北师大版九年级数学下册试题单元评估试卷
- 格式:docx
- 大小:180.30 KB
- 文档页数:5
一、选择题1.下列不等式成立的是( ) A .sin60°<sin45°<sin30° B .cos30°<cos45°<cos60° C .tan60°<tan45°<tan30° D .sin30°<cos45°<tan60°2.sin45cos45︒+︒的值为( ) A .1B .2C .2D .223.如图,在ABC 中,AD 平分BAC ∠,//DE AC 交AB 于点E ,//DF AB 交AC 于点F ,且AD 交EF 于点O ,若8AF EF ==,则sin DAC ∠的值为( )A .13B .32C .12D .224.关于直角三角形,下列说法正确的是( ) A .所有的直角三角形一定相似B .如果直角三角形的两边长分别是3和4,那么第三边的长一定是5C .如果已知直角三角形两个元素(直角除外),那么这个直角三角形一定可解D .如果已知直角三角形一锐角的三角函数值,那么这个直角三角形的三边之比一定确定 5.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .2506.Rt ABC 中,90C ∠=︒,2AC =,1BC =,sin A =( ) A 5B .2 C .32D .127.如图,四边形ABCD 是边长为1的正方形,BPC △是等边三角形,连接DP 并延长交CB 的延长线于点H ,连接BD 交PC 于点Q ,下列结论:①135BPD ︒∠=;②BDP HDB △∽△;③:1:2DQ BQ =;④314BDPS-=.其中正确的有( )A .①②③B .②③④C .①②③④D .①②④8.如图,直线123////l l l ,ABC 的三个顶点分别落在123,,l l l 上,AC 交2l 于点D ,设1l 与2l 的距离为12,h l 与3l 的距离为2h .若12,:1:2AB BC h h ==,则下列说法正确的是( )A .:2:3ABDABCSS=B .:1:2ABD ABC S S =△△ C .sin :sin 2:3ABD DBC ∠∠=D .sin :sin 1:2ABD DBC ∠∠=9.如图,等边OAB ∆的边OB 在x 轴的负半轴上,双曲线ky x=过OA 的中点,已知等边三角形的边长是4,则该双曲线的表达式为( )A .3y =B .3y =-C .23y =D .23y =-10.在ΔABC 中,∠C =90º,AB =5,BC =3,则cos A 的值是( ) A .34B .43C .35D .4511.如图,直线y =-33x +2与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO'B',则点B'的坐标是( ) A .(4,23)B .(23,4)C .(3,3)D .(23+2,2)12.在ABC 中,AB 122=,AC 13=,2cos B 2∠=,则BC 边长为( ) A .7B .8C .8或17D .7或17二、填空题13.已知α,β均为锐角,且满足cos 0.5tan 30αβ-+-=,则αβ+的度数为_______.14.一运动员乘雪橇以10米/秒的速度沿坡比1:3的斜坡匀速滑下,若下滑的垂直高度为1000米,则该运动员滑到坡底所需的时间是______秒.15.在AOB 中,90AOB ∠=︒,30ABO ∠=︒,将AOB 绕顶点O 顺时针旋转,旋转角为()0180θθ︒<<︒,得到11AOB .(1)如图1,连接1AA 、1BB ,设1AOA 和1BOB 的面积分别为1S 、2S .则12:S S =__________.(2)如图2,设OB 中点为Q ,11A B 中点为P ,连接QP ,若1AO =,当θ=_______︒时,线段QP 长度最小,最小值为_____________.16.如图,矩形纸片ABCD 中,6AB =,8AD =,按下列步骤进行折叠,具体操作过程如下:第一步:先把矩形ABCD 对折,折痕为MN ,如图(1)所示;第二步:再把B 点叠在折痕线MN 上,折痕为AE ,点B 在MN 上的对应点为'B ,得Rt 'AB E △,如图(2)所示;第三步:沿'EB 折叠折痕为EF ,且AF 交B N '的延长线于点G ,如图(3)所示;则由纸片折叠成的图形中,'AB G S △为____.17.如图是一个海绵施把,图1、图2是它的示意图,现用线段BC 表示拉手柄,线段DE 表示海绵头,其工作原理是:当拉动BC 时线段OA 能绕点O 旋转(设定转角AOQ∠大于等于0°且小于等于180°),同时带动连杆AQ 拉着DE 向上移动.图1表示拖把的初始位置(点O 、A 、Q 三点共线,P 、Q 重合),此时45cm OQ =,图2表示拉动过程中的一种状态图,若DE 可提升的最大距离10cm PQ =.(1)请计算:OA =______cm ;AQ =_____cm .(2)当1sin 10OQA ∠=时,则PQ =______cm . 18.2cos302sin303tan45︒-+︒=______.19.已知等腰ABC ,AB AC =,BH 为腰AC 上的高,3BH =,3tan ABH ∠=,则CH 的长为______.20.已知在Rt ABC 中,90C ∠=︒,1cot 3B =,2BC =,那么AC =_____________. 三、解答题21.如图,△ABC 中,BD 平分∠ABC ,E 为BC 上一点,∠BDE=∠BAD=90°, (1)求证:BD 2=BA·BE ; (2)若AB=6,BE=8,求CD 的长.22.如图,已知甲、乙两栋楼的楼间距AB 30=米,小明在甲楼的楼下A 点处测得乙楼的楼顶点C 的仰角为63.5°(1)求乙楼的高BC .(参考数据:sin63.50.89︒≈,cos63.50.45︒≈,tan63.52︒≈)(2)小明发现在甲楼的中间外墙有一巨幅广告DE ,为了测量巨幅广告的宽度DE ,小明先在乙楼的楼底B 点测得点E 的仰角为45°,然后小明到楼顶点C 处,测得点D 的俯角为30°,根据小明测量的数据,请你帮助小明计算巨幅广告的宽度DE (结果保留根号)23.如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点,,A D G 在同一直线上,且5,3AD DE ==,连接,,AC CG AE ,并延长AE 交CG 于点H .(1)求sin EAC ∠的值. (2)求线段AH 的长.24.在ABC 中,90ACB ∠=︒,2CA CB ==,点P 是边AB 的中点,连接CP .(1)如图①,B 的大小=______(度),AB 的长=______;CP 的长=______; (2)延长BC 至点O ,使2OC BC =,将ABC 绕点O 逆时针旋转()0180αα︒<︒<︒得到A B C ''',点A ,B ,C ,P 的对应点分别为A ',B ',C ',P '. ①如图②,当30α=︒时,求点C '到直线OB 的距离及点C '到直线AB 的距离;②当C P ''与ABC 的一条边平行时,求点P '到直线AC 的距离(直接写出结果即可).25.如图,水库大坝的横断面是梯形,坝顶8m BC =,坝高30m ,斜坡CD 的坡度1:3,30i A =∠=︒,求坝底DA 的长.(3 1.732≈,结果精确到0.01m )26.(1)计算:022sin 30(2021)tan 60π︒+--︒. (2)已知线段4a =,9b =,求线段a ,b 的比例中项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据特殊角三角函数值,可得答案. 【详解】 解:A 、sin60°=32,sin45°=22,sin30°=12 ,故A 不成立;B 、cos30°3cos45°=22,cos60°=12,故B 不成立;C 、tan60°3,tan45°=1,tan30°=33,故C 不成立; D 、sin30°=12,cos45°=22,tan60°3D 成立; 故选:D . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题的关键.2.C解析:C 【分析】直接用特殊的锐角三角函数值代入求值即可; 【详解】∵ sin45°=2 ,cos45°=2,∴sin45°+ cos45°=2+2, 故选:C . 【点睛】本题考查了特殊的锐角三角函数值,正确记忆锐角三角函数值是解题的关键 .3.C解析:C 【分析】先证明四边形AEDF 是平行四边形,在根据题意得到四边形AEDF 是菱形,即可得到结果; 【详解】由题意://DE AC ,//DF AB , 即//DE AF ,//DF EA , ∴四边形AEDF 是平行四边形, 又∵AD 平分BAC ∠, ∴BAD CAD ∠=∠, ∵//AE DF , ∴BAD ADF ∠=∠, ∴DAF FDA ∠=∠,∴FA FD =, ∴四边形AEDF 是菱形,∴EF AD ⊥,且O 为EF 的中点,8EF =, ∴4OF =,∴在Rt △OAF 中,41sin 82OF DAF AF ∠===; ∴1sin 2DAC ∠=; 故答案选C . 【点睛】本题主要考查了菱形的判定与性质,结合三角函数计算是解题的关键.4.D解析:D 【分析】根据题目条件,利用举反例的方法判断即可. 【详解】∵因为等腰直角三角形和一般直角三角形是不相似的, ∴选项A 错误;若斜边长为4, ∴选项B 错误;已知两个角分别为45°,45°,这个直角三角形是无法求解的, 缺少解直角三角形需要的边元素, ∴选项C 错误;∵已知直角三角形的一个锐角的三角函数值, ∴就能确定斜边与直角边的比或两直角边的比, 根据勾股定理可以确定第三边的量比, ∴直角三角形的三边之比一定确定, 故选D. 【点睛】本题考查了命题的真伪,以数学基本概念,基本性质,基本法则为基础,通过举反例的方法判断是解题的关键.5.B解析:B 【分析】根据正弦的定义求解即可; 【详解】由题可知sin 340.56500280AC AB =︒=⨯=(米); 故选B . 【点睛】本题主要考查了解直角三角形的应用,准确计算是解题的关键.6.A解析:A 【分析】求出斜边AB ,再求∠A 的正弦值. 【详解】解:∵90C ∠=︒,2AC =,1BC =, ∴AB ==sinBC A AB ===, 故选:A . 【点睛】本题考查了勾股定理和锐角的正弦函数值的求法,解题关键是求出斜边长,熟知正弦的意义.7.D解析:D【分析】由等边三角形及正方形的性质求出∠CPD=∠CDP=75°、∠PCB=∠CPB=60°,从而判断①;证∠DBH=∠DPB=135°可判断②;作QE⊥CD,设QE=DE=x,则QD=2x,CQ=2QE=2x,CE=3x,由CE+DE=CD求出x,从而求得DQ、BQ的长,据此可判断③,证DP=DQ=6-22,根据BDPS=12BD•PDsin∠BDP求解可判断④.【详解】解:∵△PBC是等边三角形,四边形ABCD是正方形,∴∠PCB=∠CPB=60°,∠PCD=30°,BC=PC=CD,∴∠CPD=∠CDP=75°,则∠BPD=∠BPC+∠CPD=135°,故①正确;∵∠CBD=∠CDB=45°,∴∠DBH=∠DPB=135°,又∵∠PDB=∠BDH,∴△BDP∽△HDB,故②正确;如图,过点Q作QE⊥CD于E,设QE=DE=x,则QD2x,CQ=2QE=2x,∴CE3,由CE+DE=CD知x3x=1,解得x=3-12,∴QD2=6-22,∵BD2∴BQ=BD−DQ26-232-6,则DQ∶6-2∶32-6∶2,故③错误;∵∠CDP=75°,∠CDQ=45°,∴∠PDQ=30°,又∵∠CPD =75°, ∴∠DPQ =∠DQP =75°, ∴DP =DQ =6-22, ∴BDP S=12BD•PDsin ∠BDP =12×2×6-22×12=314- ,故④正确; 故选:D . 【点睛】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握等边三角形和正方形的性质、等腰三角形的判定与性质及相似三角形的判定等知识点.8.D解析:D 【分析】作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,利用三角形面积公式可得到12::1:2ABD BCD S S h h ∆∆==,则可对A 、B 进行判断;利用正弦的定义得到1sin h ABD AB ∠=,2sin hDBC BC∠=,利用AB CB =可对C 、D 进行判断. 