单片机芯片解密破解方法+单片机和数字电路抗干扰方法
- 格式:docx
- 大小:160.09 KB
- 文档页数:9
单片机电路设计中的抗干扰措施汇总1、切断干扰的传播途径A、增加干扰源(如电机、继电器)与敏感器件(如单片机)的距离,用地线把他们隔离或者在敏感器件加上屏蔽罩。
B、电路板合理分区,将强信号、弱信号、数字信号、模拟信号电路合理地分区域布置。
C、单片机和大功率器件的地线要单独接地,以减小互相干扰。
大功率器件要尽可能布置在电路板的边缘。
D、在单片机I/O口,电路板连接线等关键地方,使用抗干扰元件可显著提高电路的抗干扰性能。
E、晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。
2、尽量采用抗干扰性能强的单片机A、降低单片机内部的电源噪声在传统的数字集成电路设计中,通常将电源端和地端分别布置在对称的两边。
例如左下角为地,左上角为电源。
这使得电源噪声穿过整个硅片。
改进方法将单片机的电源和地安排在两个相邻的引脚上,这样不仅降低了穿过整个硅片的电流,还便于印制板上设计电源退耦电容,以降低系统噪声。
B、降低时钟频率单片机测控系统的时钟电路是一个调频噪声源,它不仅能干扰本系统,还对外界产生干扰,使其他系统的电磁兼容检测不能达标。
在保证系统可靠性的前提下,选用时钟频率低的单片机可降低系统的噪声。
以8051单片机为例,当最短指令周其为1US时,时钟是12MHZ。
而同样速度的MOTOROLA兼容单片机的厂商在不牺牲运算速度的前提下,将时钟频率降低到原来的1/3。
特别是MOTOROLA公司新推出的68HC08系列单片机、内部采用了锁相倍频技术,将外部时钟除至32KHZ,而内部总线速度却提高到8MHZ,甚至更高。
C、EFT技术随着超大规模集成电路的发展,单片机内部的抗干扰技术也在不断进步。
MOTOROLA公司新推出的68HC08系列单片机,采用EFT技术进一步提高了单片机的抗干扰能力,当振荡电路的正弦波信号受到外界干扰时,其波形上会叠加一些毛刺。
若以施密特电路对其整形时,这种毛刺会成为触发信号干扰正常的时钟信号。
单片机解密1、背景单片机(MCU)一般都有内部EEPROM/FLASH供用户存放程序和工作数据。
为了防止访问或拷贝单片机的机内程序,大部分单片机都带有加密锁定位或者加密字节,以保护片内程序。
如果在编程时加密锁定位被使能(锁定),就无法用普通的编程器直接读取单片机内的程序,这就是所谓单片机加密或者说锁定功能。
事实上,这样的保护措施很脆弱,很容易破解。
单片机攻击者借助专用设备或自制设备,利用单片机芯片设计上的漏洞或软件缺陷,通过多种技术手段,就可以从芯片提取关键信息,获取单片机内程序。
2、解密方法1)软件方法:主要针对SyncMos. Winbond等在生产工艺上的漏洞,利用某些编程器空位插字节,通过一定的方法查找芯片中是否有连续的空位,也就是查找芯片中连续的FF FF 字节,插入的字节能够执行把片内的程序送到片外的指令,然后用破解的设备进行截获,这样芯片内部的程序就被破解完成了。
2)硬件电路修改方法:其流程为a:测试使用高档编程器等设备测试芯片是否正常,并把配置字保存。
注:配置字指的是在PIC等系列的单片机里,其芯片内部大都有设置一个特殊的存储单元,地址是2007,由用户自由配置,用来定义一些单片机功能电路单元的性能选项。
b:开盖可以手工或开盖机器开盖。
c:做电路修改对不同芯片,提供对应的图纸,让厂家切割和连线,对每一个割线连线一般需要提供芯片位置概貌图、具体位置图、FIB示意图三张图纸(部分小的芯片只提供概貌图和FIB图)。
d:读程序取回电路修改后的单片机,直接用编程器读出程序。
e:烧写样片按照读出的程序和配置,烧写样片提供给客户。
这样就结束了IC解密。
3)软件和硬件结合的方法,比如对HOTEK,MDT等单片机破解。
3、芯片解密服务流程当客户有芯片解密的需求后,可以通过联系解密客户服务厂家进行沟通、咨询,提供详细的需解密的芯片信号及后缀、封装等相关特征。
