买了每千克1元的蔬菜w 千克,那么她需要付的钱数p =w 元,这里p 是w 的函数.问题2:如果正方形的边长为a ,那么正方形的面积S =a 2,这里S 是a 的函数. 问题3:如果正方体的边长为a ,那么正方体的体积V =a 3,这里V 是a 的函数. 问题4:如果正方形场地的面积为S ,那么正方形的边长a =S ,这里a 是S 的函数.2121问题5:如果某人t s内骑车行进了1 km,那么他骑车的平均速度v=t-1 km/s,这里v是t的函数. 要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本89-90页,思考并完成以下问题1. 幂函数是如何定义的?2. 幂函数的解析式具有什么特点?3. 常见幂函数的图象是什么?它具有哪些性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
幂函数一.三维目标: 1.知识技能(1)理解幂函数的概念;(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用. 2.过程与方法类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.3.情感、态度、价值观(1)进一步渗透数形结合与类比的思想方法; (2)体会幂函数的变化规律及蕴含其中的对称性. 二.重点、难点重点:从五个具体的幂函数中认识的概念和性质 难点:从幂函数的图象中概括其性质 5.学法与教具(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质 ; (2)教学用具:多媒体 三.教学过程: 引入新知阅读教材P 90的具体实例(1)~(5),思考下列问题. (1)它们的对应法则分别是什么?(2)以上问题中的函数有什么共同特征?让学生独立思考后交流,引导学生概括出结论 答:1、(1)乘以1 (2)求平方 (3)求立方(4)求算术平方根 (5)求-1次方2、上述的问题涉及到的函数,都是形如:y x α=,其中x 是自变量,α是常数.探究新知1.幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数. 如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.2.研究函数的图像(1)y x = (2)12y x = (3)2y x = (4)1y x -= (5)3y x =一.提问:如何画出以上五个函数图像引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像.3.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x=); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).特别地,当x >1,x >1时,x ∈(0,1),2y x =的图象都在y x =图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)当∠α<1时,x ∈(0,1),2y x =的图象都在y x =的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一家限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴. 例题:1.证明幂函数()[0,]f x =+∞上是增函数证:任取121,[0,),x x x ∈+∞且<2x 则12()()f x f x -=因12x x -<0所以12()()f x f x <,即()[0,]f x =+∞上是增函数.思考:我们知道,若12()()0,1()f x y f x f x =><若得12()()f x f x <,你能否用这种作比的方法来证明()[0,]f x =+∞上是增函数,利用这种方法需要注意些什么?2.利用函数的性质 ,判断下列两个值的大小 (1)11662,3 (2)3322(1),(0)x xx +> (3)22244(4),4a --+分析:利用幂函数的单调性来比较大小.5.课堂练习画出23y x =的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性. 6.归纳小结:提问方式(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的? (2)你能根据函数图象说出有关幂函数的性质吗?。
2.4 幂函数整体设计教材分析幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数,幂函数模型在生活中是比较常见的,和许多生活实例都有密切的联系,幂函数的解析式虽然简单,但是幂函数的性质却是非常复杂的.因此,在研究幂函数的概念和性质时,可以组织学生通过生活实例了解幂函数的概念,并通过计算机画出它们的图象,观察总结幂函数图象的变化情况和性质,尤其是幂指数a的不同取值对幂函数单调性的影响.通过几个常见的幂函数图象加深学生对幂函数概念的理解.对于幂函数和指数函数这两类函数的解析式学生容易混淆,因此在引出幂函数的概念后要组织学生结合具体的例子比较分析它们的异同,并组织学生讨论:在我们学过的函数里面,哪些函数是幂函数?