计算机体系结构
- 格式:ppt
- 大小:721.50 KB
- 文档页数:52
十六位体系结构计算机组成原理
十六位体系结构计算机组成原理是指计算机的硬件和软件组成原理,可以分为以下几个部分:
1.中央处理器(Central Processing Unit, CPU):负责执行计算机指令和进行数据处理。
CPU包括指令寄存器、程序计数器、算术逻辑单元(ALU)和寄存器等。
2.存储器:存储器包括主存储器和辅助存储器。
主存储器用于存储正在运行的程序和数据,可分为RAM和ROM。
辅助存储器用于长期存储程序和数据,如硬盘、光盘等。
3.输入输出设备:用于与外部设备进行数据交互,如键盘、鼠标、打印机、显示器等。
4.总线(Bus):计算机内各个部件之间传送数据和控制信息的通道。
总线分为数据总线、地址总线和控制总线。
5.指令系统:计算机的指令系统决定了计算机的操作特性和功能。
按照十六位体系结构,指令由16位表示,可以包括逻辑运算、算术运算、存储和转移等操作。
6.中断系统:用于处理紧急情况和异步事件,如异常中断、硬件中断和软件中断等。
7.时钟系统:用于同步计算机内各个部件的工作节奏和时序,提供时钟脉冲。
8.控制单元(Control Unit):负责控制计算机的操作,根据指令操作码的不同,控制单元产生特定的控制信号和时序信号,控制各个部件的工作。
9.运算器(アrithmetic and Logic Unit, ALU):负责进行算术运算和逻辑运算,包括加法、减法、乘法、除法和与、或、非、异或等逻辑运算。
以上是十六位体系结构计算机组成原理的基本内容,具体实施中可能会有一些差异。
第一章计算机体系结构得基本概念1 计算机系统结构得经典定义程序员所瞧到得计算机属性,即概念性结构与功能特性。
2 透明性在计算机技术中,把这种本来存在得事物或属性,但从某种角度瞧又好像不存在得概念称为透明性。
3 系列机由同一厂家生产得具有相同系统结构、但具有不同组成与实现得一系列不同型号得计算机。
4 常见得计算机系统结构分类法有两种:Flynn 分类法、冯氏分类法Flynn 分类法把计算机系统得结构分为4 类:单指令流单数据流(SISD)单指令流多数据流(SIMD)多指令流单数据流(MISD)多指令流多数据流(MIMD)5 改进后程序得总执行时间系统加速比为改进前与改进后总执行时间之比6CPI(Cycles Per Instruction ):每条指令执行得平均时钟周期数CPI = 执行程序所需得时钟周期数/IC7 存储程序原理得基本点:指令驱动8冯•诺依曼结构得主要特点1 以运算器为中心。
2 在存储器中,指令与数据同等对待。
指令与数据一样可以进行运算,即由指令组成得程序就是可以修改得。
3 存储器就是按地址访问、按顺序线性编址得一维结构,每个单元得位数就是固定得。
4 指令得执行就是顺序得5 指令由操作码与地址码组成。
6 指令与数据均以二进制编码表示,采用二进制运算。
9 软件得可移植性一个软件可以不经修改或者只需少量修改就可以由一台计算机移植到另一台计算机上正确地运行。
差别只就是执行时间得不同。
我们称这两台计算机就是软件兼容得。
实现可移植性得常用方法:采用系列机、模拟与仿真、统一高级语言。
软件兼容:向上(下)兼容:按某档机器编制得程序,不加修改就能运行于比它高(低)档得机器。
向前(后)兼容:按某个时期投入市场得某种型号机器编制得程序,不加修改地就能运行于在它之前(后)投入市场得机器。
向后兼容就是系列机得根本特征。
兼容机:由不同公司厂家生产得具有相同系统结构得计算机。
10 并行性:计算机系统在同一时刻或者同一时间间隔内进行多种运算或操作。
计算机组成-冯·诺依曼体系结构计算机组成 - 冯·诺依曼体系结构⽬录计算机组成原理⽬录:计算机组成原理在整个计算机课程中的地位如下图所⽰:图1:计算机体系结构计算机组成原理这门课会围绕冯·诺依曼体系的五⼤组成部分展开,分别介绍运算器、控制器、存储器、输⼊设备和输出设备。
运算器、控制器、存储器、输⼊设备和输出设备。
1. 冯·诺依曼体系结构冯·诺依曼体系结构(Von Neumann architecture),也叫存储程序计算机。
什么是存储程序计算机呢?这⾥⾯其实暗含了两个概念:可编程计算机:计算机是由各种门电路组合⽽成的,然后通过组装出⼀个固定的电路板,来完成⼀个特定的计算程序。
⼀旦需要修改功能,就要重新组装电路。