厂家根据客户提供的具体型号由技术部门进行评估,确认是否能破解,若能破解,厂家确认好所需的费用和解密的周期,客户提供完好的母片并支付部分定金(对于某些芯片,可能还需要必要的测试环境),解密服务正式启动。
stc单片机解密方法STC单片机解密方法1. 引言STC单片机是市场上应用广泛的一款单片机系列,具有强大的功能和灵活的应用场景,但也因其内部代码加密保护而让一些研究者和开发者面临一定的困扰。
本文将详细介绍几种STC单片机解密方法。
2. 软件解密方法源码逆向工程源码逆向工程是一种常见的软件解密方法,通过对编译后的程序进行反汇编、分析和逆向推导,可以还原出程序的源代码。
对于STC 单片机,可以使用一些逆向工程软件如IDA Pro、Ghidra等对其固件进行分析,以获取相关的解密算法。
破解工具一些破解工具如STC-ISP、STC-Loader等,可以直接读取STC单片机的Flash内存,并将其中的加密固件下载到计算机进行解密。
这些工具通常会利用芯片的漏洞或者通信接口,如串口或者ISP下载接口,获取到加密的固件,并进行解密。
需要注意的是,使用破解工具进行解密需要一定的技术水平和设备支持。
3. 硬件解密方法电压破解电压破解是一种常见的硬件解密方法,通过对芯片进行实验室环境下的电压监测和干扰,获取到芯片内部的数据和计算过程。
对STC 单片机而言,通过使用专用的电压监测设备和技术手段,我们可以获取到芯片中一些关键的数据和算法,从而达到解密的目的。
硬件仿真硬件仿真是一种比较高级的硬件解密方法,通过将STC单片机的芯片进行捷径连接,将芯片的内部电信号直接引出,可以使用现有的仿真器或者逻辑分析仪对该信号进行分析和还原。
通过硬件仿真的手段,解密者可以获取到STC单片机内部的代码执行过程和相关算法。
4. 总结STC单片机的解密方法有软件解密和硬件解密两种。
其中软件解密可以通过源码逆向工程和破解工具进行,需要一定的技术和设备支持;而硬件解密则涉及到电压破解和硬件仿真等方法,需要更高的技术水平和设备支持。
无论选择哪种解密方法,都需要遵守相关法律和伦理规范,以确保合法和公平。
本文仅介绍了几种STC单片机解密的常见方法,希望能为解密研究者和开发者提供一定的参考与启发。
单片机应用系统的抗干扰方法要消退单片机应用系统的干扰,只要去掉干扰形成的三个基本条件(干扰源、传播路径、敏感器件)之一即可,内部的干扰源可以通过合理的电气设计在肯定程度上予以消退,外部干扰源则实行屏蔽、接地、隔离等措施予以消退或切断。
抗干扰设计的主要工作是围绕这一部分绽开的,上述三个部分也不是肯定划分的,通常一个系统的抗干扰措施是多方面的综合以达到最佳的效果。
在实践中,单片机应用系统的抗干扰设计一般是通过硬件抗干扰设计和软件抗干扰设计两种途径来实现的。
硬件假如设计得当,就可以将绝大部分干扰拒之门外,但仍旧会有少量干扰,所以软件措施必不行少。
由于软件措施是以占用CPU为代价的,假如没有硬件消退绝大部分干扰,CPU将疲于奔命,严峻影响系统的工作效率和实时性。
因此一个抗干扰性良好的单片机应用系统则是由硬件设计和软件开发相辅相成而构成。
1.硬件抗干扰设计① 电源电路单片机系统使用的电源,一般都是由电网的工频沟通电源经降压、整流、滤波等环节后供应。
由于电网的影响以及生产现场大容量电气设备的开停,会使沟通电压中含有高频成分、浪涌电压、尖峰脉冲或者发生较大幅度的电压波动。
这些因素都将导致干扰通过电源途径影响系统的正常工作。
电源做得好,整个电路的抗干扰工作就完成了一大半。
很多单片机对电源噪声很敏感,因此,应采纳抗干扰的开关电源或给单片机电源加滤波电路或稳压器,以削减电源噪声对单片机的干扰。
电源线的布置除了要依据电流的大小,尽量加租导体宽度外,还要使电源线、地线的走向与数据传递的方向全都。
这将有助于增加抗噪声的力量。
每种型号的单片机都有一个稳定工作的电压范围,例如凌阳SPCE061A单片机工作电压为3.3V~5V ,超出这个范围将消失特别。
② 硬件复位电路图1 采纳MAX6827的复位电路复位电路是最简单受干扰的(由于CPU 内部的复位电路的阻抗都比较高,为10~50kΩ) ,影响也是最大的。