【详解】解:作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,11122ABD S BD AE BD h ∆==,21122BCE S BD CF BD h ∆==, 12::1:2ABD BCD S S h h ∆∆∴==,:1:3ABD ABC S S ∆∆∴=,所以A 、B 选项错误;在Rt ABE ∆中,1sin h AE ABD AB AB ∠==, 在Rt BCF ∆中,2sin h CFDBC BC BC∠==, 而AB CB =,12sin :sin :1:2ABD DBC h h ∴∠∠==,所以C 选项错误,D 选项正确.故选:D .【点睛】本题考查了考查了解直角三角形,也考查了平行线之间的距离和等腰直角三角形的性质,难度一般.9.B解析:B【分析】如图,过点C 作CD ⊥OB 于点D .根据等边三角形的性质、中点的定义可以求得点C 的坐标,然后把点C 的坐标代入双曲线方程,列出关于系数k 的方程,通过解该方程即可求得k 的值.【详解】解:如图,过点C 作CD ⊥OB 于点D .∵△OAB 是等边三角形,该等边三角形的边长是4,∴OA=4,∠COD=60°,又∵点C 是边OA 的中点,∴OC=2,∴OD=OC•cos60°=2×12=1,33. ∴C (-13 31k -, 解得,3,∴该双曲线的表达式为3y =. 故选:B .【解答】本题考查了待定系数法求反比例函数解析式,等边三角形的性质.解题的关键是求得点C 的坐标. 10.D解析:D【分析】利用勾股定理可求出AC 的长,根据余弦函数的定义即可得答案.【详解】∵∠C=90°,AB=5,BC=3,∴22AB BC -=4,∴cosA=AC AB =45. 故选:D .【点睛】 考查勾股定理及锐角三角函数的定义,在直角三角形中,锐角的余弦是角的邻边与斜边的比;熟练掌握各三角函数的定义是解题的关键.11.B解析:B【分析】根据直线解析式求出点A 、B 的坐标,从而得到OA 、OB 的长度,再求出∠OAB =30°,利用勾股定理列式求出AB ,然后根据旋转角是60°判断出AB′⊥x 轴,再写出点B′的坐标即可.【详解】令y =0,则−x +2=0,解得x =,令x =0,则y =2,所以,点A (0),B (0,2),所以,OA =OB =2,∵tan ∠OAB =3OB OA ==, ∴∠OAB =30°,由勾股定理得,AB 4==,∵旋转角是60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故选:B .【点睛】本题考查了坐标与图形性质−旋转,一次函数图象上点的坐标特征,勾股定理的应用,三角函数的应用,求出AB′⊥x 轴是解题的关键. 12.D解析:D【分析】首先根据特殊角的三角函数值求得B ∠的度数,然后分锐角三角形和钝角三角形分别求得BD 和CD 的长后即可求得线段BC 的长.【详解】解:∵2 cos B2∠=,∴B45∠=,当ABC为钝角三角形时,如图1,∵AB122=,B45∠=,∴AD BD12==,∵AC13=,∴由勾股定理得CD5=,∴BC BD CD1257=-=-=;当ABC为锐角三角形时,如图2,BC BD CD12517=+=+=,故选D.【点睛】本题考查解直角三角形,解题的关键是明确余弦定理的内容、利用锐角三角函数解答.二、填空题13.【分析】根据非负数的性质列出算式根据特殊角的三角函数值计算即可【详解】解:由题意得cosα-05=0tanβ-=0∴cosα=05tanβ=解得α=60°β=60°则α+β的度数为120°故答案为:解析:120︒【分析】根据非负数的性质列出算式,根据特殊角的三角函数值计算即可.【详解】解:由题意得,cosα-0.5=0,tanβ3,∴cosα=0.5,3解得,α=60°,β=60°,则α+β的度数为120°,故答案为:120°.【点睛】本题考查的是非负数的性质和特殊角的三角函数值,掌握非负数之和等于0时,各项都等于0是解题的关键.14.200【分析】由坡比可得垂直高度与对应的水平宽度的比值因而可求出垂直高度为1000米对应的水平宽度再用勾股定理求出斜坡长;在已知速度的条件下即可求出时间【详解】解:由已知得:垂直高度1000米与水平解析:200【分析】由坡比可得垂直高度与对应的水平宽度的比值,因而可求出垂直高度为1000米对应的水平宽度,再用勾股定理求出斜坡长;在已知速度的条件下即可求出时间.【详解】解:由已知得:垂直高度1000米与水平宽度之比为1∴水平宽度为2000m =; ∴200020010s t s v ===. 故答案为:200.【点睛】 此题考查了解直角三角形−坡度坡角问题,正确理解坡比的定义是解题的关键. 15.1∶330【分析】(1)由旋转的性质解得继而证明结合30°的正切值再根据相似三角形的面积比等于相似比的平方解题即可;(2)连接根据三角形三边关系得到当在同一直线上时线段长度最小由直角三角形斜边中线的解析:1∶3 30 12-. 【分析】(1)由旋转的性质,解得1111,,OA OA OB OB AOA BOB θ==∠=∠=,继而证明11()AOA BOB SAS ,结合30°的正切值,再根据相似三角形的面积比等于相似比的平方解题即可;(2)连接OP ,根据三角形三边关系得到当O Q P 、、在同一直线上时,线段QP 长度最小,由直角三角形斜边中线的性质结合含30°角的直角三角形性质,可证1OA P 是等边三角形,继而解得OP 、OQ 的长,最后由=PQ OP OQ -解题即可.【详解】解:(1)旋转1111,,OA OA OB OB AOA BOB θ∴==∠=∠=11AOA BOB ∴、均是等腰三角形11tan 30OA OA OB OB ==︒=11AOA BOB ∴相似比3k =22133k ∴== 12:13S S ∴=:故答案为:1∶3;(2)连接OP ,在OQP 中,OQ QP OP +>当O Q P 、、在同一直线上时,OP 有最小值,即=PQ OP OQ -有最小值,当O Q P 、、在同一直线上时, P 是11A B 的中点,1111=2=O B P P A A ∴ 1130A B O ABO ∠=∠=︒ 1112OA A B ∴=11==P OP A OA ∴1OA P ∴是等边三角形,160OP A ∴∠=︒1906030AOA ∴∠=︒-︒=︒30θ∴=︒1OA =∴1OP =,tan 30OA OB ==︒Q 为OB 中点,122OQ OB ∴==12PQ ∴=-.【点睛】本题考查旋转的性质、直角三角形斜边的中线、含30°角的直角三角形、正切、三角形三边关系、等边三角形的判定与性质等知识,在重要考点,难度一般,掌握相关知识是解题关键.16.【分析】根据折叠得到△AEF是等边三角形再根据Rt△ABE中求得AE=根据相似三角形的性质可得到的长即可求解【详解】如图所示将图3展开可得下图由折叠可得Rt△AMB中AM=AB==3∴∠ABM=30解析:33【分析】根据折叠得到△AEF是等边三角形,再根据Rt△ABE中,求得AE=43,根据相似三角形的性质可得到B G 的长,即可求解.【详解】如图所示,将图3展开,可得下图,由折叠可得,Rt △AMB'中,AM=12AB=12AB '=3, ∴∠AB'M=30°,∴∠AA'B=30°,∴∠A'AB=60°,∴∠BAE=∠B'AE=30°, ∴∠EAF=60°,∠AEB=60°=∠AEB',∴△AEF 是等边三角形,又∵Rt △ABE 中,AB=6,∠BAE=30°,∴EF=AE=cos30AB ︒= ∵∠B'AE=∠AA'B=30°, ∴AE= A'E=∵B'G ∥A'E ,∴~FB G FEA '', ∴1EF 2B G FB EA ''==', ∴B G '=,∵△A B G ''的高为BM=3,∴'1'2AB G S B G BM =⨯⨯=△.故答案为:【点睛】 本题属于折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.得到△AEF 是等边三角形是解决问题的关键. 17.40或【分析】(1)由题意可知:OA 定义DE 使得最大值的一半AQ =OQ-OA 即可解决问题(2)分两种情形分别画出图形解直角三角形即可解决问题【详解】解:(1)由题意故答案为540(2)当是钝角时如图解析:40 42-48-【分析】(1)由题意可知:OA 定义DE 使得最大值的一半,AQ =OQ -OA 即可解决问题. (2)分两种情形分别画出图形,解直角三角形即可解决问题.【详解】解:(1)由题意11052OA cm =⨯=,45540AQ cm =-=, 故答案为5,40.(2)当OAQ ∠是钝角时,如图1中,作AH PQ ⊥于H .在Rt AHQ ∆中,1sin 10AH AQH AQ ∠==,40AQ =, 4AH ∴=,22224041211QH AQ AH ∴=-=-=,在Rt QOH ∆中,223OHOA AH ,31211OQ ∴=+,45(31211)(421211)PQ cm ∴=-+=-, 当OAQ ∠是锐角时,如图2中,作AH OP ⊥交PO 的延长线于H .同法可得:12113OQ =-,45(12113)(481211)PQ cm ∴=--=-.故答案为:421211-或481211-.【点睛】本题考查解直角三角形的应用,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.【分析】将特殊角的三角函数值代入求解【详解】解:故答案为:【点睛】本题考查特殊角的三角函数值的混合运算熟记特殊角的三角函数值是解题关键32【分析】将特殊角的三角函数值代入求解.【详解】 解:312cos302sin 303tan 4522313133222︒-+︒=⨯-⨯+⨯=-+=+, 故答案为:32+. 【点睛】本题考查特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题关键. 19.或【分析】如图所示分两种情况利用特殊角的三角函数值求出的度数利用勾股定理求出所求即可【详解】当为钝角时如图所示在中根据勾股定理得:即;当为锐角时如图所示在中设则有根据勾股定理得:解得:则故答案为或【 解析:33或3【分析】如图所示,分两种情况,利用特殊角的三角函数值求出ABH ∠的度数,利用勾股定理求出所求即可.【详解】当BAC ∠为钝角时,如图所示,在Rt ABH 中,3tan 3AH ABH BH ∠==,3BH =, 3AH ∴=,根据勾股定理得:22(3)323AB =+=,即23AC =,23333CH CA AH ∴=+=+=;当BAC ∠为锐角时,如图所示,在Rt ABH 中,3tan ABH ∠=, 30ABH ∴∠=,1122AH AB AC ∴==, 设AH x =,则有2AB AC x ==, 根据勾股定理得:222(2)3x x =+,解得:x =则HC AC AH =-=故答案为【点睛】此题属于解直角三角形题型,涉及的知识有:等腰三角形的性质,勾股定理,以及特殊角的三角函数值,熟练掌握直角三角形的性质及分类的求解的数学思想是解本题的关键. 20.6【分析】根据三角函数的定义即可求解【详解】∵cotB=∴AC==3BC=6故答案是:6【点睛】此题考查锐角三角函数的定义及运用解题关键在于掌握在直角三角形中锐角的正弦为对边比斜边余弦为邻边比斜边正解析:6【分析】根据三角函数的定义即可求解.【详解】∵cotB=BC AC, ∴AC=13BC BC cotB= =3BC=6. 故答案是:6.【点睛】此题考查锐角三角函数的定义及运用,解题关键在于掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,余切为邻边比对边.三、解答题21.(1)见解析;(2)【分析】(1)根据角平分线定义可证得∠ABD=∠EBD ,再根据相似三角形的判定证明△BAD ∽△BDE ,然后根据相似三角形的性质即可证得结论;(2)根据(1)中结论求得BD 长,再根据勾股定理求得AD 长,进而可求得∠ABD=30°,即∠ABC=60°,利用锐角三角函数求得AC 长,即可求得CD 长.