这样的话,计算机就是“不可编程”的。
如计算器就是不可编程的。
存储计算机。
⽐如内存和硬盘都是存储设备。
图2:冯·诺依曼体系结构⽰意图处理器单元(Processing Unit):⾸先是⼀个包含算术逻辑单元(Arithmetic Logic Unit,ALU)和处理器寄存器(ProcessorRegister)的处理器单元(Processing Unit),⽤来完成各种算术和逻辑运算。
因为它能够完成各种数据的处理或者计算⼯作,因此也有⼈把这个叫作数据通路(Datapath)或者运算器。
控制器单元(Control Unit/CU):是⼀个包含指令寄存器(Instruction Register)和程序计数器(Program Counter)的控制器单元(Control Unit/CU),⽤来控制程序的流程,通常就是不同条件下的分⽀和跳转。
在现在的计算机⾥,上⾯的算术逻辑单元和这⾥的控制器单元,共同组成了我们说的 CPU。
存储器存储器:⽤来存储数据(Data)和指令(Instruction)的内存。
以及更⼤容量的外部存储,在过去,可能是磁带、磁⿎这样的设备,现在通常就是硬盘。
计算机体系结构计算机体系结构是指计算机硬件、软件和数据组成的结构体系。
它涵盖了计算机内部各个部件的组织方式,以及它们之间的连接和交互方式。
计算机体系结构的设计与实现直接影响计算机的性能、可靠性和可扩展性。
I. 介绍计算机体系结构是计算机科学中的重要研究领域,它关注的是在硬件和软件层面上如何组织计算机系统,以实现高性能、可靠性、可扩展性等要求。
计算机体系结构的研究内容广泛,包括指令集架构、处理器设计、内存层次结构、输入输出系统等等。
II. 指令集架构指令集架构是计算机体系结构的核心部分,它定义了计算机的指令集以及执行这些指令的方式。
指令集架构一般分为精简指令集(RISC)和复杂指令集(CISC)两种。
RISC架构追求指令集的简洁和规整,通过减少指令的种类和提高指令的执行效率来提高计算机的性能。
而CISC架构则倾向于提供更多且复杂的指令,以方便编程和提高代码的密度。
III. 处理器设计处理器是计算机的核心部件,它执行指令、进行数据处理和控制计算机的各个部分。
处理器设计的目标是提高计算速度和性能,并支持更多的并行计算。
现代处理器常采用流水线、超标量、乱序执行等技术,以提高指令的执行效率。
除了性能,处理器设计还需要考虑功耗、散热等问题。
IV. 内存层次结构计算机的内存层次结构包括寄存器、高速缓存、主存和辅助存储等层次。
这些层次的设计目的是提供多级别的存储,以满足不同速度和容量要求的数据访问。
其中,高速缓存是处理器与主存之间的缓冲存储器,它通过存储最常用的数据和指令,减少了处理器对主存的访问次数,提高了数据访问速度。
V. 输入输出系统输入输出系统是计算机与外部设备进行通信的接口,它负责将数据传输到或从外部设备传输到计算机。
现代计算机的输入输出系统包括各种接口标准和协议,如USB、HDMI、以太网等。
输入输出系统的设计需要考虑数据传输速度、可靠性和兼容性等因素,以满足不同的应用需求。
VI. 发展趋势计算机体系结构领域一直在不断发展和创新。
计算机专业的计算机体系结构计算机体系结构是计算机科学与技术中一个重要的领域,它研究计算机的组成、架构和设计原理。
计算机体系结构与计算机组成原理有密切关系,是计算机硬件设计的核心内容之一。
本文将从计算机体系结构的定义、基本原理以及实际应用等方面进行论述。
一、计算机体系结构的定义和目标计算机体系结构是指计算机的硬件和软件组成的总体结构,它包括计算机的处理器、存储器、I/O设备等各个组件以及它们之间的连接方式和控制方式。
计算机体系结构的目标是提供一种满足用户需求的高性能、可靠、可扩展和可移植的计算机系统。
二、计算机体系结构的基本原理1.冯·诺依曼体系结构冯·诺依曼体系结构是计算机体系结构的基本原理之一。
它采用存储程序的概念,将数据和指令存储在同一存储器中,通过控制器和运算器对数据进行处理。
这种体系结构具有指令流和数据流的特点,简化了计算机的设计和程序的编写。
2.并行处理并行处理是指利用多个处理器同时处理多个任务或多个部分任务的技术。
并行处理可以提高计算机的性能和吞吐量,实现更快的数据处理和更高的效率。
常见的并行处理方式包括向量处理、流水线处理和多核处理等。
3.存储器层次结构存储器层次结构是计算机体系结构中的一个重要概念。