因此,必需实行抗干扰措施。
单片机解密方法简单介绍下面是单片机解密的常用几种方法,我们做一下简单介绍:1:软解密技术,就是通过软件找出单片机的设计缺陷,将内部OTP/falsh ROM 或eeprom代码读出,但这种方法并不是最理想的,因为他的研究时间太长。
同一系列的单片机都不是颗颗一样。
下面再教你如何破解51单片机。
2:探针技术,和FIB技术解密,是一个很流行的一种方法,但是要一定的成本。
首先将单片机的C onfig.(配置文件)用烧写器保存起来,用在文件做出来后手工补回去之用。
再用硝酸熔去掉封装,在显微镜下用微形探针试探。
得出结果后在显微镜拍成图片用FIB连接或切割加工完成。
也有不用FIB用探针就能用编程器将程序读出。
3:紫外线光技术,是一个非常流行的一种方法,也是最简单的一种时间快、像我们一样只要30至1 20分钟出文件、成本非常低样片成本就行。
首先将单片机的Config.(配置文件)用烧写器保存起来,再用硝酸熔去掉封装,在显微镜下用不透光的物体盖住OTP/falsh ROM 或eeprom处,紫外线照在加密位上10到120分钟,加密位由0变为1就能用编程器将程序读出。
(不过他有个缺陷,不是对每颗OT P/falsh都有效)有了以上的了解解密手段,我们开始从最简的紫外光技术,对付它:EMC单片机用紫外光有那一些问题出现呢?:OTP ROM 的地址(Address:0080H to 008FH) or (Address:0280h to 028FH) 即:EMC的指令的第9位由0变为1。
因为它的加密位在于第9位,所以会影响数据。
说明一下指令格式:"0110 bbb rrrrrrr" 这条指令JBC 0x13,2最头痛,2是B,0X13是R。
如果数据由0变为1后:"0111 bbb rrrrrrr"变成JBS 0x13,2头痛啊,见议在80H到8FH 和280H到28FH多用这条指令。
51单片机的加密与解密 - 单片机51 单片机的加密与解密单片机在当今的电子技术领域,单片机的应用无处不在。
51 单片机作为一种经典的单片机类型,因其简单易用、性价比高而被广泛采用。
然而,随着其应用的普及,51 单片机的加密与解密问题也逐渐引起了人们的关注。
首先,我们来了解一下为什么要对 51 单片机进行加密。
在许多实际应用中,单片机内部运行的程序往往包含了开发者的核心技术、商业机密或者独特的算法。
如果这些程序被未经授权的人员读取和复制,可能会导致知识产权的侵犯、商业竞争的不公平,甚至可能对产品的安全性和稳定性造成威胁。
因此,为了保护开发者的权益和产品的安全性,对 51 单片机进行加密是非常必要的。
那么,常见的 51 单片机加密方法有哪些呢?一种常见的方法是代码混淆。
通过对程序代码进行复杂的变换和重组,使得代码难以理解和分析。
比如,将关键的变量名、函数名进行重命名,使用复杂的控制流结构等。
这样,即使攻击者获取了代码,也很难理清程序的逻辑和功能。
另一种方法是使用硬件加密模块。
一些 51 单片机芯片本身就提供了硬件加密的功能,例如加密锁、加密密钥存储等。
通过在程序中使用这些硬件加密模块,可以增加破解的难度。
还有一种加密方式是对程序进行加密存储。
将程序在存储时进行加密,只有在单片机运行时通过特定的解密算法进行解密后才能执行。
这样,即使存储介质被读取,攻击者得到的也是加密后的乱码。
然而,尽管有了这些加密手段,51 单片机的解密仍然是可能的。
解密的动机通常是为了获取他人的技术成果用于非法复制或者破解产品限制。
常见的 51 单片机解密方法主要包括以下几种。
逆向工程是一种常见的解密手段。
攻击者通过对单片机的硬件进行分析,包括芯片的引脚、内部电路等,尝试推断出程序的运行方式和存储结构。
此外,通过软件分析也是一种方法。
利用专业的工具对单片机的运行状态进行监测和分析,尝试找出加密算法的漏洞或者获取解密的关键信息。
还有一种比较暴力的方法是通过物理手段破解。
单片机破解的常用方法及应对策略摘要:介绍了单片机内部密码破解的常用方法,重点说明了侵入型攻击/物理攻击方法的详细步骤,最后,从应用角度出发,提出了对付破解的几点建议。