【详解】解:(1)∵BD 平分∠ABC ,∴∠ABD=∠EBD ,又∵∠BDE=∠BAD=90°,∴△BAD ∽△BDE ,∴BD :BE=BA :BD ,即BD 2=BA·BE ; (2)∵由(1)可知,BD 2=BE·BA ,且AB=6,BE=8 ,∴BD=43,∴AD2=BD2-AB2=12 即AD=23,∵sin∠ABD=ADBD=12,∴∠ABD=30°,又∠ABD=∠EBD,∴∠ABC=60°,∴CA=BA×tan60°=63,∴CD=43.【点睛】本题考查相似三角形的判定与性质、锐角三角函数、勾股定理、角平分线的定义,熟练掌握相似三角形的判定与性质是解答的关键.22.(1)乙楼的高为BC为60米;(2)巨幅广告的宽度DE为(30-103)米.【分析】(1)在Rt△ABC中,由tan∠BAC=BCAB,得到BC的值.(2)在图中的两个直角三角形,Rt△ABE,Rt△DFC,利用45°,30°角的正切值,分别求出AE,DF的长,再得到DE的长度.【详解】(1)在Rt△ABC中,∵tan∠BAC=BCAB,∴BC=AB·tan∠BAC=30×2 =60(米),答:乙楼的高为BC为60米.(2)如图,过点C作CF⊥AD,交AD的延长线于F,在Rt △ABE 中,∵∠AEB=90°-∠ABE=90°-45°=45°,∴∠AEB=∠ABE ,∴AE=AB=30 (米),在Rt △DFC 中,∵tan ∠FCD=DF CF , ∴DF=CF·tan ∠FCD=30×33=103, ∴DE=AF-AE-DF=60-30-103=30-103(米),答:巨幅广告的宽度DE 为(30-103)米.【点睛】本题考查解直角三角形,以及仰角,俯角的定义,解题的关键是利用仰角,俯角构造直角三角形并解直角三角形.23.(1)17;(2)203417【分析】 (1)作EM AC ⊥于M ,根据sin EM EAM AE∠=求出EM 、AE 即可解决问题. (2)先证明GDC EDA ∆≅∆,得GCD EAD ∠=∠,推出AH GC ⊥,再根据1122AGC S AG DC GC AH ∆=⋅⋅=⋅⋅,即可解决问题. 【详解】解:(1)作EM AC ⊥于M .四边形ABCD 是正方形,90ADC ∴∠=︒,5AD DC ,45DCA ∠=︒,∴在RT ADE ∆中,90ADE ∠=︒,5AD =,3DE =,2234AE AD DE ∴=+=,在RT EMC ∆中,90EMC ∠=︒,45ECM ∠=︒,2EC =,2EM CM ∴==, ∴在RT AEM ∆中,217sin 34EM EAC AE ∠===.(2)在GDC ∆和EDA ∆中,DG DE GDC EDA DC DA =⎧⎪∠=∠⎨⎪=⎩,GDC EDA ∴∆≅∆,GCD EAD ∴∠=∠,GC AE =90DAE AED ∠+∠=︒,DEA CEH ∠=∠,90DCG HEC ∴∠+∠=︒,90EHC ∴∠=︒,AH GC ∴⊥,1122AGC S AG DC GC AH ∆=⋅⋅=⋅⋅,∴118522AH ⨯⨯=,AH ∴=【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等知识,添加常用辅助线是解决问题的关键,学会用面积法求线段,属于中考常考题型.24.(1)45°,;(2)①∴点C '到直线OB 的距离为2;点C '到直线AB 的距离为②4-4+5【分析】(1)根据三角形内角和定理以及勾股定理,直角三角形斜边中线的性质求解即可(2)①过点C '作C D OB '⊥,垂足为点D ,过点C '作C E AB '⊥,交BA 的延长线于点E ,连接AC ',解直角三角形求出C D '、C E '即可;②分三种情况:当//P C AC ''时,延长P C ''交OB 于H ;当//P C AB ''时,过点P '作P H OB '⊥交BO 的延长线于点H ,交A C ''于T ;当//P C AC ''时,延长P C ''交OB 于H 分别画出图形求解即可【详解】解:(1)在ABC 中,90ACB ∠=︒,2CA CB ==45B A ∴∠=∠=︒sin 2CA B AB == 点P 是AB 的中点12CP AB ∴==故答案为:45°,.(2)①过点C '作C D OB '⊥,垂足为点D ,过点C '作C E AB '⊥,交BA 的延长线于点E ,连接AC ',将ABC 绕点O 逆时针旋转α得到A B C ''',2224OC OC BC '∴===⨯=.在Rt OC D '△中,30O ∠=︒,114222C D OC ''∴==⨯=. ∴点C '到直线OB 的距离为2.2222421223OD OC C D ''=-=-==C D OB '⊥,90ACB ∠=︒,90C DB ACB '∴∠=∠=︒.//AC C D '∴.2C D '=,2AC =,C D AC '∴=.∴四边形C DCA '是平行四边形.423C A DC OC OD '∴==-=-,//C A DC ',45EAC B '∴∠=∠=︒.90904545EC A EAC ''∴∠=︒-∠=︒-︒=︒.EAC EC A ''∴∠=∠.C E AE '∴=.在Rt AC E '△中,222C E AE C A ''+=,222C A C E ''∴=.()2242322622C E C A ''==-=-. ∴点C '到直线AB 的距离为226-.②如图:当//P C AC ''时,延长P C ''交OB 于H//AC P H '90OHC AOC '∴∠=∠=︒45OC H B C P ''''=∠=︒cos 4522OH OC '∴=⋅︒=422CH OC OH ∴=-=-∴点P '到直线AC 的距离为422-如图,当//P C AB ''时,过点P '作P H OB '⊥交BO 的延长线于点H ,交A C ''于T ,由题意可得四边形OHTC '是矩形,1OH C T '==145CH OC OH ∴=+=+=∴点P '到直线AC 的距离为5如图,当//P C BC ''时,延长B A ''交BO 于点H ,可得cos 4532OH OB '=⋅︒=324CH ∴=∴点P '到直线AC 的距离为432+综上所述,点P '到直线AC 的距离为422-432+5.【点睛】本题考查了作图—旋转变换,解直角三角形,直角三角形斜边中线的性质,解题关键是理解题意,学会用分类讨论的思想思考问题.25.96m【分析】在Rt △DCF 中利用DC 的坡度和CF 的长求得线段DF 的长,根据30A ∠=︒,求AE ,然后与AE 、EF 相加即可求得AD 的长.【详解】解:∵坝高BE =CF =30米,斜坡AB 的坡角∠A =30°,∴tan30°=BE AE ,即303AE =, ∴AE =m ),∵斜坡CD 的坡度i =1:3,∴DF =3×30=90(m ),∴AD =AE +EF +DF ==(m ),答:坝底宽AD 的长约为149.96m .【点睛】本题考查了坡度、坡角的知识,解答本题的关键是理解掌握坡度、坡角的定义,能正确解直角三角形.26.(1)1-;(2)6.【分析】(1)先计算特殊角的正弦与正切值、零指数幂,再计算实数的混合运算即可得; (2)根据比例中项的定义列出式子计算即可得.【详解】(1)原式21212⨯+-= 113=+-1=-;(2)设线段a ,b 的比例中项为x ,则::a x x b =,4a =,9b =,4::9x x ∴=,解得6x =或6x =-(不符题意,舍去),即线段a ,b 的比例中项为6.【点睛】本题考查了特殊角的正弦与正切值、零指数幂、比例中项,熟记各定义和运算法则是解题关键.。
一、选择题1.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是( )A .B .C .D .2.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表:x1- 0 1 2 34 y10 52 125A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根3.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =04.如图所示,二次函数2y ax bx c =++的图象经过点(-1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0abc >;②420a b c -+<;③20a b -<;④284b a ac +>.其中正确的有( )A .1个B .2个C .3个D .4个5.抛物线23y x =向左平移5个单位,再向下平移1个单位,所得到的抛物线是( ) A .23(5)1y x =-+ B .23(-5)1y x =- C .23(5)1y x =+-D .23(5)1y x =++6.如图,抛物线2y ax bx c =++的对称轴是直线1x =-,下列结论:①0abc >;②240b ac -≥;③80a c +<;④5320a b c -+<,正确的有( )A .1个B .2个C .3个D .4个7.已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =.有下列结论:①0abc >;②关于x 的方程20ax bx c ++=有两个不等的实数根;③12a <-.其中正确结论的个数是( ) A .0B .1C .2D .38.如图1,在矩形ABCD 中,动点E 从点A 出发,沿A B C →→的路线运动,当点E 到达点C 时停止运动.若FE AE ⊥,交CD 于点F 设点E 运动的路程为x ,FC y =,已知y 关于x 的图象如图2所示,则m 的值为( )A .2B .2C .1D .239.函数k y x=与()20y kx k k =-≠在同一直角坐标系中的图象大致是下图中的( ) A . B . C . D .10.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2ba =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个11.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( )A .10sB .20sC .30sD .40s12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.将抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为_____. 14.已知二次函数2(0)y ax bx c a =++≠的自变量x 与函数值y 之间满足下列数量关系:x0 1 2 3 y75713则代数式的值为_______.15.若A (m-2,n ),B (m+2,n )为抛物线2()2020y x h =--+上两点,则n=_______.16.已知函数y b =的图象与函数23|1|43y x x x =----的图象恰好有四个交点,则b 的取值范围是______.17.有五张正面分别标有数字32112---,,,,的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于以x为自变量的二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是____.18.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).19.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法:x··· 3-2-1- 0 1 ··· y···6-466···①抛物线与轴的交点为0,6;②抛物线的对称轴是在轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号).20.如图,抛物线()()1244y x x =+-与x 轴交于A B 、两点,P 是以点()0,3C 为圆心,2为半径的圆上的动点,Q 是线段PA 上靠近点A 的三等分点,连结OQ ,则线段OQ 的最大值是__________.三、解答题21.已知:抛物线y 1=﹣x 2﹣2x +3的图象交x 轴于点A ,B (点A 在点B 的左侧). (1)请在平面直角坐标系内画出二次函数y 1=﹣x 2﹣2x +3的草图,并标出点A 的位置; (2)点C 是直线y 2=﹣x +1与抛物线y 1=﹣x 2﹣2x +3异于B 的另一交点,则点C 的坐标为 ;当y 1≥y 2时x 的取值范围是 .22.