通过对幂函数的学习,能让学生熟练利用幂函数的性质比较两个或是多个不同指数式的大小问题和求变量范围的问题,同时,借助于几个例子加深对幂函数概念的理解也是本节研究的一个重要方面.三维目标1.通过具体实例引入幂函数的概念,会画几个常见的幂函数图象,并结合这几个幂函数的图象,了解幂函数图象的变化情况和性质.2.通过观察、总结幂函数的性质,培养学生概括抽象能力和识图能力.通过利用幂函数图象解决有关问题,使学生加深对函数概念的理解,在这一过程中培养学生综合运用知识分析问题、解决问题的能力.3.在教学过程中,通过学生相互交流,来加深对幂函数概念和性质的理解,增强学生数学交流能力,同时培养学生倾听并接受别人意见的优良品质.重点难点教学重点:幂函数概念以及常见幂函数的图象和性质.教学难点:①幂指数的变化对函数图象的影响.②数形结合解决大小比较以及求含参数的问题.课时安排2课时教学过程第一课时幂函数(一)导入新课问题1:小明买一元钱一支的笔ω支,那么他需要付的钱数p(元)和他买的笔的数量之间的关系如何?问题2:小车从静止开始做加速度为2 m/s2的匀加速直线运动,试写出其位移s和时间t的关系.问题3:如果正方体的边长为a,那么正方体的体积V与边长a的关系如何?问题4:如果正方形的面积为S,则正方形的边长a和面积S的关系如何?问题5:如果小华t s内骑自行车行进了1 km,那么他骑车的平均速度是多少?分析:对于问题1,它们的关系为p=ω,根据函数的定义可知,这里的p是ω的函数;对于问题2,因为初速度为零,根据位移和时间的关系以及加速度的关系,可以得到以下关系:s=t 2,这里s 是时间t 的函数;对于问题3中的正方体的体积V 与边长a 的关系很简单,即V=a 3,这里V 是a 的函数;对于问题4,由正方形的面积S 和边长a 的关系可以得到S=a 2,所以正方形的边长a 和面积S 的关系为a=S 21,这里边长a 是面积S 的函数;问题5中的平均速度为v=t -1 km/s ,这里的平均速度v 是时间t 的函数. 合作探究:以上是我们生活中经常遇到的几个函数模型,你能发现上述几个函数解析式的共同点吗?分析:由上述的p=ω;s=t 2;V=a 3;a=S 21;v=t -1这几个函数模型,我们可以发现,解析式的右边都是指数式,而且底数都是自变量.如果设自变量为x ,因变量为y ,则以上的解析式就有以下具体的函数式:y=x ;y=x 2;y=x 3;y=x 21;y=x -1.这几个函数式满足y=x α这种形式,我们把此类函数叫幂函数,这就是今天我们将要所学的又一类重要的基本初等函数模型.推进新课 新知探究1.一般地,我们把形如y=x α的函数称为幂函数,其中x 是自变量,a 是常数. 思考:幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念,明确二者的区别,得出如下结论) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式来看有如下区别:对幂函数来说,底数是自变量,指数是常数;对指数函数来说,指数是自变量,底数是常数.2.请同学们在同一个坐标系内画出y=x ;y=x 2;y=x 3;y=x 21;y=x -1的函数图象(提示学生画图要列表、描点、连线),条件好的学校可以利用计算机几何画板画出上述的几个函数图象.注:y=x ,y=x 2这两个函数图象以前学过,学生很容易就可以画出,可以不用列表描点了,关键是y=x 3;y=x 21;y=x -1这三个函数图象该如何绘制呢?老师可以边巡视边提示. 教师用多媒体显示如下图表,请学生完成下列表格的内容:y=x y=x 2y=x 3y=x 21y=x -1定义域 值域 奇偶性 单调性 定点 图象范围合作探究:根据上表的内容并结合图象,试总结y=x ;y=x 2;y=x 3;y=x 21;y=x -1的共同性质(学生交流,老师结合学生的回答组织学生总结出如下性质).1.图象均过(1,1)点,特别的,y=x ;y=x 2;y=x 3;y=x 21的图象过原点和(1,1)点,而y=x -1的图象过定点(1,1)点.2.在第一象限,y=x ;y=x 2;y=x 3;y=x 21是单调递增的,其中y=x 2,y=x 3在(1,1)点的右侧是高于y=x 的图象的,y=x 21在(1,1)点的右侧是低于y=x 的图象的,而y=x -1是单调递减的.3.y=x ;y=x 3;y=x -1是奇函数,y=x 2是偶函数,y=x 21为非奇非偶函数.注:y=x -1在区间(-∞,0)和(0,+∞)是减函数,能否说y=x -1在定义域内是减函数呢?答案是否定的,原因如下:如果说y=x -1在定义域内是减函数,根据函数单调性的定义,对于定义域(-∞,0)∩(0,+∞)内任意的值,当x 1,x 2∈(-∞,0)∪(0,+∞)且x 1<x 2有y 1>y 2,但是在-2<1时,却有(-2)-1<(1)-1不能满足减函数的定义.注意:当函数f(x)的定义域不连续时,如果它在两个区间上都单调递增或单调递减,不能说函数在定义域上单调递增或单调递减,需分区间分别叙述函数f(x)在各个区间上的单调性.应用示例例1 求下列幂函数的定义域,并指出其奇偶性、单调性. (1)y=x 23;(2)y=x 32;(3)y=x23 ;(4)y=x -2.问题1:观察以上函数的解析式,你能发现解析式中对于自变量x 都有哪些限制条件吗? (学生进行交流,并得出如下结论)结论:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数的解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据“分式的分母不能为0”这一限制条件来求出对应函数的定义域.