关键词:单片机;破解;侵入型攻击/物理攻击1引言单片机(Microcontroller)一般都有内部ROM/EEPROM/FLASH供用户存放程序。
为了防止未经授权访问或拷贝单片机的机内程序,大部分单片机都带有加密锁定位或者加密字节,以保护片内程序。
如果在编程时加密锁定位被使能(锁定),就无法用普通编程器直接读取单片机内的程序,这就是所谓拷贝保护或者说锁定功能。
事实上,这样的保护措施很脆弱,很容易被破解。
单片机攻击者借助专用设备或者自制设备,利用单片机芯片设计上的漏洞或软件缺陷,通过多种技术手段,就可以从芯片中提取关键信息,获取单片机内程序。
因此,作为电子产品的设计工程师非常有必要了解当前单片机攻击的最新技术,做到知己知彼,心中有数,才能有效防止自己花费大量金钱和时间辛辛苦苦设计出来的产品被人家一夜之间仿冒的事情发生。
2单片机攻击技术目前,攻击单片机主要有四种技术,分别是:(1)软件攻击该技术通常使用处理器通信接口并利用协议、加密算法或这些算法中的安全漏洞来进行攻击。
软件攻击取得成功的一个典型事例是对早期ATMELAT89C系列单片机的攻击。
攻击者利用了该系列单片机擦除操作时序设计上的漏洞,使用自编程序在擦除加密锁定位后,停止下一步擦除片内程序存储器数据的操作,从而使加过密的单片机变成没加密的单片机,然后利用编程器读出片内程序。
(2)电子探测攻击该技术通常以高时间分辨率来监控处理器在正常操作时所有电源和接口连接的模拟特性,并通过监控它的电磁辐射特性来实施攻击。
因为单片机是一个活动的电子器件,当它执行不同的指令时,对应的电源功率消耗也相应变化。
这样通过使用特殊的电子测量仪器和数学统计方法分析和检测这些变化,即可获取单片机中的特定关键信息。
单片机解密方法简单介绍下面是单片机解密的常用几种方法,我们做一下简单介绍:1:软解密技术,就是通过软件找出单片机的设计缺陷,将内部OTP/falsh ROM 或eeprom代码读出,但这种方法并不是最理想的,因为他的研究时间太长。
同一系列的单片机都不是颗颗一样。
下面再教你如何破解51单片机。
2:探针技术,和FIB技术解密,是一个很流行的一种方法,但是要一定的成本。
首先将单片机的C onfig.(配置文件)用烧写器保存起来,用在文件做出来后手工补回去之用。
再用硝酸熔去掉封装,在显微镜下用微形探针试探。
得出结果后在显微镜拍成图片用FIB连接或切割加工完成。
也有不用FIB用探针就能用编程器将程序读出。
3:紫外线光技术,是一个非常流行的一种方法,也是最简单的一种时间快、像我们一样只要30至1 20分钟出文件、成本非常低样片成本就行。
首先将单片机的Config.(配置文件)用烧写器保存起来,再用硝酸熔去掉封装,在显微镜下用不透光的物体盖住OTP/falsh ROM 或eeprom处,紫外线照在加密位上10到120分钟,加密位由0变为1就能用编程器将程序读出。
(不过他有个缺陷,不是对每颗OT P/falsh都有效)有了以上的了解解密手段,我们开始从最简的紫外光技术,对付它:EMC单片机用紫外光有那一些问题出现呢?:OTP ROM 的地址(Address:0080H to 008FH) or (Address:0280h to 028FH) 即:EMC的指令的第9位由0变为1。
因为它的加密位在于第9位,所以会影响数据。
说明一下指令格式:"0110 bbb rrrrrrr" 这条指令JBC 0x13,2最头痛,2是B,0X13是R。
如果数据由0变为1后:"0111 bbb rrrrrrr"变成JBS 0x13,2头痛啊,见议在80H到8FH 和280H到28FH多用这条指令。
51单片机的加密与解密51类单片机在完成三级加密之后采用烧坏加密锁定位(把芯片内的硅片击穿),不破坏其它部分,不占用单片机任何资源。
加密锁定位被烧坏后不再具有擦除特性。
一旦用OTP模式加密后,单片机片内的加密位和程序存储器内的数据就不能被再次擦除。
经过OTP加密之后通过编程器读取测试的时候会提示:部分引脚接触不良-----断脚。