平面直角坐标系xOy 中,已知抛物线2y x bx c =++经过()21,21m m -++、()20,22mm ++两点,其中m 为常数.(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线2y x bx c =++与x 轴有公共点,求m 的值;(3)设()1,a y 、()22,a y +是抛物线2y x bx c =++上的两点,请比较2y 与1y 的大小,并说明理由.23.如图, 已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线2y ax bx c =++与直线交于A ,E 两点,与x 轴交于B (1,0),C (2,0)两点.(1)求该抛物线的解析式;(2)动点P 在x 轴上移动, 当△PAE 是直角三角形时, 请通过计算写出一个满足条件点P 的坐标.24.一个二次函数图像上部分点的横坐标x ,纵坐标y 的对应值如下表:x … 0 1 2 3 4 … y…m﹣13…的值为 ;(2)在给定的直角坐标系中,画出这个函数的图像; (3)根据图像,写出当y >0时,x 的取值范围.25.已知二次函数223(0)y mx mx m m =-->的图像与x 轴交于A ,B 两点(点A 在点B 左侧),顶点为C .(1)求A ,B 两点的坐标;(2)连接,BC AC ,若ABC 为等边三角形,求m 的值.26.2020年是国家实施精准扶贫、实现贫困人口全面脱贫的决胜之年.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售,在销售的30天中,第一天卖出20千克,为了扩大销售,采取降价措施,以后每天比前一天多卖出4千克,第x 天的售价为y 元/千克,y 关于x 的函数解析式为()()76120,2030,mx m x x y n x x ⎧-≤<⎪=⎨≤≤⎪⎩为正整数为正整数且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本).(1)m =______,n =______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到2yx ;当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,利用重叠的面积等于正方形的面积减去△MNE 的面积得到()2221y x x =--,配方得到()222y x =--+,然后根据二次函数的性质对各选项进行分析判断即可. 【详解】解:当0<x≤1时,2yx ,当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,如图,CD=x ,则2AD x =-, ∵Rt △ABC 中,AC=BC=2, ∴△ADM 为等腰直角三角形, ∴2DM x =-,∴()222EM x x x =--=-,∴S △ENM ()()22122212x x =-=-, ()()2222214222y x x x x x =--=-+-=--+∴()()()22012212y x x y x x ⎧=≤⎪⎨=--+≤⎪⎩﹤﹤, 故选:A . 【点睛】本题考查动点问题的函数图象:通过看图获取信息,考查学生问题分析能力,解题的关键是分两种情况考虑:当0<x≤1和当1<x≤2.2.D解析:D 【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,当x <2时,y 随x 的值增大而减小;当x >2时,y 随x 的值增大而增大,该函数开口向上,故选项A 、C 不符合题意; ∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B 不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x 轴没有交点, ∴方程20x bx c ++=无实数根,故选项D 符合题意. 故选:D . 【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3.D解析:D 【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m −n +k =0,则可对D 选项进行判断. 【详解】解:A .∵抛物线与x 轴有两个交点, ∴n 2﹣4mk >0,所以A 选项错误; B .∵抛物线开口向上, ∴m >0,∵抛物线与y 轴的交点在x 轴下方, ∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1, ∴﹣2nm=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1, ∴抛物线与x 轴的另一个交点为(﹣1,0), ∴m ﹣n +k =0,所以D 选项正确; 故选:D . 【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2bx a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.4.D解析:D 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】 解:①∵a <0,2ba-<0, ∴b <0.∵抛物线交y 轴与正半轴, ∴c >0.∴abc >0,故①正确.②根据图象知,当x=-2时,y <0,即4a-2b+c <0;故②正确; ③∵该函数图象的开口向下, ∴a <0;又∵对称轴-1<x=2ba-<0, ∴2a-b <0,故③正确;④∵y=244ac b a->2,a <0,∴4ac-b 2<8a ,即b 2+8a >4ac ,故④正确. 综上所述,正确的结论有①②③④.故答案为:D .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.5.C解析:C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=3x 2向左平移5个单位所得直线解析式为:y=3(x+5)2;再向下平移1个单位为:y=3(x+5)2-1.故选:C .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 6.B解析:B【分析】首先根据函数图像分别判断出a 、b 、c 的符号判断结论①;再利用与x 轴交点的个数得出24b ac -的正负判断结论②;利用对称轴以及当2x =时函数值的正负判断结论③;利用当1x =-和2x =-时的函数值的正负来判断结论④.【详解】结论①由抛物线开口方向向上可得0a >;对称轴在y 轴左侧可得a 、b 符号相同,即0b >;函数图像与y 轴交于负半轴,可得0c <;由此可知0abc <,故①错误. 结论②由函数图像与x 轴有两个交点可得240b ac ->,故②正确.结论③由函数图像可知抛物线对称轴为1x =-,所以12b a-=-,整理可得2b a =;当2x =时,420a b c ++>,将2b a =代入420a b c ++>可得,80a c +>,故③错误. 结论④由函数图像可知当2x =-时,420a b c -+<,当1x =-时,0a b c -+<,所以532(42)()0a b c a b c a b c -+=-++-+<,故④正确.综上所述,本题正确结论为②④,共2个.故选B.【点睛】本题主要考查二次函数的系数与图像的关系,关键在利用函数中当1x =-、2x =-和1x =-时的函数值的大小来判断③④结论的对错.7.C解析:C【分析】由二次函数的对称性及题意可得该抛物线与x 轴的另一个交点坐标为()1,0-,进而可得抛物线的开口方向向下,则有a 0,b 0,c 0<>>,然后根据二次函数的性质可进行排除选项.【详解】解:∵抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =, ∴抛物线与x 轴的另一个交点的横坐标为12212⨯-=-, ∴该点坐标为()1,0-,∴抛物线的开口方向向下,即0a <,根据“左同右异”可得0b >,∴0abc <,故①错误; ∴令y=0,则关于x 的方程20ax bx c ++=的解为:122,1x x ==-,故②正确; 根据根与系数的关系可得122c x x a==-, ∴21c a =->, 解得12a <-,故③正确; ∴正确的个数有2个;故选C .【点睛】 本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 8.D解析:D【分析】分别求出点E 在AB 、BC 段运动时函数的表达式,即可求解.【详解】解:由图2可知,AB=6,BC=10-6=4,①当点E 在AB 上运动时,y=FC=BE=AB-AE=6-x ,即y=6-x (0≤x≤6),图象为一次函数;②当点E 在BC 上运动时,如下图,则BE=x-AB=x-6,EC=BC-BE=4-(x-6)=10-x , FC=y ,AB=6,∵∠FEC+∠AEB=90°,∠AEB+∠EAB=90°,∴∠FEC=∠EAB ,∴∠CFE=∠AEB ,∴△ABE ∽△ECF , ∴BE AB CF CE=,即6610x y x -=-, 整理得:()2181061063y x x x =-+-<≤,图象为二次函数, ∵106-<, 故()2218121086363y x x x =-+-=--+有最大值,最大值为23, 即23m =, 故选:D .【点睛】本题考查的是动点图象问题,涉及到二次函数、一次函数、相似三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.9.B解析:B【分析】根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.【详解】解:分两种情况讨论:①当k>0时,反比例函数k y x=在一、三象限,而二次函数()20y kx k k =-≠开口向上,与y 轴交点在原点下方,故C 选项错误,B 选项正确; ②当k<0时,反比例函数k y x=在二、四象限,而二次函数()20y kx k k =-≠开口向下,与y 轴交点在原点上方,故A 选项与D 选项错误.故选B .【点睛】 本题考查了反比例函数图象性质和二次函数图象性质.关键是根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.10.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =, ∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.11.B解析:B【分析】当s 取最大值时,飞机停下来,求函数最大值时的自变量即可.【详解】∵当s 取最大值时,飞机停下来,∴t= 6022( 1.5)b a -=-⨯-=20, 故选:B .【点睛】本题考查了二次函数应用-飞机着陆问题,熟练把问题转化为二次函数的最值问题是解题的关键.12.D解析:D【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案.【详解】解:由图象开口向上,可知a<0,与y 轴的交点在x 轴的下方,可知c<0, 又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误; ∵122b a -= ∴=-a b , ∴0a b +=,故B 错误; 当12x =时,则11042y a b c =++>, ∵=-a b , ∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误;当21x n =+时,222(1)(1)y a n b n c =++++4222an an a an a c =++--+42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥,∴22(1)an n c c ++≤,即y c ≤,故D 正确;故选:D .