它通过不同速度和容量的存储器层次来提供高速缓存和大容量存储器的组合,以满足计算机系统对数据存取的要求。
存储器层次结构的设计需要权衡存储器性能、成本和功耗等因素。
三、计算机体系结构的实际应用1.超级计算机超级计算机是计算机体系结构中性能最高的一类计算机。
它通常由多个处理器、大容量存储器和高性能的I/O设备构成,用于处理科学计算、工程分析和大规模数据处理等高性能计算任务。
2.嵌入式系统嵌入式系统是计算机体系结构中应用广泛的一类系统。
它将计算机技术与各种工程技术相结合,嵌入到各种设备和系统中,具有实时性、稳定性和低功耗的特点。
嵌入式系统广泛应用于智能手机、汽车、医疗设备等领域。
计算机系统体系结构计算机系统体系结构是指计算机硬件和软件之间的组织结构,它是计算机系统的基础。
计算机系统体系结构包括计算机的组成部分、它们之间的连接方式、数据传输方式、指令集和操作系统等。
计算机系统体系结构的设计和实现对计算机的性能、可靠性、安全性和可维护性等方面都有着重要的影响。
计算机系统体系结构的组成部分包括中央处理器(CPU)、内存、输入输出设备(I/O设备)和总线等。
中央处理器是计算机系统的核心部件,它负责执行指令、控制计算机的运行和处理数据。
内存是计算机系统中存储数据和程序的地方,它是计算机系统的重要组成部分。
输入输出设备是计算机系统与外部世界交互的方式,它包括键盘、鼠标、显示器、打印机等。
总线是计算机系统中各个组成部分之间传输数据和指令的通道,它是计算机系统的重要组成部分。
计算机系统体系结构的连接方式包括并行连接和串行连接。
并行连接是指多个设备同时连接到计算机系统中,它可以提高计算机系统的处理速度和效率。
串行连接是指一个设备连接到计算机系统中,它可以减少计算机系统的复杂度和成本。
计算机系统体系结构的数据传输方式包括同步传输和异步传输。
同步传输是指数据在固定的时间间隔内传输,它可以提高数据传输的稳定性和可靠性。
异步传输是指数据在不固定的时间间隔内传输,它可以提高数据传输的灵活性和效率。
计算机系统体系结构的指令集是计算机系统中的指令集合,它是计算机系统的重要组成部分。
指令集包括操作码和操作数,它可以控制计算机系统的运行和处理数据。
指令集的设计和实现对计算机系统的性能、可靠性和安全性等方面都有着重要的影响。
计算机系统体系结构的操作系统是计算机系统中的软件系统,它是计算机系统的重要组成部分。
操作系统可以管理计算机系统的资源,控制计算机系统的运行和处理数据。
操作系统的设计和实现对计算机系统的性能、可靠性和安全性等方面都有着重要的影响。
计算机系统体系结构是计算机系统的基础,它对计算机系统的性能、可靠性、安全性和可维护性等方面都有着重要的影响。
计算机系统组成是什么计算机系统是如何组成的计算机系统是由多个不同组件、部件和技术构成的复杂系统。
每个组件都有特定的功能和目的,合在一起形成了一个完整的计算机系统。
计算机系统的组成主要包括以下几个方面:中央处理器(CPU)、存储器、输入输出设备、操作系统和应用软件。
1. 中央处理器(CPU):中央处理器是计算机系统的核心,负责执行程序和处理数据。
它通常由控制单元和算术逻辑单元组成。
控制单元负责指挥和协调系统的各个部件,实现程序的顺序执行,而算术逻辑单元则负责执行算术和逻辑运算。
2. 存储器:存储器用于存储数据和程序。
计算机存储器层次结构分为主存储器和辅助存储器。
主存储器通常是使用半导体材料制造的随机访问存储器(RAM),用于存储当前正在运行的程序和处理的数据。
而辅助存储器(如硬盘、固态硬盘和光盘等)则用于长期存储数据和程序。
3. 输入输出设备:输入输出设备用于与外部世界进行交互。
常见的输入设备包括键盘、鼠标、扫描仪和摄像头等,用于将数据和命令输入到计算机系统中。
而输出设备如显示器、打印机和音频设备等则用于将计算机系统处理的结果反馈给用户。
4. 操作系统:操作系统是计算机系统的核心软件,它协调和管理计算机系统的各个硬件和软件资源。
操作系统负责分配CPU时间、内存管理、文件系统管理、设备管理和用户接口等。
常见的操作系统包括Windows、macOS和Linux等。
5. 应用软件:应用软件是用户使用计算机系统解决问题和完成工作的工具。
它包括各种办公软件、娱乐软件、图形设计软件、数据库管理软件等。
应用软件使用户能够利用计算机系统的功能实现各种任务和目标。