问题2:如何来判断函数的奇偶性呢? (学生进行交流,并得出如下结论)结论:首先要看函数的定义域是否关于数0对称,然后根据定义域内的任意自变量x 是否有f(-x)=f(x),或f(-x)=-f(x)来进行判断.下面请同学们根据我们的分析给出完整的解答过程,老师进行课堂评价.解:(1)函数y=x 23即y=3x ,其定义域为[0,+∞),所以它既不是奇函数也不是偶函数,在(0,+∞)上单调递增.(2)函数y=x 32即y=32x ,其定义域为R ,是偶函数,它在区间(0,+∞)上单调递增,在区间(-∞,0)上单调递减. (3)函数y=x23-即y=31x ,由x 3>0得其定义域为(0,+∞),所以它既不是奇函数也不是偶函数,在(0,+∞)上单调递减. (4)函数y=x -2即y=21x,由x 2≠0得其定义域为(-∞,0)∪(0,+∞),因此函数y=x -2在定义域上是偶函数,在区间(-∞,0)上单调递增,在(0,+∞)上单调递减.探究:请同学们根据我们以上的分析,把上述函数图象的大概形状画出来.并总结归纳幂函数的指数变化时对幂函数定义域的影响.(学生讨论交流,老师结合学生的交流内容,总结并简单板书如下) (1)α∈N +时,x ∈R ;(2)α∈Z 且α≤0时,x ∈(-∞,0)∪(0,+∞); (3)α=mn(其中m ,n 互质,且m ,n ∈N +)时,若m 是偶数,则x ∈{非负实数},若m 是奇数,则x ∈R . (4)α=-mn(其中m ,n 互质,且m ,n ∈N +)时,若m 是偶数,则x ∈{正实数},若m 是奇数,则x ∈(-∞,0)∪(0,+∞). 点评:这两个变式考查了幂函数的定义和幂函数图象特征的综合应用,尤其是幂指数的值对幂函数的单调性以及奇偶性的影响,这是学生在充分掌握幂函数的图象和性质的基础上才能解决的问题. 合作探究:我们研究的几个常见幂函数的性质,这些性质是否也适用于其他的幂函数? (师生共同探究,师使用几何画板软件,画出函数y=x α的图象,改变指数α的值,组织学生观察、分析所得到的函数图象,在动态变化过程中让学生了解幂函数的性质,得出如下结论)知识拓展:幂函数y=x α图象的基本特征是:当α>0时,图象过原点和(1,1)点,且在第一象限随x 的增大而上升,当α>1时,在(1,1)点的右侧是高于y=x 的图象的,即图象越靠近y 轴;当0<α<1时,在(1,1)点的右侧是低于y=x 的图象的,即图象越靠近x 轴;当α<0时,图象不过原点而过(1,1)点,且在第一象限随x 的增大而下降.可以用一句话来概括:幂函数在第一象限的图象,当幂指数越大时,函数图象也越高.例2 根据下列条件对于幂函数y=x α的有关性质的叙述,分别指出幂函数y=x α的图象具有下列特点时的α的值,其中α∈{-2,-1,21-,31,21,1,2,3}. (1)图象过原点,且在第一象限随x 的增大而上升;(2)图象不过原点,不与坐标轴相交,且在第一象限随x 的增大而下降; (3)图象关于y 轴对称,且与坐标轴相交; (4)图象关于y 轴对称,但不与坐标轴相交;(5)图象关于原点对称,且过原点; (6)图象关于原点对称,但不过原点.解:(1)因为幂函数y=x α的图象过原点,可知幂指数为正数.又函数图象随x 的增大而上升,所以α=31,21,1,2,3. (2)因为幂函数y=x α的图象不过原点,可知幂指数不大于0.又函数图象不与坐标轴相交且在第一象限随x 的增大而下降,所以α=-2,-1,21-. (3)因为幂函数y=x α的图象关于y 轴对称,所以此幂函数为偶函数,又与坐标轴相交,可知幂指数α=2.(4)因为幂函数y=x α的图象关于y 轴对称,所以此幂函数为偶函数,但不与坐标轴相交,所以幂指数α=-2.(5)因为幂函数y=x α的图象关于原点对称,所以此幂函数为奇函数,又图象过原点,所以α=31,1,3. (6)因为幂函数y=x α的图象关于原点对称,所以此幂函数为奇函数,又图象不过原点,所以α=-1.点评:通过本例的训练,加深学生对幂函数的学习和认识,对于我们生活中常见的幂函数有了更深刻的了解,我们可以根据幂函数的幂指数的具体值,来判定幂函数图象过定点,在第一象限的单调性,在定义域上的奇偶性;也可根据幂函数图象过定点,在第一象限的单调性,以及在定义域上的奇偶性来判定幂指数的具体取值,达到了这样的学习要求,就掌握了幂函数的概念和图象,从而达到我们的教学目标. 例3 已知函数y=42215x x --,(1)求函数的定义域、值域; (2)判断函数的奇偶性; (3)求函数的单调区间.分析:这是个幂函数的复合函数形式,本例中的函数的基本形式是开偶次方根,故定义域只要根式下大于或等于0即可,值域要先求根式下面二次函数的值域,然后再开方;对于复合函数奇偶性的判断,要先求定义域,定义域首先要关于原点对称,然后根据对定义域内的任意自变量x 是否有f(-x)=f(x),或f(-x)=-f(x)来进行判断,满足前者为偶函数,满足后者为奇函数;对于复合函数单调区间的求解,则要在定义域内根据内函数和外函数的单调性来综合判断.解:令t=15-2x-x 2,则y=4t .(1)由15-2x-x 2≥0⇒-5≤x≤3,得函数的定义域为[-5,3];而t=15-2x-x 2=16-(x+1)2∈[0,16],所以函数的值域为[0,2].(2)因为函数的定义域为[-5,3]不关于原点对称,所以函数既不是奇函数也不是偶函数.