【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.y =3x2+1【分析】根据抛物线平移规律常数项加1即可【详解】解:抛物线y =3x2沿y 轴向上平移1个单位所得的抛物线关系式为y =3x2+1故答案为:y =3x2+1【点睛】本题考查了抛物线平移的变化规解析:y =3x 2+1.【分析】根据抛物线平移规律,常数项加1即可.【详解】解:抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为y =3x 2+1, 故答案为:y =3x 2+1.【点睛】本题考查了抛物线平移的变化规律,解题关键是准确掌握函数平移的规律,左加右减自变量,上加下减常数项.14.91【分析】观察表格可知:x=0时y=7x=2时y=7即可求得抛物线的对称轴为直线x==1根据抛物线的对称性求得x=-1时y=13从而求得4a+2b+c=7a-b+c=13【详解】解:观察表格可知:解析:91【分析】观察表格可知:x=0时,y=7,x=2时,y=7,即可求得抛物线的对称轴为直线x=022+=1,根据抛物线的对称性求得x=-1时,y=13,从而求得4a+2b+c=7,a-b+c=13.【详解】解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x=022+=1, ∵x=3时,y=13,∴x=-1时,y=13,∴4a+2b+c=7,a-b+c=13,∴(4a+2b+c )(a-b+c )的值为91,故答案为91.【点睛】本题考查二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 15.2016【分析】根据二次函数的图象与性质可得抛物线的对称轴为再利用m-2+m+2=2h 解得m=h 则可得A (h −2n )B (h +2n )将B (h +2n )代入函数关系式即可求出结果【详解】解:∵A (m-2n解析:2016【分析】根据二次函数的图象与性质可得抛物线2()2020y x h =--+的对称轴为x h =,再利用m-2+m+2=2h ,解得m=h ,则可得A (h−2,n ),B (h +2,n ),将B (h +2,n )代入函数关系式即可求出结果.【详解】解:∵A (m-2,n ),B (m+2,n )是抛物线2()2020y x h =--+上两点, ∴抛物线2()2020y x h =--+的对称轴为x h =,∴m-2+m+2=2h ,解得m=h ,∴A (h−2,n ),B (h +2,n ),当x =h +2时,n =−(h +2−h )2+2020=2016,故答案为:2016.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数图象上的点的坐标特征并灵活运用所学知识解决问题.16.【分析】根据绝对值的意义分两种情形化简绝对值后根据图像确定b 的范围即可【详解】当x≥1时y=;当x <1时y=;∴二图像的交点为(1-6)y=的最小值为画图像如下根据图像可得直线与之间的部分有个交点∴ 解析:2564b -<<- 【分析】根据绝对值的意义,分两种情形化简绝对值,后根据图像确定b 的范围即可.【详解】当x≥1时,y=27x x -;当x <1时,y=26x x --; ∴227(1)6(1)x x x y x x x ⎧-≥=⎨--<⎩, 二图像的交点为(1,-6), y=26x x --的最小值为254-, 画图像如下,根据图像,可得直线6y =-与254y =-之间的部分有4个交点, ∴b 的取值范围为254-<b <-6, 故填254-<b <-6. 【点睛】 本题考查了图像的交点问题,利用分类思想,数形结合思想,最值思想画出图像草图是解题的关键.17.【分析】把点的坐标代入解析式转化为a 的一元二次方程确定方程的根从给出的数字中扣除方程的根就是符合题意的a 值计算概率即可【详解】当二次函数的图象经过点时得解得所以符合题意的a 值有-3-12共三个所以二 解析:35【分析】把点的坐标代入解析式,转化为a 的一元二次方程,确定方程的根,从给出的数字中扣除方程的根就是符合题意的a 值,计算概率即可.【详解】当二次函数22(1)2y x a x a =-++-的图象经过点(1,0)时,得 220a a +-=,解得 122,1a a =-=,所以符合题意的a 值有-3,-1,2,共三个,所以二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是35,故答案为:35. 【点睛】 本题考查了简单事件的概率计算、二次函数,利用二次函数的图象过点的意义,判定符合题意的a 值是解题的关键.18.③④【分析】利用数形结合思想从抛物线的开口与坐标轴的交点对称轴等方面着手分析判断即可【详解】解:∵抛物线的开口向下对称轴在原点的右边与y 轴交于正半轴∴a <0b >0c >0∴abc <0∴结论①错误;∵抛解析:③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0, b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴b=-2a ;∵ c+a+b >0,∴c-a >0,∴a-c <0, ∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x当p<0时,()()120<--p m x m x∴()()120p m x m x--≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.19.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y轴的右侧,正确;③由表中数据可知在对称轴左侧,y随x增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.【点睛】主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x,y轴的交点坐标等.20.【分析】当BCP三点共线且C在BP之间时BP最大连接PB此时△OAQ∽△BAP且相似比为1:3由此即可求得求出BP的最大值即可求解【详解】解:如下图所示连接BP当BCP三点共线且C在BP之间时BP最解析:7 3【分析】当B、C、P三点共线,且C在BP之间时,BP最大,连接PB,此时△OAQ∽△BAP,且相似比为1:3,由此即可求得13=OQ BP,求出BP的最大值即可求解.【详解】解:如下图所示,连接BP ,当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,令()()12404=+-=y x x ,求得1224,==x x , ∴B(4,0),A(-2,0), ∵21===63AO AQ AB AP,且∠QAO=∠PAB , ∴△OAQ ∽△BAP , ∴13=OQ BP ,故只要BP 最大,则OQ 就最大, 此时BP 最大值为:224327++=BC CP , ∴OQ 的最大值为:73. 【点睛】本题考查了抛物线与x 轴的交点坐标,相似三角形的性质和判定,本题的关键是根据圆的基本性质,确定BP 的最大值,进而求解.三、解答题21.(1)见解析;(2)()2,3-,21x -≤≤【分析】(1)利用五点法作出二次函数的图像,然后令x=0求出A 点坐标即可;(2)将两个函数联立形成新的一元二次方程,然后求解C 点坐标,最后利用图像判断x 的取值范围即可.【详解】(1)由题意得: x ··· -3 -2 -1 0 1 ···y .. 0 3 4 3 0 (1)由上图得A 点坐标为()3,0-;(2)由题意得:2123x x x -+=--+,解得12x =-,21x =,当2x =-时,()213y =--+=,∴C 点坐标为()2,3-,由上图得,当y 1≥y 2时,21x -≤≤.【点睛】本题考查了二次函数的图像和性质,重点是根据五点法作出二次函数的图像,然后利用数形结合思想进行判断.22.(1)b =2,c =m 2+2m +2;(2)m =-1;(3)见解析【分析】(1)由抛物线上两点代入抛物线解析式中即可求出b 和c ;(2)令y =0,抛物线和x 轴有公共点,即△≥0,再结合非负数的性质确定出m 的值, (3)将两点代入抛物线解析式中,表示出y 1,y 2,求出y 2-y 1分情况讨论即可【详解】解:(1)∵抛物线y =x 2+bx +c 经过(-1,m 2+2m +1)、(0,m 2+2m +2)两点, ∴2212122b c m m c m m ⎧-+=++⎨=++⎩, ∴2222b c m m =⎧⎨=++⎩, 即:b =2,c =m 2+2m +2;(2)由(1)得y =x 2+2x +m 2+2m +2,令y =0,得x 2+2x +m 2+2m +2=0,∵抛物线与x 轴有公共点,∴△=4-4(m 2+2m +2)≥0,∴(m +1)2≤0,∵(m +1)2≥0,∴m +1=0,∴m =-1;(3)由(1)得,y =x 2+2x +m 2+2m +2,∵(a ,y 1)、(a +2,y 2)是抛物线的图象上的两点,∴y 1=a 2+2a +m 2+2m +2,y 2=(a +2)2+2(a +2)+m 2+2m +2,∴y 2-y 1=[(a +2)2+2(a +2)+m 2+2m +2]-[a 2+2a +m 2+2m +2]=4(a +2)当a +2≥0,即a ≥-2时,y 2-y 1≥0,即y 2≥y 1,当a +2<0,即a <-2时,y 2-y 1<0,即y 2<y 1.【点睛】此题是二次函数综合题,主要考查了待定系数法,抛物线与x 轴的交点,比较代数式的大小,解本题的关键是求出b ,用m 表示出抛物线解析式,难点是分类讨论.23.(1)213122=-+y x x ;(2)点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2. 【分析】(1)根据直线的解析式求得点A (0,1),然后利用待定系数法求得函数解析式;(2)让直线解析式与抛物线的解析式结合即可求得点E 的坐标.△PAE 是直角三角形,应分点P 为直角顶点,点A 是直角顶点,点E 是直角顶点三种情况探讨.【详解】解:(1)解:(1)∵直线y=12x+1与y 轴交于点A , ∴A (0,1),将A (0,1),B (1,0),C (2,0)代入2y ax bx c =++中 10420c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:12321a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴抛物线的解析式为:213122=-+y x x (2) 设点E 的横坐标为m ,则它的纵坐标为213122m m -+即E 点的坐标213(,1)22m m m -+,又∵点E 在直线112y x =+上, ∴213111222m m m -+=+解得10m =(舍 去) ,24m =, E ∴的坐标为(4,3).(Ⅰ)当A 为直角顶点时,过A 作1AP DE ⊥交x 轴于1P 点,设1(,0)P a 易知D 点坐标为(2,0)-,由Rt AOD Rt ∆∽△1POA 得:DO OA OA OP =,即211a=, 12a ∴=, 11(2P ∴,0). (Ⅱ) 同理,当E 为直角顶点时, 过E 作2EP DE ⊥交x 轴于2P 点,由Rt AOD Rt ∆∽△2P ED 得,2DO DE OA EP =,即221=22EP ∴=,2152DP ∴==, 1511222a ∴=-=, 2P 点坐标为11(,0)2.(Ⅲ) 当P 为直角顶点时, 过E 作EF x ⊥轴于F ,设3(P b ,0),由90OPA FPE ∠+∠=︒,得OPA FEP ∠=∠,Rt AOP Rt PFE ∆∆∽, 由AO OP PF EF =得143b b =-, 解得13b =,21b =,∴此时的点3P 的坐标为(1,0)或(3,0),综上所述, 满足条件的点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,直线和抛物线的交点等;分类讨论的思想是解题的关键.24.(1)3;(2)见解析;(3)x<1或x>3.