计算机系统的组成是一个相互协作的整体。
中央处理器通过存储器获取指令和数据进行处理,然后将结果输出到输出设备中显示给用户。
操作系统负责管理各个组件的资源和协调他们之间的通信。
应用软件则建立在操作系统之上,充分利用计算机系统的硬件和操作系统提供的功能。
另外,计算机系统的组成还涉及到计算机体系结构、总线技术、输入输出控制等方面。
一、计算机体系结构的基本概念计算机体系结构是指机器语言程序的设计者或是编译程序设计者所看到的计算机系统的概念性结构和功能特性。
Amdahl所定义的体现结构是指程序员面对的是硬件的系统。
所关心的是如何合理的进行软硬件功能的分配。
计算机系统结构是指机器语言级的程序员所了解的计算机的属性,即外特性。
可以包含数据表示,寄存器定义、数量、使用方式,指令系统,中断系统,存存储系统,IO系统等。
计算机组成是计算机结构的逻辑实现。
可以包含数据通路宽度,专用部件设置,缓冲技术,优化处理等。
计算机的实现是指其计算机组成的物理实现。
包括处理机,主存部件的物理结构,器件的集成度,速度的选择,模块、硬件、插件底板的划分和连接。
从使用语言的角度,可以把计算机系统按功能从高到低分为7级:0应用语言机器级、1高级程序语言机器级、2汇编语言机器级、3操作系统机器级、4传统机器语言机器级、5微程序机器级和6电子线路级。
3~6级为虚拟机,其语言功能均由软件实现。
硬件功能分配的基本原则:(1)功能要求。
首先是应用领域对应的功能要求,其次是对软件兼容性的要求;(2)性能要求。
如运算速度,存储容量,可靠性,可维护性和人机交互能力等;(3)成本要求。
体系结构设计的方法有三种:由上而下-从考虑如何满足应用要求开始设计;由下而上-基于硬件技术所具有的条件;由中间开始的方法。
体系设计的步骤:需求分析、需求说明、概念性设计、具体设计、优化和评价。
计算机体系结构的分类:(1)弗林FLYNN分类法:按指令流和数据流将计算机分为4类:①单指令流、单数据流-Single Instruction Stream Single Data Stream,SISD。
计算机,即传统的单处理机,通常用的计算机多为此类,如脉动阵列计算机systolic array;②单指令流、多数据流-Multiple,SIMD。
典型代表是并行处理机。
其并行性在于指令一级。
如ILLIAC、PEPE、STARAN、MPP等;③MISD计算机;④MIMD计算机。
计算机的体系结构计算机的体系结构是指计算机硬件系统整体组成的结构形式,主要包括硬件组成、指令系统、运算方式和数据路径等。
以下将从四个方面详细介绍计算机的体系结构。
1. 硬件组成计算机的硬件组成主要包括输入设备、输出设备、存储设备和中央处理器(CPU)等。
输入设备主要包括键盘、鼠标、扫描仪等,用于将人类活动转化为计算机可以理解的形式。
输出设备主要包括显示器、打印机等,用于将计算机的结果转化为人类可以理解的形式。
存储设备主要包括硬盘、U盘、内存等,用于存储计算机的数据和程序。
CPU是计算机的核心部件,主要负责计算、控制和存储数据等操作。
2. 指令系统指令系统是计算机执行程序的基础,它决定了计算机可以执行哪些操作以及如何执行。
不同的计算机有不同的指令系统,但它们大多都包括算术逻辑指令、数据传送指令、控制指令等。
算术逻辑指令主要用于完成数值运算和逻辑运算,数据传送指令用于将数据从一个位置传送到另一个位置,控制指令用于控制程序的执行流程。
3. 运算方式计算机的运算方式主要包括定点运算、浮点运算、矢量运算和并行运算等。
其中,定点运算主要用于整数运算,浮点运算用于实数运算,矢量运算用于计算向量和矩阵等复杂数据结构,而并行运算则可以同时执行多个指令,提高计算机的运算速度。
4. 数据路径数据路径是指计算机中用于传输数据和指令的路径。
它由总线、寄存器、运算器等组成。
总线主要用于将计算机各部件之间的数据传输,寄存器用于存储指令和数据,运算器用于执行指令操作。
在数据路径中,还有许多重要的部件如ALU(算术逻辑单元)、Cache(高速缓存)、MMU(内存管理单元)等等,它们的设计和性能都对计算机的整体性能有着决定性的影响。
综上所述,计算机的体系结构是计算机硬件系统整体组成的结构形式,主要包括硬件组成、指令系统、运算方式和数据路径等。
对于计算机发展和应用的推动具有重要意义,同时,也能够为我们理解计算机的工作原理提供重要帮助。