例如:烧断89C51的31脚EA脚,烧断89C51、89C2051的数据线以及烧断PIC系列芯片的数据时钟线等。
这种加密方式会对一些通过数据位单片机解密的方式,造成一定的困难。
ATMEL 89C系列51单片机特点:1.内部含Flash存储器因此在系统的开发过程中可以十分容易开展程序的修改,这就大大缩短了系统的开发周期。
同时,在系统工作过程中,能有效地保存一些数据信息,即使外界电源损坏也不影响到信息的保存。
2.和80C51插座兼容89C系列单片机的引脚是和80C51一样的,所以,当用89C系列单片机取代80C51时,可以直接开展代换。
这时,不管采用40引脚亦或44引脚的产品,只要用一样引脚的89C系列单片机取代80C51的单片机即可。
3.静态时钟方式89C系列单片机采用静态时钟方式,所以可以节省电能,这对于降低便携式产品的功耗十分有用。
4.错误编程亦无废品产生一般的OTP产品,一旦错误编程就成了废品。
而89C 系列单片机内部采用了Flash存储器,所以,错误编程之后仍可以重新编程,直到正确为止,故不存在废品。
5.可开展反复系统试验用89C系列单片机设计的系统,可以反复开展系统试验;每次试验可以编入不同的程序,这样可以保证用户的系统设计到达最优。
而且随用户的需要和发展,还可以开展修改,使系统不断能追随用户的最新要求。
解密方法:对于ATMEL 89C系列芯片根据其存储器的特点,简单的方法就是想方法把密码去掉,因为OTP形式存储不能用电擦除,但是可以用紫外光来擦除,那么只要能控制好了只把密码部分擦除掉,而保存了程序段,那么这样的芯片就是不加密的了。
单片机如何抗干扰?除了硬件优化,怎么通过软件消除,这里有答案在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。
下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。
1 软件抗干扰方法的研究在工程实践中,软件抗干扰研究的内容主要是:一、消除模拟输入信号的噪声(如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。
本文针对后者提出了几种有效的软件抗干扰方法。
1.1 指令冗余CPU取指令过程是先取操作码,再取操作数。
当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。
若“飞” 到了三字节指令,出错机率更大。
在关键地方人为插入一些单字节指令,或将有效单字节指令重写称为指令冗余。
通常是在双字节指令和三字节指令后插入两个字节以上的NOP。
这样即使乱飞程序飞到操作数上,由于空操作指令NOP 的存在,避免了后面的指令被当作操作数执行,程序自动纳入正轨。
此外,对系统流向起重要作用的指令如RET、RETI、LCALL、LJMP、JC等指令之前插入两条NOP,也可将乱飞程序纳入正轨,确保这些重要指令的执行。
1.2 拦截技术所谓拦截,是指将乱飞的程序引向指定位置,再进行出错处理。
通常用软件陷阱来拦截乱飞的程序。
因此先要合理设计陷阱,其次要将陷阱安排在适当的位置。
(1 )软件陷阱的设计当乱飞程序进入非程序区,冗余指令便无法起作用。
通过软件陷阱,拦截乱飞程序,将其引向指定位置,再进行出错处理。
软件陷阱是指用来将捕获的乱飞程序引向复位入口地址0000H的指令。
通常在EPROM中非程序区填入以下指令作为软件陷阱:NOPNOPLJMP 0000H其机器码为0000020000。
(2 )陷阱的安排通常在程序中未使用的EPROM空间填0000020000。
最后一条应填入020000,当乱飞程序落到此区,即可自动入轨。
单片机芯片解密破解方法
单片机和数字电路抗干扰方法
单片机芯片解密破解方法
单片机(MCU)一般都有内部EEPROM/FLASH供用户存放程序和工作数据。
什么叫单片机解密呢?如果要非法读出里的程式,就必需解开这个密码才能读出来,这个过程通常称为单片机解密或芯片加密。