【分析】(1)利用抛物线的对称性得到抛物线的对称轴为直线x=2,则x=4和x=0时的函数值相等,从而得到m的值;(2)利用描点法画出二次函数图象;(3)结合函数图象,写出抛物线在x轴上方所对应的自变量的范围.【详解】解:(1)∵抛物线经过点(1,0),(3,0),∴抛物线的对称轴为直线x=2,顶点坐标为(2,-1),∴x=4和x=0时的函数值相等,∴m=3;故答案为:3;(2)描点,连线,二次函数图象如图所示,y 时,x<1或x>3.(3)观察图象,0【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 25.(1)(1,0)A -,(3,0)B ;(2)32m = 【分析】(1)把y=0代入,解方程即可;(2)求出顶点坐标,过C 作CD AB ⊥于D ,求出CD 即可.【详解】解:(1)2230mx mx m --=,∵0m >,方程两边同时除以m 得, 2230x x --=解得,13x =,21x =-∴A ,B 两点的坐标分别为:(1,0)A -,(3,0)B .(2)抛物线223(0)y mx mx m m =-->的顶点横坐标为:212m x m-=-=, 把x=1代入223y mx mx m =--得,y=-4m ,抛物线的顶点C 的坐标为:(1,4)C m -由(1)得,AB=4,过C 作CD AB ⊥于D , ∵ABC 为等边三角形,∴AD=2,AC=4, ∴22224223CD AC AD =-=-=∵点C 在第四象限,∴43m =∴3m =. 【点睛】本题考查求二次函数与x 轴交点,等边三角形的性质,解题关键是熟练的解一元二次方程,根据已知条件,找到坐标与线段的关系.26.(1)12m =-,25n =;(2)当18x =时,968W =最大. 【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值.【详解】解:(1)第12天的售价为32元/件,代入76y mx m =-得 321276m m =-,解得12m =-, 当地26天的售价为25元/千克时,代入y n =,则25n =, 故答案为:12m =-,25n =. (2)由(1)第x 天的销售量为()2041x +-即416x +.当120x ≤<时,()()22141638182723202189682W x x x x x ⎛⎫=+-+-=-++=--+ ⎪⎝⎭, ∴当18x =时,968W =最大.当2030x ≤≤时,()()416251828112W x x =+-=+,∵280>,∴W 随x 的增大而增大,∴当30x =时,952W =最大.∵968952>,∴当18x =时,968W =最大.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.。
北师大版九年级数学下册各单元同步测试题【精品全套】九年级数学(下)单元评估试卷第一 章 直角三形的边角关系(总分:100分;时间: 分) 姓名 学号 成绩 一、精心选一选,相信自己的判断!(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案A.4/5B.3/5C.3/4D.4/32、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化3、等腰三角形的底角为30°,底边长为23,则腰长为( ) A .4B .23C .2D .224、如图1,在菱形ABCD 中,∠ABC =60°,AC =4,则BD 长为( ) A .83B .43C .23D .85、在△ABC 中,∠C =90°,下列式子一定能成立的是( )A .sin a cB = B .cos a b B =C .tan c a B =D .tan a b A =6、△ABC 中,∠A ,∠B 均为锐角,且有2|tan 3|2sin 30B A -+-=(),则△ABC 是( )A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形7、已知tan 1α=,那么2sin cos 2sin cos αααα-+的值等于( )A .13B .12C .1D .168、如图2,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500tan55°米D .500tan35°米9、如图3,在矩形ABCD 中,D E ⊥AC ,垂足为E ,设∠ADE =α,且cos α=35,AB =4, 则AD 的长为( )A .3B .163C .203D .16510、如图4,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( ) A .1BC.2D二、耐心填一填:(把答案填放相应的空格里。
北师大九年级下册第一章直角三角形的边角关系单元评估检测数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在ABC 中,CD AB ⊥于点D ,己知AC a =,A α∠=,B β∠=,则BD 的长是( )A .sin tan a αβ⋅B .cos tan a αβ⋅C .a ⋅sin α⋅tan βD .a ⋅cosα⋅tanβ2.在Rt ABC 中,90C ∠=,cos 2A =,则sin A = ( )A .12 B . 2 C . D . 3.小明沿着坡角为30°的山坡向上走,他走了1000m ,则他升高了( )A .B .500mC .D .1000m 4.在ABC 中,90C ∠=,3cos 5A =,那么cot A 等于( ) A .35 B .45 C .3 4 D .435.如图,在等腰Rt ABC 中,90C ∠=,30CBD ∠=,则:AD DC =( )A .B . 2C .D .6.在Rt ABC 中,90C ∠=,4BC =,3AC =,则tan A 的值是( ) A .43 B .34 C .35 D .457.已知:Rt ABC 中,90C ∠=,3sin 5B =,则tan A 等于( )A .35 B .53 C .45 D .438.在Rt ABC 中,90C ∠=,当A ∠的度数不断增大时,cos A 的值的变化情况是( ) A .不断变大 B .不断减小 C .不变 D .不能确定9.在ABC 中,A ∠、B ∠均为锐角,且2tan (2sin 0B A +=,则ABC是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形10.周末,小明和小华来滨湖新区渡江纪念馆游玩,看到高雄挺拔的“胜利之塔”,萌发了用所学知识测量塔高的想法,如图,他俩在塔AB 前的平地上选择一点C ,树立测角仪CE ,测出看塔顶的仰角约为30,从C 点向塔底B 走70米到达D 点,测出看塔顶的仰角约为45,已知测角仪器高为1米,则塔AB 的高大约为)1.7≈( )A .141米B .101米C .91米D .96米二、填空题11.若sin 2α=,则α=________°. 12.()1若()3sin 45α+=,则()cos 45α-的值为________; ()2若tan 3α=,则sin cos 2sin cos αααα-=+________. 13.已知Rt ABC 中,斜边2AB =,4tan 3B =,则AC =________. 14.如图,P 是α∠的边OA 上一点,且P 点坐标为()3,4,则sin α=_____,cos α=______.15.在Rt ABC 中,90C ∠=,有两边长分别为3和4,则sin A 的值为________.16.一条山路的坡度为100米,那么他上升的高度是________米.17.比较大小:cos27________cos63.18.如图,某海防哨所()O 发现在它的北偏西30,距离为500m 的A 处有一艘船,该船向正东方向航行,经过3min 到达哨所东北方向的B 处,则该船的航速为每小时___km .(精确到0.1)19.如图,在高楼AB 前D 点测得楼顶A 的仰角为30,向高楼前进60米到C 点,又测得楼顶A 的仰角为60,则该高楼AB 的高度为________米.20.如图,某人在一个建筑物()AM 的顶部A 观察另一个建筑物()BN 的顶部B 的仰角为α,如果建筑物AM 的高度为50米(即50AM =),两建筑物间的间距为60米(即60MN =),3tan 4α=,那么建筑物BN 的高度为________米.三、解答题21.tan60tan452sin601tan60tan45-++⋅. 22.如图,华庆号船位于航海图上平面直角坐标系中的点A (10,2)处时,点C 、海岛B 的位置在y 轴上,且∠CBA =30∘,∠CAB =60∘(1)求这时船A 与海岛B 之间的距离;(2)若海岛B 周围16海里内有海礁,华庆号船继续沿AC 向C 航行有无触礁危险?请说明理由23.某航班在某日凌晨0:40从甲地(记为A )起飞,沿北偏东35方向出发,以870/km h 的速度直线飞往乙地,但飞机在当日凌晨1:20左右在B 处突然改变航向,沿北偏西71方向飞到C 处消失,如果此航班在C 处发出求救信号,又测得C 在A 的北偏西25方向,求A 与求救点C 的距离(结果保留整数,参考数据:24sin7425≈,18sin4625≈).24.已知B 港口位于A 观测点的东北方向,且其到A 观测点正北方向的距离BD 的长为16千米,一艘货轮从B 港口以48千米/时的速度沿如图所示的BC 方向航行,15分后到达C 处,现测得C 处位于A 观测点北偏东75方向,求此时货轮与A 观测点之间的距离AC 的长(精确大0.1千米)1.41≈ 1.73≈2.24≈ 2.45≈)25.如图所示,甲、乙两班学生进行爬山比赛,甲班学生从西坡沿坡角为30的山坡爬了200米,紧接着又爬了坡角为45的山坡80米,最后到达山顶;乙班学生从东坡沿着坡角为35的斜坡爬向山顶,若两班学生爬山的平均速度相同,请问哪班学生先到达山顶. 1.4≈ 1.7≈,sin350.5736≈,cos35.8192≈,tan350.7002≈).26.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).1.414≈ 1.732≈)参考答案1.A【解析】【分析】在直角△ACD 中首先利用正弦定义求得CD 的长,然后在直角△BCD 中利用正切函数定义求得BD 的长.【详解】∵在直角△ACD 中,sinA=AC CD ,即sinα=a CD , ∴CD=asinα,∵直角△BCD 中,tanB=BD CD ,即BDCD =tanβ, ∴BD=tan βCD =sin tan a αβ⋅. 故选:A .【点睛】本题考查了锐角三角函数,正确理解三角函数的定义是关键.2.A【分析】由cos 2A =,求得∠A 的度数,继而得出sinA 的值. 【详解】∵△ABC 是直角三角形,∠C=90°,∴∠A 为锐角,又∵cosA = ∴∠A=30°,∴sinA=12, 故选A.【点睛】考查了特殊角的三角函数值,熟练记忆一些特殊角的三角函数值是关键,如列表所示:.3.B【解析】【分析】根据坡角的概念,直角三角形中30°所对直角边等于斜边一半的性质计算即可.【详解】解:设他升高了xm,∵山坡的坡角为30°,∴x=12×1000=500(m),故选:B.【点睛】本题考查的是解直角三角形的应用:坡度坡角问题,属于简单题,掌握坡角的概念是解题的关键.4.C【分析】此类问题应先画出示意图,再根据勾股定理和三角比的概念求解.【详解】解:如图所示,因为∠C=90°,3 cosA5,所以设AC=3a ,AB=5a.则4a BC ==. ∴3cot 4AC BC ==. 故选C.【点睛】本题主要考查勾股定理和三角比的概念,熟悉掌握三角公式是关键.5.D【解析】【分析】先在Rt △BCD 中求出CD ,BC 的长,进而可求解AD 的长,即可得出线段的比值.【详解】在Rt △BCD 中,∵∠CBD=30°,设CD=1,则又Rt △ABC 是等腰三角形,∴BC=AC ,∴AD ::.故选:D .【点睛】本题主要考查了简单的直角三角形的求解问题,应熟练掌握.6.A【解析】【分析】直接利用锐角三角函数的定义tanA=AC BC . 【详解】tanA =AC BC =43. 故选A .【点睛】此题很简单,关键是记住定义.7.D【解析】【分析】首先根据锐角三角函数的定义,结合勾股定理,用同一个未知数表示直角三角形的三边,再根据锐角三角函数的定义求解.