(3)因为函数的定义域为[-5,3],对称轴为x=-1,所以当x ∈[-5,-1]时,t 随x 的增大而增大;当x ∈[-1,3]时,t 随x 的增大而减小.又因为y=4t 在t ∈[0,16]时,y 随t 的增大而增大,所以函数y=42215x x --的单调增区间为[-5,-1],单调减区间为[-1,3]. 知能训练一、课本第73页练习1、2.解答:1.(1)幂函数y=x 4的定义域为R ,为偶函数;(2)幂函数y=x 41的定义域为[0,+∞),既不是奇函数也不是偶函数;(3)幂函数y=x -3定义域为(-∞,0)∪(0,+∞),为奇函数. 2.该函数的单调增区间为(-∞,+∞).二、补充练习1.下列函数中,是幂函数的是( ) A.y=2x B.y=2x 2 C.y=x1D.y=2x 分析:由幂函数的定义知,形如y=x α的形式. 答案:C2.下列结论正确的是( ) A.幂函数的图象一定过原点B.当α<0时,幂函数y=x α是减函数C.当α>1时,幂函数y=x α是增函数D.函数y=x 2既是二次函数,也是幂函数分析:对于A ,只有幂指数α>0时,幂函数的图象过原点;对于B ,当α<0时,幂函数y=x α在第一象限是减函数;对于C ,当α>1时,幂函数y=x α在第一象限是增函数,而不能说整个函数是增函数;对于D ,显然是对的. 答案:D3.下列函数中,在区间(-∞,0)上是增函数的是( )A.y=2x 3B.y=x 2C.y=x1D.y=-2x 23分析:由幂函数的图象特征可得. 答案:A 4.函数y=(x 2-2x)21-的定义域是( )A .{x|x≠0或x≠2} B.(-∞,0)∪(2,+∞) C.(-∞,0]∪[2,+∞) D.(0,2) 分析:由函数y=(x 2-2x)21-=xx 212-可得,x 2-2x >0.答案:B5.对于函数y=x 2和y=x 21有下列说法:a.两个函数都是幂函数;b.两个函数在第一象限都是单调递增的;c.它们的图象关于直线y=x 对称;d.两个函数都是偶函数;e.两个函数都经过(0,0)、(1,1)点;f.两个函数的图象都是抛物线形;g.两个函数互为反函数. 其中正确的是______________(把你认为正确的都写上).分析:由y=x 2和y=x 21这两个幂函数的图象特征可以观察出a 、b 、e 、f 是正确的. 答案:a 、b 、e 、f 课堂小结1.幂函数的概念及其和指数函数表达式的区别.2.常见幂函数的图象特征.3.幂指数取值不同时对函数图象的影响.4.给出幂函数能求出其幂函数的定义域、值域,判断函数的奇偶性,求函数的单调区间等问题. 作业1.课本第73页习题2.4的1、3.2.借助有关数学软件,通过研究,写一篇“幂指数对幂函数性质的影响”的小论文.要求要详细,如定点,单调性,奇偶性等.设计感想这节课是幂函数的第一课时,主要教学目标就是幂函数的概念和图象以及常见幂函数的性质.本来学生对幂函数的概念比较陌生,但是本课时采用了从生活实例导入,让学生感受幂函数就在我们身边,从而增近学生和幂函数的距离,这是本节的一大亮点.由实例得到的函数模型引出课题,即幂函数的概念,它的形式和指数函数在形式上有些相似,但是又不同,试让学生比较两个函数的区别,从而让学生把两者区分开.并采用通过几个常见幂函数的图象来研究幂函数的图象特征,尤其是幂指数的变化对幂函数性质的影响,这要靠教师在课堂上利用计算机演示给学生看,让学生深刻地理解和掌握幂函数的概念和图象. 本节采用三个例题来加强幂函数概念的理解,例1是求幂函数的定义域,并指出幂函数的单调性,奇偶性;例2是在学生充分了解幂函数的图象和性质的基础上设计的,根据幂函数图象的过定点、关于坐标轴或原点对称来确定题目中所给出的幂指数的具体值.例3是对例2的补充和加深,难度比较大,老师可根据学生的情况选择性地讲解.在作业中设计了让学生通过自己利用数学软件画出幂函数的图象来自己研究幂函数的性质,并通过写小论文“幂指数对幂函数性质的影响”来加深学生自主学习的能力,并加深对幂函数的理解和掌握.(设计者:王银娣)第二课时 幂函数(二)导入新课 复习导入上节课我们学习了幂函数的概念以及常见幂函数的图象和性质,请同学们回顾一下有关知识.1.定义:形如y=x α的函数称为幂函数,其中x 是自变量,α是常数.2.幂函数y=x α的性质:当α>0时:①图象都过点(0,0)和(1,1);②函数在区间(0,+∞)上是增函数,即图象在第一象限是单调递增的;③当x >1时,指数大的图象在上方;当0<x <1时,指数大的图象在下方.当α<0时:①图象不过原点而过(1,1)点;②函数在区间(0,+∞)上是减函数,即图象在第一象限是单调递减的;③在第一象限内,图象向上无限接近y 轴,向右无限接近x 轴;④当x >1时,指数大的图象在上方;当0<x <1时,指数大的图象在下方.无论指数正负如何,他们都有共同的性质:①图象都过点(1,1);②当x >1时,指数大的图象在上方;当0<x <1时,指数大的图象在下方. 应用示例思路1 例1 幂函数y=x 43,y=x 31,y=x34-的定义域分别M 、N 、P ,则( )A.M ⊆N ⊆PB.N ⊆M ⊆PC.M ⊆P ⊆ND.以上都不对分析:把上述三个幂函数的定义域分别求出来,看定义域之间的包含关系即可. 解:因为y=x 43=43x ,所以x≥0,即得M=[0,+∞);函数y=x 31的定义域为R ,即N=R ;函数y=x34-=341x,可得x≠0,于是P=(-∞,0)∪(0,+∞).所以选D.