设计中桩高程计算
- 格式:xlsx
- 大小:37.78 KB
- 文档页数:1
桩基计算公式混凝土量:1、挖孔深度=设计桩长+空头高度+锅底2、有效桩长=挖孔深度-空头高度=设计桩长+锅底3、直筒深度=挖孔深度-扩高-圆柱高-锅底=设计桩长+空头高度-扩高-圆柱高4、大头圆柱=1/4×3.14×扩大头直径(D)×圆柱高(h1)5、扩大头量=1/12×3.14×(扩高(h)+圆柱高(h1))×(D²+d²+dD)+大头圆柱6、挖孔半径=(桩径+2a1+2a2)÷27、挖孔截面积=3.14×挖孔半径²8、挖孔量=挖孔截面积×直筒深度+扩大头量9、桩芯半径=(桩径+2a2)÷210、桩芯截面积=3.14×桩芯半径²11、桩芯砼量=桩芯截面积×(直筒深度-空头深度+超灌深度)+扩大头量12、护壁截面积=挖孔截面积-桩芯截面积13、护壁砼量=护壁截面积×直筒深度14、空头土方=桩芯截面积×空头高度15、入岩量=挖孔截面积×(入岩直筒深度+扩大头量)16、空头高度=场地标高-桩顶设计标高17、设计桩长=承台顶设计标高-桩底设计标高-承台高+桩身锚入承台的深度18、实际桩长=实测孔深(挖孔深度)-空头高度19、桩顶高程=设计桩长+设计桩底高程20、桩底高程=桩顶高程-实际桩长21、孔口高程=桩底高程+实测孔深钢筋量: kg/m=0.00617×钢筋直径²1、主筋质量:(35D钢筋锚入承台的深度+有效桩长)×kg/m×根数2、非加密区螺旋筋质量:3.14×(桩径-2×砼保护层厚度)×(有效桩长-加密区螺旋筋长度)÷非加密区间距×kg/m3、加密区螺旋筋质量:3.14×(桩径-2×砼保护层厚度)×加密区螺旋筋长度÷加密区间距×kg/m4、加劲筋质量:3.14×(桩径-2×砼保护层厚度)×[(有效桩长÷加劲筋间距)取整数+1]×kg/m5、护壁纵筋质量:3.14×(桩径+2a1+2a2-2×砼保护层厚度)×直筒深度÷护壁纵筋间距×kg/m6、护壁箍筋质量:3.14×(桩径+2a1+2a2-2×砼保护层厚度)×直筒深度÷护壁箍筋质量×kg/m7、钢筋量:(主筋质量+非加密区螺旋筋质量+加密区螺旋筋质量+加劲筋质量 +护壁纵筋质量+护壁箍筋质量)×1.03钢筋损耗系数8、桩身钢筋量:(主筋质量+非加密区螺旋筋质量+加密区螺旋筋质量+加劲筋质量)×1.03钢筋损耗系数。
h为桩基施工面至设计桩顶的距离标题:从深度与广度的角度分析h为桩基施工面至设计桩顶的距离导语:在建筑工程中,桩基是一种常见的地下结构,它承担着将建筑物的荷载传递至地下的重要作用。
而h为桩基施工面至设计桩顶的距离则是桩基设计中的一个重要参考参数。
本文将从深度与广度的角度对h为桩基施工面至设计桩顶的距离进行全面评估,探讨其在桩基设计中的重要性和应用。
一、h为桩基施工面至设计桩顶的距离的定义与背景1. 定义:h为桩基施工面至设计桩顶的距离,简称为桩顶高程。
2. 背景:桩顶高程是桩基设计中基础参数之一,它直接影响着桩基的承载力和稳定性。
合理的桩顶高程可以有效减小桩基沉降以及桩身的变形,从而确保地下结构的稳定与安全。
二、h为桩基施工面至设计桩顶的距离在桩基设计中的重要性1. 承载力分析:桩顶高程直接影响桩基的承载力。
合理选择桩顶高程可以避免桩身太深或太浅,从而使桩基承载荷载的能力达到设计要求。
2. 地下水位变动:桩顶高程对桩基的抗浮托能力有重要影响。
合理的桩顶高程能够确保桩基在地下水位变动时不发生浮起或下沉,从而保证桩体的稳定性。
3. 地均压力均衡:桩顶高程与土壤的侧阻力和摩擦力之和有关。
通过合理选择桩顶高程,可以使侧阻力和摩擦力相互平衡,达到地均压力均衡的状态,提高桩基的稳定性。