【详解】由sinB=35,可设∠B的对边是3k,斜边是5k,则∠B的邻边是4k,∴tanA=AA∠∠的对边的邻边=43.故选:D.【点睛】此题考查了互余两角三角函数的关系,属于基础题,解答本题的关键是求出直角三角形的各边长,掌握三角函数在直角三角形中的表示形式.8.B【解析】【分析】当角度在0°~90°间变化时,余弦值随着角度的增大(或减小)而减小(或增大);依此即可求解.【详解】在Rt△ABC中,∠C=90°,当∠A的度数不断增大时,cosA的值的变化情况是不断减小.故选:B.【点睛】此题考查了锐角三角函数的增减性,当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).9.B【解析】【分析】先根据非负数的性质求出tanB与sinA的值,再根据特殊角的三角函数值求出∠A、∠B的值即可.【详解】∵)2=0,∴=0,2=0,∴,∠B=60°,,∠A=60°,在△ABC中,∠C=180°-60°-60°=60°,∴△ABC是等边三角形.故选:B.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,并充分利用非负数的性质.10.D【解析】【分析】首先设AG=x米.本题涉及到两个直角三角形△AGF、△AGE,应利用其公共边AG构造等量关系,借助EF=CD=EG-FG=70米,构造方程关系式,进而可求出答案.【详解】设AG=x米,在Rt△AGF中,∵∠AGF=90°,∠AFG=45°,∴FG=AG=x米,同理在Rt△AEG中,∵∠AGE=90°,∠AEG=30°,∴x米,∵EF=EG-FG,,解可得:x=35+1)≈94.5,故AB=AG+BG≈94.5+1≈96.答:塔AB 的高大约为96米.故选:D .【点睛】本题考查解直角三角形的应用-仰角俯角问题,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.60°【解析】根据特殊角30°,45°,60°的三角函数值,可知α的值为60°. 故答案为60°. 1227 【解析】【分析】(1)先求出45α+中α的度数,再代入()cos 45α-求值;(2)分子分母同时除以cos α,对原式变形即可.【详解】(1)()3sin 452α+=,得45α+=60,即α=15, 所以()cos 45α-=() cos 4515-=cos30 (2)∵tan 3α=, ∴cos?α≠0, ∴原式=sin cos tan 1312cos cos 2sin cos 2tan 12317cos cos αααααααααα---===+⨯++ 【点睛】此题考查了特殊角的三角函数,熟练掌握这些特殊值是解此题的关键.13.85【解析】【分析】根据tanB=43,设出AC=4x,则BC=3x,根据勾股定理求出x的值,从而得出AC.【详解】如图,∵tanB=ACBC=43,∴设AC=4x,则BC=3x,∵△ABC是直角三角形,∴AC2+BC2=AB2,∵AB=2,∴16x2+9x2=4,解得:x1=25,x2=-25(不合题意,舍去),∴AC=4x=4×25=85.故答案为:85.【点睛】此题考查了解直角三角形,用到的知识点是特殊角的三角函数值和勾股定理,关键是根据题意设出AC=4x,得出BC=3x.14.4535【解析】【分析】根据三角函数的定义求解.【详解】∵P是∠α的边OA上一点,且P点坐标为(3,4),∴PB=4,OB=3,.故sinα=PB OP =45,cosα=OB OP =35. 故答案为:45,35 【点睛】此题很简单,考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.15.45或35或34 【解析】【分析】根据∠C=90°,两边长分别为3和4,画出相应的图形,再根据sinA=A A ∠∠的对边的斜边,代入计算即可.【详解】根据题意画图如下:如图(1)当BC=4,AC=3时,AB=5,则sinA 的值为45; 如图(2)当BC=3,AC=4时,AB=5,则sinA 的值为35;如图(3)当AB=4,BC=3时,则sinA 的值为34;如图(4)当AB=4,AC=3时,,则sinA ;则sinA 的值为45或35或34.故答案为:45或35或34. 【点睛】 此题考查了解直角三角形,关键是运用数形结合思想,根据题意画出图形,求出sinA 所对的边的长,注意不要漏解.16.50【解析】【分析】画出图形,根据坡度为1,利用解直角三角形的知识即可解答.【详解】如图:Rt △ABC 中,∠C 为直角,∵山路的坡度为1∴设x ,AC=x 米,由勾股定理得x 2+)2=1002,解得x=50.故答案为50.【点睛】本题考查了解直角三角形的应用---坡度坡角问题,根据坡角设出直角边的长并利用勾股定理是解题的关键.17.【解析】【分析】根据锐角的角度越大余弦值越小,可得答案.【详解】锐角的角度越大余弦值越小,得cos27°>cos63°, 故答案为>.【点睛】利用锐角的角度越大余弦值越小是解题关键.18.13.7【解析】【分析】设AB 与正北方向线交于点C ,根据已知及三角函数求得AC 、OC 的长,再根据等腰直角三角形的性质求得BC 的长,利用AB=AC+BC 求出AB 的长,再除以该船航行的时间即可求解.【详解】设AB 与正北方向线交于点C ,∵在直角△AOC 中,∠AOC=30°,OA=500米,∴AC=OA•sin30°=250米,∵直角△OBC 是等腰直角三角形,∴∴(米),360÷(千米/时), 即该船的航速约为每小时13.7千米.故答案为13.7.【点睛】本题考查了解直角三角形的知识,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法构造直角三角形,难度一般.19.【解析】【分析】设AB 的长度为x ,在Rt △ABC 中利用三角函数可以用x 表示BC 的长度,同理也可以表示BD 的长度,而CD=BD-BC ,然后根据已知条件即可求出x ,也就求出了相等AB 的长度.【详解】设AB 的长度为x ,在Rt △ABC 中,tan ∠ACB=AB BC=tan60°∴同理在Rt △ABD 中,BD=30x tan, 而CD=BD-BC=60,∴∴,即米.故答案为:【点睛】此题主要考查了仰角的定义及其解直角三角形的应用,解题时首先正确理解仰角的定义,然后利用三角函数和已知条件构造方程解决问题.20.95【解析】根据三角函数的关系求出BE 的长,然后即可得出NB 的长.解:由题意得:BE=AEtanα=MNtanα=60×34=45,∴BN=BE+EN=BE+AM=95米.故答案为95.21.2.【解析】【分析】将特殊角的三角函数值代入求解.【详解】原式22 ====.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.22.(1)20(2)无触礁危险【详解】解:(1)证明:∵∠CBA=30°, ∠CAB=60°,∴∠ACB=90°.在Rt△ACB中, ∵cos60°=ACAB,.(2)在Rt△ACB中,tan60°=,∴BC=10√3,∴BC=√300>√256=16(或BC≈17>16).答:无触礁危险.23.CA=774km.【解析】过点B 作BD ⊥AC 于点D ,求出AB 的长和∠BAC 的度数,根据正弦求出BD ,求出∠C 的度数,根据正弦求出BC 的长,根据勾股定理求出CD ,得到答案.【详解】过点B 作BD AC ⊥于点D ,由题意可得:()4087058060AB km =⨯=,352560BAC ∠=+=,则)sin605802BD AB km =⋅=⨯=,12902AD AB km ==, ∵180713574CBA ∠=--=,∴180607446C ∠=--=, ∵18sin4625≈,∴1825BD BC ==∴BC =,则484CD =≈.774CA CD AD km =+=.【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念、正确理解方位角是解题的关键.24.此时货轮与A 观测点之间的距离AC 约为15.7km .【解析】试题分析:根据在Rt △ADB 中,sin ∠DAB=DB AB ,得出AB 的长,进而得出tan ∠BAH=BH AH,求出BH 的长,即可得出AH 以及CH 的长,进而得出答案.BC=48×1560=12,在Rt △ADB 中,sin ∠DAB=DB AB =2,∴2=,如图,过点B 作BH ⊥AC ,交AC 的延长线于H ,在Rt △AHB 中,∠BAH=∠DAC-∠DAB=75°-45°=30°,tan ∠BAH=BH AH =3,∴BH ,BH 2+AH 2=AB 2,BH 2+)2=()2,∴,∴, 在Rt △BCH 中,BH 2+CH 2=BC 2,∴CH=4,∴-4≈15.7km ,答:此时货轮与A 观测点之间的距离AC 约为15.7km .25.乙班学生先到山顶.【解析】【分析】作EF ⊥BC 于F ,AK ⊥EK 于K 交BC 于T ,则AT ⊥BC .利用三角函数求出AC ,比较BE+AE 和AC 的长即可.【详解】作EF BC ⊥于F ,AK EK ⊥于K 交BC 于T ,则AT BC ⊥.∵1sin302001002EF BE =⋅=⨯=米,sin45802AK AE =⋅=⨯=∴()100AT AK EF =+=米.在Rt ATC 中,sin35AT AC =,100273sin350.5736AT AC =≈≈米, 又∵20080280BE AE +=+=米,两班学生爬山的平均速度相同,∴乙班学生先到山顶.【点睛】本题考查了解直角三角形--坡度坡角问题,熟悉三角函数及坡角是解题的关键. 26.该建筑物需要拆除.【解析】分析:根据正切的定义分别求出AB 、DB 的长,结合图形求出DH ,比较即可. 详解:由题意得,10AH =米,10BC =米,在Rt ABC ∆中,45CAB ∠=︒,∴10AB BC ==, 在Rt DBC ∆中,30CDB ∠=︒,∴tan BC DB CDB==∠∴()DH AH AD AH DB AB =-=-- 101020 2.7=-=-≈(米), ∵2.7米3<米,∴该建筑物需要拆除.点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.。
北师大版九年级下册数学单元测试题全套及答案(含期中期末试题)第一章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( B )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( A )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( B ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分) 7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A =512. 8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__8.1__m __.(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 __69__ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为 3 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为 35.12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = 2 .三、(本大题共5小题,每小题6分,共30分)13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.解:原式=12-1+32×⎝⎛⎭⎫332=12-1+12=0.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形.解:∠A =90°-∠B =90°-60°=30°.由tan B =ba,得b =a tan B =4tan 60°=4 3.