为了防止未经授权访问或拷贝单片机的机内程序,大部分单片机都带有加密锁定位或者加密字节,以保护片内程序;如果在编程时加密锁定位被使能(锁定),就无法用普通编程器直接读取单片机内的程序,单片机攻击者借助专用设备或者自制设备,利用单片机芯片设计上的漏洞或软件缺陷,通过多种技术手段,就可以从芯片中提取关键信息,获取单片机内程序这就叫单片机解密。
大部分单片机程式写进单片机后,工程师们为了防止他人非法盗用,所以给加密,以防他人读出里面的程式。
单片机加解密可划分为两大类,一类是硬件加解密,一类是软件加解密。
硬件加密,对于单片机来说,一般是单片机厂商将加密熔丝固化在IC内,熔丝有加密状态及不加密状态,如果处于加密状态,一般的工具是读取不了IC里面的程序内容的,要读取其内容,这就涉及到硬件解密,必须有专业的硬件解密工具及专业的工程师。
其实任何一款单片机从理论上讲,攻击者均可利用足够的投资和时间使用以上方法来攻破。
这是系统设计者应该始终牢记的基本原则,因此,作为电子产品的设计工程师非常有必要了解当前单片机攻击的最新技术,做到知己知彼,心中有数,才能有效防止自己花费大量金钱和时间辛辛苦苦设计出来的产品被人家一夜之间仿冒的事情发生。
众所周知,目前凡是涉及到单片机解密的领域一般都是进行产品复制的,真正用来做研究学习的,不能说没有,但是相当罕见。
所以,想破解单片机解密芯片破解,就得知道单片机解密芯片破解的原理。
单片机和数字电路抗干扰方法
形成干扰的基本要素有三个:
(1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。
如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。
(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。
典型的干扰传播路径是通过导线的传导和空间的辐射。
(3)敏感器件,指容易被干扰的对象。
如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。
抗干扰设计的基本原则是:
抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。
(类似于传染病的预防)。
1、抑制干扰源
抑制干扰源
就是尽可能的减小干扰源的du/dt,di/dt。
这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。
减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。
减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。
抑制干扰源的常用措施
如下:
(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。
仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。
(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。
(3)给电机加滤波电路,注意电容、电感引线要尽量短。
(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。
注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。
(5)布线时避免90度折线,减少高频噪声发射。
(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。
2、切断干扰传播路径
按干扰的传播路径可分为传导干扰和辐射干扰两类。
所谓传导干扰是指通过导线传播到敏感器件的干扰。
高频干扰噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。
电源噪声的危害最大,要特别注意处理。