三、h为桩基施工面至设计桩顶的距离的确定方法1. 土层特性分析:根据实地勘测和土质分析,确定地下各层土体的特性,包括密实度、强度、承载力等参数,从而确定合适的桩顶高程范围。
2. 结构荷载分析:根据建筑物的设计荷载、荷载组合和荷载类型,计算出桩基所受到的最大荷载,并根据荷载特性确定合理的桩顶高程。
3. 地下水位分析:根据实测或模拟得到的地下水位数据,结合土壤渗透系数和桩基的排水能力,确定适当的桩顶高程。
四、个人观点与理解h为桩基施工面至设计桩顶的距离在桩基设计中起着至关重要的作用。
合理选择桩顶高程可以保证桩基的承载力、稳定性和抗浮托能力,从而确保地下结构的安全与稳定。
1 平面设计1.1初选两个方案路线起点A点,终点B点,分别选择方案一、方案二如地形图所示。
地形图比例尺1:20501.2两方案粗算方案一:JD1:量得α=63°设 Ls=60 R=120mJD2:量得α=35°设 Ls=80 R=300mAC=299.30m CD=625.25m DB=504.30m AB=1301.75m计算的JD1要素:切线增长值q=Ls/2-Ls3/240R2=29.94m曲线内移值p=Ls2/24R-Ls4/2384R3=1.25m切线长T=(R+P)tanα/2+q=104.24m缓和曲线角β。
=90Ls/πR=14.32°平曲线长L=(α-2β。
)πR/180+2Ls=191.96m外距E=(R+p)secα/2-R=22.21m校核数D=2T-L=16.52m校核:Ls :Ly =1:1.2 满足。
2β。
﹤α满足。
计算的JD2要素:切线增长值q=Ls/2-Ls3/240R2=39.98m曲线内移值p=Ls2/24R-Ls4/2384R3=0.89m切线长T=(R+P)tanα/2+q =134.85m缓和曲线角β。
=90Ls/πR =7.64°平曲线长L=(α-2β。
)πR/180+2Ls=263.25m外距E=(R+p)secα/2-R =15.49m校核数D=2T-L =6.45m校核:Ls :Ly =1:1.29 满足。
2β。
﹤α满足。
AC段直线长=299.3-104.24=195.06mCD段直线长=625.25-104.24-134.85=386.16mDB段直线长=504.3-134.85=369.45m路线总长=195.06+386.16+369.45+191.96+263.25=1405.88m延长系数=1405.88/1301.75=1.08转角平均度数=(63°+35°)/2=49°每公里平均转角数=2/1.41=1.42总转角数:2个圆曲线最小半径:120m方案二:JD1:量得α=72°设 Ls=60 R=120mJD2:量得α=21°设 Ls=60 R=400mAC′=420.25m C′D′=604.75m D′B=479.70m AB=1301.75m 计算的JD1要素:切线增长值q=Ls/2-Ls3/240R2=29.94m曲线内移值p=Ls2/24R-Ls4/2384R3=1.25m切线长T=(R+P)tanα/2+q=118.03m缓和曲线角β。
中桩高程地面标高设计标高全文共四篇示例,供读者参考第一篇示例:中桩高程、地面标高、设计标高这三个概念在工程领域中非常重要,它们直接关系到建筑物的稳定性和安全性。
在工程设计和施工中,正确的理解和应用这些概念至关重要,下面我将分别介绍这三个概念的含义和它们在工程中的作用。
我们来了解一下中桩高程的概念。
中桩高程是指中桩所对应的高程数值,通常以地面标高为基准。
在建筑物基础设计中,中桩的高程是通过测量确定的,它直接决定了地基的深度,对建筑物的稳定性有着重要的影响。