点评:求幂函数的定义域时,需先把分数指数幂化为根式,然后令根式有意义,列出相应的不等式或不等式组,解不等式或不等式组就得到函数的定义域.以下总结当α为有理数时函数y=x α的定义域的情况:(1)当α=0时,y=x α的定义域是(-∞,0)∪(0,+∞); (2)当α是正整数时,y=x α的定义域是R ; (3)当α是正分数时,设α=qp(p ,q 为互质的正整数,且q >1),如果q 是奇数,定义域是R ;如果q 是偶数,此时定义域为[0,+∞);(4)当α是负整数时,设y=x α定义域是(-∞,0)∪(0,+∞); (5)当α是负分数时,设α=-qp(p ,q 为互质的正整数,且q >1),如果q 是奇数,则定义域是(-∞,0)∪(0,+∞);如果q 是偶数,定义域是(0,+∞).例2 已知函数满足f(x)=ax 5+bx 3+cx-10,且f(3)=10,求f(-3)的值. 解:令g(x)=ax 5+bx 3+cx ,则f(x)=g(x)-10对于任意实数x ,都有 g(-x)=a(-x)5+b(-x)3+c(-x)=-(ax 5+bx 3+cx)=-g(x),故g(x)为奇函数.因为f(3)=10,即f(3)=g(3)-10=10,得g(3)=20,于是有g(-3)=-20,所以f(-3)=g(-3)-10=-20-10=-30.点评:学会用整体思想考虑,考查整体的奇偶性进而求值.出现的误区:不能准确采用整体思想考虑,导致不知如何着手.例3 求下列各式中参数a 的取值范围: (1)a 43>0.543;(2)(-2)32>(2a+4)32.解:(1)因为a≥0,又幂函数y=x 43为区间(0,+∞)上的增函数,由a 43>0.543可得a >0.5,所以a 的取值范围是(0.5,+∞).(2)方法一:函数y=x 32为偶函数,在[0,+∞)上为单调递增,在(-∞,0)上单调递减. 故有⎩⎨⎧<+≥+242042a a 或⎩⎨⎧->+<+242042a a ,解得-2≤a <-1或-3<a <-2,综上可得参数a 的范围是-3<a <-1.方法二:函数y=x 32为偶函数,在[0,+∞)上为单调递增,在(-∞,0)上单调递减.所以自变量离y 轴越远则函数值就越大,由(-2)32>(2a+4)32,可得|2a+4|<2,解得-3<a <-1,所以参数a 的范围是(-3,-1).点评:当幂指数相同时,根据幂函数的单调性,只要比较自变量的大小即可.求参数的问题时,要找准相应的幂函数,先看定义域,根据幂函数的奇偶性和单调性建立不等式或不等式组,遇到幂函数是偶函数时,要注意分区间进行讨论. 例4 证明:y=x 在区间(0,+∞)上是增函数. 证明:任取x 1,x 2∈(0,+∞)且x 1<x 2,则有 f(x 1)-f(x 2)=212121212121))((x x x x x x x x x x x x +-=++-=-,因为0<x 1<x 2,所以x 1-x 2<0,21x x +>0,则有2121x x x x +-<0.所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),所以y=x 在区间(0,+∞)上是增函数.点评:在对两个函数值进行作差比较时,要化简到最简.本题中对根式作差采用的是分子有理化,因为这样就可以利用题意中x 1<x 2这个条件,直接进行判断.思路2 例1 图中曲线是幂函数y=x α在第一象限的图象,已知α可取±2,±21四个值,则相应于曲线C 1,C 2,C 3,C 4的α依次为( )A.-2,21-,21,2 B.2,21,21-,-2 C.21-,-2,2,21 D.2,21,-2,21- 分析:因为曲线C 3,C 4的图象是递减的,所以α3<0,α4<0.又因为在(1,+∞)上,C 3的图象高于C 4的图象,故α4<α3<0,于是有α3=21-,α4=-2;C 1,C 2的图象是递增的,所以C 1>0,C 2>0.又因为在(1,+∞)上,C 1的图象高于C 2的图象,故α1>α2>0,所以α1=2,α2=21.综上可得. 答案:B例2 点(3,3)在幂函数y=f(x)的图象上,点(-22,81)在幂函数y=g(x)的图象上,试解下列不等式:(1)f(x)>g(x);(2)f(x)<g(x).解:设f(x)=x α,g(x)=x β.因为点(3,3)在幂函数y=f(x)的图象上,所以(3)α=3,解得α=2;同样由点(-22,81)在幂函数y=g(x)的图象上,得(-22)β=81,解得β=-2.所以f(x)=x 2,g(x)=x -2.(1)由f(x)>g(x),可得x 2>x -2,即x 4>1,所以|x|>1,得x <-1或x >1. 所以不等式f(x)>g(x)的解集为(-∞,-1)∪(1,+∞).(2)由f(x)<g(x),可得x 2<x -2,即可得0<x 4<1,所以-1<x <0或0<x <1. 所以不等式f(x)<g(x)的解集为(-1,0)∪(0,1).点评:在求不等式f(x)<g(x)的解集时,应特别注意g(x)的定义域,要注意x≠0. 例3 求下列各式中参数a 的范围: (1)(a+1)31-<(3-2a)31-;(2)(a-1)32->(2+a)32-.分析:已知同指数的两个幂值的大小,可以利用幂函数的单调性进行比较自变量即可,但是要注意幂函数的定义域、单调性和奇偶性. 解:(1)因为幂函数y=x31-的单调减区间为(-∞,0)和(0,+∞),故要分下列情况讨论:⎩⎨⎧>-<+⎪⎩⎪⎨⎧+<-<-<+⎪⎩⎪⎨⎧+<->->+.023,01123,023,01123,023,01a a a a a a a a a a 或或解上面的不等式组:得32<a <23或a <-1.