所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。
一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔
离和在敏感器件上加蔽罩。
切断干扰传播途径的常用措施如下:
(1)充分考虑电源对单片机的影响。
电源做得好,整个电路的抗干扰就解决了一大半。
许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。
比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。
(2)如果单片机的I/O口用来控制电机等噪声器件,在I/O 口与噪声源之间应加隔离(增加π形滤波电路)。
控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。
(3)注意晶振布线。
晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。
此措施可解决许多疑难问题。
(4)电路板合理分区,如强、弱信号,数字、模拟信号。
尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。
(5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。
A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。
(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。
大功率器件尽可能放在电路板边缘。
(7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显着提高电路的抗干扰性能。
3、提高敏感器件的抗干扰性能
提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声的拾取,以及从不正常状态尽快恢复的方法。
提高敏感器件抗干扰性能的常用措施
如下:
(1)布线时尽量减少回路环的面积,以降低感应噪声。
(2)布线时,电源线和地线要尽量粗。
除减小压降外,更重要的是降低耦合噪声。
(3)对于单片机闲置的I/O口,不要悬空,要接地或接电源。
其它IC的闲置端在不改变系统逻辑的情况下接地或接电源。
(4)对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813,X25043,X25045等,可大幅度提高整个电路的抗干扰性能。
(5)在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字电路。
(6)IC器件尽量直接焊在电路板上,少用IC座。
4、软件方面
1、常将不用的代码空间全清成“0”,因为这等效于NOP,
可在程序跑飞时归位;
2、在跳转指令前加几个NOP,目的同1;
3、在无硬件WatchDog时可采用软件模拟WatchDog,以监测程序的运行;
4、涉及处理外部器件参数调整或设置时,为防止外部器件因受干扰而出错可定时将参数重新发送一遍,这样可使外部器件尽快恢复正确;
5、通讯中的抗干扰,可加数据校验位,可采取3取2或5取3策略;
6、在有通讯线时,如I^2C、三线制等,实际中我们发现将Data线、CLK线、INH线常态置为高,其抗干扰效果要好过置为低。
5、硬件方面:
1、地线、电源线的部线肯定重要了!
2、线路的去偶;
3、数、模地的分开;
4、每个数字元件在地与电源之间都要104电容;
5、在有继电器的应用场合,尤其是大电流时,防继电器触点火花对电路的干扰,可在继电器线圈间并一104和二极管,在触点和常开端间接472电容,效果不错!
6、为防I/O口的串扰,可将I/O口隔离,方法有二极管隔离、门电路隔离、光偶隔离、电磁隔离等;
7、当然多层板的抗干扰肯定好过单面板,但成本却高了几倍。
8、选择一个抗干扰能力强的器件比之任何方法都有效,这点应该最重要。