中桩高程的确定需要考虑地面的情况和土层的特性,以保证建筑物的承载能力和变形控制。
地面标高是指地面上某一点与参考水准面的垂直距离,它是衡量地势高低的基本参数之一。
地面标高通常用来确定建筑物的起伏情况,以便设计合适的排水系统和对地基进行合理的处理。
在工程设计中,地面标高的测量和确定是非常重要的,它直接影响到建筑物的平整度和外观美观程度。
设计标高是指建筑物或结构物设计时规定的高程数值,它是根据建筑物的功能要求和使用需求确定的。
设计标高不仅考虑了建筑物的结构和承载能力,还考虑了使用者的舒适度和便利性。
在设计过程中,设计标高需要与中桩高程和地面标高相衔接,以实现整体设计的一致性和协调性。
中桩高程、地面标高和设计标高是建筑工程中不可或缺的三个概念,它们相互关联、相互作用,共同决定了建筑物的性能和品质。
在工程设计和施工中,我们必须充分理解和应用这些概念,以确保建筑物能够安全可靠地使用,并且符合设计要求。
希望大家能够加深对这三个概念的理解,提高工程质量和效率,为社会建设做出更大的贡献。
【字数不够2000字,如需继续撰写,请告诉我】。
第二篇示例:中桩高程、地面标高和设计标高是工程设计和施工中常用的铺设标志,它们在工程实施过程中起着非常重要的作用。
中桩高程是指地面上面的中桩的标高,是勘察中测得的高程数值;地面标高是指地表面的标高,是工程设计的基准标高;设计标高是指设计师在设计中确定的标高数值,是工程施工的参考标准。
关于桩基资料孔底高程的解释钻孔灌注桩内业资料里的设计孔深指实测护筒顶标高减去设计孔底标高,不是减去实际的孔底标高。
设计孔底高程59.970m
终孔孔底高程59.967m
清孔后孔底高程59.913m
灌注前孔底高程59.925m
高程高低比较如下:
设计孔底高程》终孔时孔底高程》灌注前孔底高程》清孔后孔底高程这些数据不是计算出来的,是现场施工的时候用测绳测出来的,实际填写资料的过程中,只要编数据比终孔孔底高程低点就可以了(绝对不可以高于设计的桩底高程)
设计允许沉淀厚度=查设计图纸实际沉淀厚度=灌注前孔底高程-清孔后孔底高程(近似算法。
桩基计算公式混凝土量:1、挖孔深度=设计桩长+空头高度+锅底2、有效桩长=挖孔深度-空头高度=设计桩长+锅底3、直筒深度=挖孔深度-扩高-圆柱高-锅底=设计桩长+空头高度-扩高-圆柱高4、大头圆柱=1/4×3.14×扩大头直径(D)×圆柱高(h1)5、扩大头量=1/12×3.14×(扩高(h)+圆柱高(h1))×(D²+d²+dD)+大头圆柱6、挖孔半径=(桩径+2a1+2a2)÷27、挖孔截面积=3.14×挖孔半径²8、挖孔量=挖孔截面积×直筒深度+扩大头量9、桩芯半径=(桩径+2a2)÷210、桩芯截面积=3.14×桩芯半径²11、桩芯砼量=桩芯截面积×(直筒深度-空头深度+超灌深度)+扩大头量12、护壁截面积=挖孔截面积-桩芯截面积13、护壁砼量=护壁截面积×直筒深度14、空头土方=桩芯截面积×空头高度15、入岩量=挖孔截面积×(入岩直筒深度+扩大头量)16、空头高度=场地标高-桩顶设计标高17、设计桩长=承台顶设计标高-桩底设计标高-承台高+桩身锚入承台的深度18、实际桩长=实测孔深(挖孔深度)-空头高度19、桩顶高程=设计桩长+设计桩底高程20、桩底高程=桩顶高程-实际桩长21、孔口高程=桩底高程+实测孔深钢筋量: kg/m=0.00617×钢筋直径²1、主筋质量:(35D钢筋锚入承台的深度+有效桩长)×kg/m×根数2、非加密区螺旋筋质量:3.14×(桩径-2×砼保护层厚度)×(有效桩长-加密区螺旋筋长度)÷非加密区间距×kg/m3、加密区螺旋筋质量:3.14×(桩径-2×砼保护层厚度)×加密区螺旋筋长度÷加密区间距×kg/m4、加劲筋质量:3.14×(桩径-2×砼保护层厚度)×[(有效桩长÷加劲筋间距)取整数+1]×kg/m5、护壁纵筋质量:3.14×(桩径+2a1+2a2-2×砼保护层厚度)×直筒深度÷护壁纵筋间距×kg/m6、护壁箍筋质量:3.14×(桩径+2a1+2a2-2×砼保护层厚度)×直筒深度÷护壁箍筋质量×kg/m7、钢筋量:(主筋质量+非加密区螺旋筋质量+加密区螺旋筋质量+加劲筋质量 +护壁纵筋质量+护壁箍筋质量)×1.03钢筋损耗系数8、桩身钢筋量:(主筋质量+非加密区螺旋筋质量+加密区螺旋筋质量+加劲筋质量)×1.03钢筋损耗系数。
中桩坐标的计算一、测量坐标系统(一)大地坐标系统在大地坐标系中,地面点在地球表面上的投影位置用大地经度和大地纬度来表示,地面点的大地坐标是根据大地测量数据由大地坐标原点推算而得,我国大地坐标原点位于陕西泾阳县永乐镇境内,在西安市以北约40Km 处。
(二)高斯3°平面直角坐标系统我国从1952年开始采用高斯投影系统,以高斯投影的方法建立了高斯直角坐标系统。
地面点的高斯平面坐标与大地坐标可以相互转换。
高速公路的勘测设计和施工放样都采用高斯平面直角坐标系统进行的。
(三)平面直角坐标系统在测量范围较小、三级和三级以下公路、独立桥梁隧道及其它构造物,可以把该测区的球面当作平面看待进行直接投影,采用平面直角坐标系统。
二、中桩坐标计算(一)计算导线点的坐标1.方位角的确定:tg β=XY ∆∆ 方位角 : Ai =β (第一象限)Ai =180 °-β (第二象限)Ai =180° + β (第三象限)Ai =360° -β (第四象限)图 2—18 路线的方位角计算2.坐标计算:X i+1 = X i + D CosAiY i+1 = Yi + D SinAi (D :两导线点间的水平距离)(二)计算中桩坐标1.未设缓和曲线的单圆曲线坐标计算(1)圆曲线起、终点坐标计算JDi 的坐标为(X JDi 、Y JDi ),交点前后直线边的方位角分别为A i -1、A i ,圆曲线的半径为R ,平曲线切线长为T i .,曲线起、终点的坐标可用下式计算:圆曲线起点的坐标: X ZYi = X JDi -T i CosA i -1 Y ZYi = Y JDi -T i SinA i -1圆曲线终点的坐标: X YZi = X Jdi + T i CosA i Y YZi = Y Jdi + T i SinA i图 2—19 中桩坐标计算示意图(2)圆曲线任意点坐标计算ZY ~ QZ 段(YZ ~QZ 段)的坐标计算以曲线起点ZY (曲线终点YZ 点)为坐标原点,切线为X ′轴,法线为Y ′轴,建立直角坐标系:X ′= R Sin(π180'R l ) Y ′= R -R Cos (π180'R l ) 式中: l ′———圆曲线上任意点至 ZY (YZ )点的弧长;ZY ~QZ 段的各点的坐标:利用上述公式计算出以ZY 为坐标原点圆曲线段内各加桩X ′、Y ′ 的值,则ZY ~QZ 段的各点的坐标和方位角为:X = X ZYi - X ′ CosA i -1 – ζY ′sin A i -1Y = Y ZYi + X ′ SinA i -1 +ζY ′cos A i -1YZ ~QZ 段的各点的坐标:利用上述公式计算出以YZ 为坐标原点圆曲线段内各加桩X ′、Y ′ 的值,则ZY ~QZ 段的各点的坐标为:X= X YZi - X ′ CosA i –ζY ′Sin A iY= Y YZi - X ′ SinA i +ζY ′Cos A i式中:ζ — 路线转向,右转角时ζ=1,左转角时ζ= -1,以下各式同。