综上可得a 的范围是(-∞,-1)∪(32,23). (2)函数y=x32-为偶函数,在(0,+∞)上为单调递减,在(-∞,0)上单调递增.由(a-1) 32->(2+a)32-可得0<|a-1|<|2+a|,解得a >21-,且a≠1.所以a 的范围是(21-,1)∪(1,+∞). 点评:利用幂函数的单调性求参数的问题时,需注意:找准相应的幂函数,准确判断幂函数的奇偶性和单调性;定义域不要遗漏;注意分类讨论的思想. 例4 判断函数y=x -+1的单调性并给出证明.解:因为-x≥0,得x≤0,即函数的定义域为(-∞,0],在定义域内任取x 1,x 2,且x 1<x 2,则f(x 1)-f(x 2)=)1(121+--+-x x =211221x x x x x x -+--=---,因为x 1<x 2≤0,故有-x 1>-x 2≥0,所以x 2-x 1>0,21x x -+->0, 所以2112x x x x -+-->0,即f(x 1)-f(x 2)>0,所以f(x 1)>f(x 2).所以函数y=x -+1为在定义域(-x ,0]上的减函数. 例5 已知幂函数y=322--n n x(n ∈N )为偶函数,它的图象与坐标轴都无交点,求自然数n 的值.解:因为函数y=322--n n x(n ∈N )的图象与坐标轴都无交点,于是有n 2-2n-3≤0,即得-1≤n≤3,n ∈N ,所以n 可取-1,0,1,2,3,又此函数为偶函数,故指数为非负偶数.当n=-1或n=3时,y=x 0满足题意;当n=0或n=2时,y=x -3,不满足题意,故舍去;当n=1时,y=x -4满足题意.综上可得:n 可取-1,1,3.点评:不要漏掉n=-1或n=3的情况,即函数解析式为y=x 0的情况,教师在教学时要结合图象讲解. 知能训练1.在下列四个函数(1)y=x 31,(2)y=x 21,(3)y=x -2,(4)y=x 0中为偶函数的是( )A.(1)B.(1)(3)C.(3)(4)D.(1)(2)(3)(4) 2.当x ∈(0,1)时,幂函数y=x n (n ∈Q)的图象在直线y=x 的上方,则n 的取值范围为( ) A.n <1 B.n >1 C.0<n <1 D.0≤n <1 3.若0<m <n <1,则( )A.m -m >m -nB.m -m >n -nC.m n >n nD.n m >m m 4.函数y=1+1-x 的图象可以看成由幂函数y=x 21的图象( ) A.向左平移1个单位,再向上平移1个单位得到的 B.向左平移1个单位,再向下平移1个单位得到的 C.向右平移1个单位,再向上平移1个单位得到的 D.向右平移1个单位,再向下平移1个单位得到的5.已知函数g(x)的图象与函数f(x)=x 23+1的图象关于直线y=x 对称,则g(9)的值等于( )A.2B.4C.28D.2 6.若(x-1)-2>(2+x)-2,则x 的取值范围是____________. 答案:1—5:C 、A 、D 、C 、B ;6. 答案:(21-,1)∪(1,+∞). 点评:此练习是在掌握幂函数性质的基础上的加深练习,对知识起巩固作用. 课堂小结1.利用幂函数的单调性比较几个数值的大小;2.幂函数的单调性;3.幂函数的奇偶性;4.运用幂函数的单调性以及奇偶性求解一些含参数的问题. 作业课本第73页习题2.4第2、4、5题.设计感想本节课是幂函数的第二节课时,主要研究根据幂函数的性质,比较两个或多个同指数的指数式的大小问题、利用幂函数的单调性求参数的问题、用定义证明单调性问题、复合函数的定义域、值域以及单调区间等问题. 设计思路一选取的例题比较基础,但考查的知识点很全面,有利于学生对幂函数的基本性质的掌握,适合普通班的教学.设计思路二也解决了利用幂函数的单调性进行大小比较、求解参数、单调性证明等问题,但是在例题的选取上作了精心的挑选.对学生的审题、解题能力要求比较高,适合中等以上的学生学习.在教学过程中老师可利用学校的教学资源进行多媒体教学,数形结合授课学生比较容易接受.通过利用幂函数的图象和性质解决有关问题,使学生加深对幂函数概念的理解,在这一过程中培养学生综合运用知识分析问题、解决问题的能力,同时增强学生数学交流能力.习题详解课本第73页习题2.41.(1)因为函数y=x 21在定义域[0,+∞)上单调递增,且0<5.23<5.24,所以5.2321<5.2421;(2)因为函数y=x -1在定义域(0,+∞)上单调递减,且0<0.26<0.27,所以0.26-1>0.27-1;(3)因为函数y=x 3在定义域R 上单调递增,且-0.72>-0.75,所以(-0.72)3>(-0.75)3. 2.(1)因为y=x 32=32x ,所以函数的定义域为R ; (2)因为y=x 65=65x ,所以函数的定义域为[0,+∞); (3)因为y=x54-=541x ,所以函数的定义域为(-∞,0)∪(0,+∞);(4)因为y=x23-=231x,所以函数的定义域为(0,+∞).3.如图,根据已知可得函数y=x 32的定义域为R ,由函数奇偶性的定义可得函数y=x 32是偶函数,所以它的图象关于y 轴对称,且在区间(-∞,0]上单调递减,在区间[0,+∞)上单调递增.4.如图,函数y=x 21的图象和函数y=x 31的图象的共同点是:都过点(0,0),(1,1);且在定义域内是增函数.不同点是:y=x 21是非奇非偶函数,y=x 31是奇函数.函数y=x -1的图象和函数y=x -2的图象的共同点是:都过点(1,1),且在区间(0,+∞)上是减函数.不同点是:y=x -1是奇函数,y=x -2是偶函数.5.设正比例常数为k ,车身长为l ,则d=klv 2.依题意得1.44×4=k·602×4,解得k=0.000 4,所以d=0.000 4v 2·4=0.001 6v 2=0.5×4,则v=252km/h.所以d=⎪⎩⎪⎨⎧≥<<.225,0016.0,2250,22v v v。
一、自学准备:问题1:边长为的正方形的面积是____________问题2:边长为的正方形的体积是____________问题3:面积为的正方形的边长是____________问题4:某人秒行走了1公里的平均速度是____________思考:以上4个函数有哪些共同的特点二、学习交流与问题研讨:1幂函数的概念:一般地,我们将形如________________的函数称为幂函数,其中α为常数.练习1①下列函数中,是幂函数的是____________1 12y x = 20y x = 30.5x y = 4y x = 522y x = 62(2)y x =-②已知幂函数的图象过点2,则()f x =_________ ③已知幂函数2221(1)m m y m m x --=--是定义域为R 幂函数,则m 的值为__________④求下列函数的定义域及奇偶性:15()f x x = 256()f x x = 345()f x x-= 432()f x x -=2幂函数的图象和性质:引入:在同一坐标系中作出幂函数11231232,,,,,y x y x y x y x y x y x --======的图象,并探索函数y x α=图象的规律.总结:幂函数y x α=的图象特征①幂函数在第一象限的图象为:1a >时__________;01a <<时____________;0a <时____________; ②在画好第一象限的图象后,在根据幂函数的定义域和是否具有奇偶性,确定它在其它象限的图象. ③特别地:当0α=时,图象为_______________;当1α=时,图象为_______________.④所有幂函数的图象都过点______________.3幂函数的应用:1、比较下列各组中两个数的大小(1) 33551.5__1.7; 2 1.5 1.50.7__0.6;3 2233( 1.2)__( 1.25)---- 2、已知幂函数223()a a f x x +-=的图象关于y 轴对称,且在(0,)+∞单调递减,则整数a 的值为____________.3、已知函数223()()m m f x x m Z -++=∈为偶函数,且(3)(5)f f <,则m 的值为____,()f x 的解析式为___________4、(1)关于a 的不等式3355(1)(32)a a +<-的解集为___________(2)关于a 的不等式2233(1)(32)a a --+<-的解集为___________ (3)关于a 的不等式33(1)(32)a a --+<-的解集为___________4课堂小结1幂函数的概念2幂函数的图象和性质。
江苏省新沂市第二中学高中数学第34课时幂函数教案1 苏教版必修1课题第二十七课时幂函数(1)课型新授课教学目标1.了解幂函数的概念,会画出幂函数12312,,,,y x y x y x y x y x-=====的图象,根据上述幂函数的图象,了解幂函数的变化情况和性质;;2.了解几个常见的幂函数的性质,会用它们的单调性比较两个底数不同而指数相同的指数值的大小;3.进一步体会数形结合的思想.重点单调性比较两个底数不同而指数相同的指数值的大小;难点单调性比较两个底数不同而指数相同的指数值的大小;教法讲授法、讨论法、探究法学过程教学内容个案调整教师主导活动学生主体活动自学评价1.幂函数的概念:一般地,我们把形如y xα=的函数称为幂函数,其中x是自变量,α是常数;注意:幂函数与指数函数的区别.2.幂函数的性质:(1)幂函数的图象都过点(1,1);(2)当0α>时,幂函数在[0,)+∞上单调递增;当0α<时,幂函数在(0,)+∞上单调递减;(3)当2,2α=-时,幂函数是偶函数;当11,1,3,3α=-时,幂函数是奇函数.【精典范例】例1:写出下列函数的定义域,并指出它们的奇偶性:(1)3y x=(2)12y x=(3)2y x-=(4)22y x x-=+(5)1122y x x-=+(6)1124()3()f x x x=+-分析:求幂函数的定义域,宜先将分数指数幂写成根式,再确定定义域;【解】(1)此函数的定义域为R,∴此函数为奇函数.(2)12y x x==∴此函数的定义域为[0,)+∞此函数的定义域不关于原点对称∴此函数为非奇非偶函数.追踪训练一1.在函数(1)21,yx=(2)22,y x=(3)2y x x=+,(4)1y=中,是幂函数序号为(1).2.已知幂函数()y f x=的图象过(2,2),试求出这个函数的解析式;答案:12y x=3.求函数1322(1)(3)y x x-=-+-的定义域.答案:[1,3)(3)221y xx-==∴此函数的定义域为(,0)(0,)-∞⋃+∞2211()()()f x f x x x -===-∴此函数为偶函数 (4)22221y x x x x-=+=+∴此函数的定义域为(,0)(0,)-∞⋃+∞222211()()()()f x x x f x x x-=-+=+=- ∴此函数为偶函数 (5)11221y x xx x-=+=+∴此函数的定义域为[0,)+∞此函数的定义域不关于原点对称 ∴此函数为非奇非偶函数 (6)11424()3()3f x x x x x =+-=+-∴此函数的定义域为{0} ∴此函数既是奇函数又是偶函数 例2:比较大小:(1)11221.5,1.7 (2)33( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.530.5,3,log 0.5【解】(1)∵12y x =在[0,)+∞上是增函数,1.5 1.7<,∴11221.5 1.7< (2)∵3y x =在R 上是增函数,1.2 1.25->-,∴33( 1.2)( 1.25)->-(3)∵1y x -=在(0,)+∞上是减函数,5.25 5.26<,∴115.25 5.26-->;∵ 5.26xy =是增函数,12->-,∴125.265.26-->; 综上,1125.25 5.26 5.26--->>(4)∵300.51<<,0.531>,3log 0.50<,∴30.53log 0.50.53<<板书设计。
教材版本:苏教版普通高中课程标准试验教科书数学1必修幂函数幂函数一、教学内容分析函数是高中数学的核心内容,其思想方法贯穿高中数学的始终,是高考的重点内容。
幂函数是学习了指数函数,对数函数之后的又一根本初等函数,在学习方法上具有延续性和一致性。
在?考试说明?中只要求了解几个具体的幂函数,而且高考试题中直接考查幂函数的试题很少、考查要求也是最低。
二、学情况分析本节课是在学生对指数函数和对数函数的图像和性质有了一定的认识并且能进行简单应用的根底上继续学习幂函数。
学生“数—形—性质—应用〞的思维模式已根本形成;学生经历了由具体函数归纳抽象一类函数图像和性质,对这种由具体到一般的思维过程有感性的理解,对于幂函数的教学依然采用这样的方法,一方面是保持思维方法的一贯性,另一方面是促进运用这种方法的自觉性。
我认为:幂函数教学应该解决的主要问题:既见“树木〞见“森林〞,即通过对几个具体幂函数图像和性质的研究,得到幂函数簇的共同性质。
因此,解决此问题的主要途径:应该把教学重心放在研究函数图像和性质的方法的运用和总结上。
三、教学目标1.通过本课时教学,使学生了解幂函数的概念,会画给定幂函数的图像,并由此得出幂函数簇的图象和性质。
2.学生能将底数不同指数相同的指数式值的大小比拟转化成幂函数的单调性来解决。
3.通过对幂函数的图像和性质的研究,使学生体会研究函数性质的思路和方法。
四、教学重点与难点重点:画幂函数的图象,总结幂函数的性质。
难点:画出幂函数的图象并概括其性质,体会变化规律。
五、教学过程1问题情境一般地,函数=aa>0,a≠1叫做指数函数,它的定义域是R。
指数函数解析式主要特征为:自变量在指数位置,底数a是常数如果将指数式=a中的底数和指数位置互换,使底数为自变量,指数为常数,是否存在这样的函数?假设存在,请举出几例学生可能举出如下例子:=、=2、=-1、=3、=-2、要求学生分析:这些函数的解析式在形式上的共同点,并用一个一般的式子进行概括。
.通过对幂函数的研究,培养学生分析问题的能常见幂函数的概念、图象和性质;一、问题情境
情境:我们以前学过这样的函数:y =x ,y =x 2
,y =x 1
,试作出它们的图象,并观察其性质.
问题:这些函数有什么共同特征?它们是指数函数吗?
二、数学建构
1.幂函数的定义:一般的我们把形如y =x α(α∈R )的函数称为幂函数,其中底数
x 是变量,指数α是常数.
2.幂函数y =x α
图象的分布与α 的关系:
对任意的α∈ R ,y =x α在第I 象限中必有图象;
若y =x α为偶函数,则y =x α在第II 象限中必有图象;
若y =x α为奇函数,则y =x α在第III 象限中必有图象;
X=1
y=1
y=X
I
II
III
对任意的α∈ R ,y =x α的图象都不会出现在第VI 象限中. 3.幂函数的性质(仅限于在第一象限内的图象): (1)定点:α>0时,图象过(0,0)和(1,1)两个定点;
α≤0时,图象过只过定点(1,1).
(2)单调性:α>0时,在区间[0,+∞)上是单调递增;
α<0时,在区间(0,+∞)上是单调递减.
三、数学运用
例1 写出下列函数的定义域,并判断它们的奇偶性 (1)y =12
x ; (2)y =2
x -;
(3)y =22
x x -+; (4)y =112
2
x x
-
+.
例2 比较下列各题中两个值的大小. (1)1.50.5
与1.70.5
(2)3.141与π
1
(3)(-1.25)3
与(-1.26)3
(4)314与2
21
例3 幂函数y =x m
;y =x n
;y =x 1
与y =x 在第一象限内图象的排列顺序如
图所示,试判断实数m ,n 与常数-1,0,1的大小关系. 练习:
(1)下列函数:①y =0.2x ;②y =x 0.2;③y =x 3;④y =3·x 2
.其中是
x
y
O
y =x y =x m y =x -1 y =x n
为
本
精美句子
1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。
一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。
一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。
8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。