由cos B=a c ,得c =a cos B =4cos 60°=8.所以∠A =30°,b =43,c =8. 15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan (α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝⎛⎭⎫222+⎝⎛⎭⎫222-3×3=1+12-3=-32.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)解:在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BC tan A =2tan 30°=2 3. 由题意,得EF =AC =2 3. 在Rt △EFC 中,∠E =45°, ∴CF =EF·sin 45°=23×22=6, ∴AF =AC -CF =23- 6.17.(2019·通辽)两栋居民楼之间的距离CD =30 m ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻楼BD 的影子会遮挡到AC 的第几层?(参考数据:3≈1.7,2≈1.4)解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,AC =BD =3×10=30 m ,FH =CD =30 m ,∠BFH =∠α=30°,在RtBFH 中,tan ∠BFH =BH FH =BH 30=33,∴BH =30×33=103≈10×1.7=17,∴FC =HD =BD -BH ≈30-17=13,∵133≈4.3,所以在四层的上面,即第五层.答:此刻楼BD 的影子会遮挡到楼AC 的5层.四、(本大题共3小题,每小题8分,共24分)18.(2019·深圳)如图所示,某施工队要测量隧道长度BC ,AD =600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE ∥AC ,ED =500米,测得仰角为53°,求隧道BC 的长.(sin 53°≈45,cos 53°≈ 35,tan 53°≈43)解:在RtABD 中,AB =AD =600(米),作EM ⊥AC 于M ,则AM =DE =500(米),∴BM =100米,在Rt △CEM 中,tan 53°=CM EM =CM 600=43,∴CM =800(米),∴BC =CM -BM =800-100=700(米).答:隧道BC 长为700米.19.(2019·广元)如图,某海监船以60海里/小时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡查此可疑船只,此时可疑船只仍在B 的北偏西30°方向的C 处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D 处海监船追到可疑船只,D 在B 的北偏西60°方向.(以下结果保留根号)(1)求B ,C 两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,∵∠BCE =30°,∴BE =BC ×sin ∠BCE =12BC ,CE =BC ×cos ∠BCE =32BC ,在Rt △ACE 中, ∵∠A =45°.∴AE =CE =32BC ,∵AB =60×1.5=90,∴AE -BE =32BC -12BC =90,解得BC =90(3+1).故B ,C 相距(903+90)海里.(2)过点D 作DF ⊥AB 于F ,由(1),得DF =CE =32BC ,∴DF =135+453,在Rt △BDF 中,∠DBF =30°,∴BD =2DF =270+903,∴海监船追到可疑船只所用的时间为(270+903)÷90=(3+3)h.20.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD.若tan C =2,BE =3,CE =2,求点B 到CD 的距离.解:过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°.∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4.在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x)2=(3+2)2,解得x =25,即BF =2 5.答:点B 到CD 的距离是2 5.五、(本大题共2小题,每小题9分,共18分)21.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =13,求tan ∠EBC 的值.(1)证明:∵∠A =∠D =90°,∠ABF 与∠DFE 都与∠AFB 互余,∴∠ABF =∠DFE ,∴△ABF ∽△DFE ;(2)解:∵sin ∠DFE =DE EF =13,∴设DE =k .则EF =CE =3k ,AB =CD =4k ,∴DF =EF 2-DE 2=22k ,由△ABF ∽△DFE ,得AF DE =AB DF ,即AF k =4k22k ,∴AF =2k ,∴BC =AD =2k +22k =32k ,∴tan ∠EBC =CE BC =3k 32k =22. 22.小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长332米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:如图,延长OA 交直线BC 于点D ,∵AO 的倾斜角是60°,∴∠ODB =60°.∵∠ACD =30°,∴∠CAD =180°-∠ODB -∠ACD =90°.在Rt △ACD 中,AD =AC·tan ∠ACD =332·33=32(米).∴CD =2AD =3(米). 又∵∠O =60°,∴△BOD 为等边三角形.∴BD=OD=OA+AD=3+32=4.5(米).∴BC=BD-CD=4.5-3=1.5米.答:浮漂B与河堤下端C之间的距离为1.5米.六、(本大题共12分)23.在一次科技活动中,小明进行了模拟雷达扫描实验.表盘是△ABC,其中AB=AC,∠BAC =120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(203-20) cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2 030秒,交点又在什么位置?请说明理由.解:(1)如图①,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2t cm.在Rt△ABD中,AD=12AB=t,BD=32AB=3t.在Rt AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD-MD.即3t-t=203-20.解得t=20.∴AB=2×20=40 cm.答:AB的长为40 cm.(2)如图②,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN=ABcos 30°=4032=8033cm.∴光线AP旋转6秒,与BC的交点N距点B8033cm处.如图③,设光线AP旋转2 030秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2 030=126×16+14,即AP旋转2 030秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN=8033cm,∵AB=AC,∠BAC=120°,∴BC=2ABcos 30°=2×40×32=40 3 cm,∴BQ=BC-CQ=403-8033=4033cm.答:光线AP旋转2 030秒后,与BC的交点Q在距点B的4033cm处.第二章检测题(BSD)(考试时间:120分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知抛物线y=x2+ax+b与x轴的交点坐标为(-1,0)和(-3,0),则方程x2+ax+b=0的解是( B )A.x1=1,x2=-3 B.x1=-1,x2=-3C.x=-3 D.x=32.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C开始沿CA以1 cm/s 的速度向A点运动,同时动点Q从点C开始沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( C )3.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t +1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m4.若二次函数y=ax2+bx+c(a≠0)经过原点和第一、二、三象限,则(A)A.a>0,b>0,c=0 B.a>0,b<0,c=0C.a<0,b>0,c=0 D.a<0,b<0,c=05.(2019·烟台)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表,下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2; ③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(B)A.2 B.36.(2019·巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b -c >0,④a +b +c <0.其中正确的是( A )A .①④B .②④C .②③D .①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一条抛物线的开口大小与y =x 2相同但方向相反,且顶点坐标是(2,3),则该抛物线的表达式是 y =-x 2+4x -1 .8.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2,在飞机着陆滑行中,最后4 s 滑行的距离是 24 m.9.若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0),B (x 2,0)两点,则1x 1+1x 2的值为 -4 .10.如图,已知△OBC 是等腰直角三角形,∠OCB =90°,若点B 的坐标为(4,0),点C 在第一象限,则经过O ,B ,C 三点的抛物线的表达式是 y =-12x 2+2x .11.已知二次函数y =ax 2+2ax +3a 2+3(a ≠0)(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值是__1__.12.如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx(a>0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a>0)交于点B.若四边形ABOC 是正方形,则b 的值是 -2 .三、(本大题共5小题,每小题6分,共30分)13.已知当x =2时,抛物线y =a(x -h)2有最大值,此抛物线过点(1,-3),求抛物线的表达式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,所以h =2.此抛物线过(1,-3),所以-3=a(1-2)2,解得a =-3.此抛物线的表达式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小.14.已知抛物线y =-3x 2经过平移经过点(0,0)和(1,9),求出平移后抛物线的表达式,并写出它的对称轴和顶点坐标.解:设平移后抛物线的表达式为y =-3x 2+bx +c ,将点(0,0)和(1,9)的坐标代入,得⎩⎨⎧c =0,-3+b +c =9,解得⎩⎪⎨⎪⎧b =12,c =0.∴平移后抛物线的表达式为y =-3x 2+12x.∵y =-3x 2+12x =-3(x -2)2+12,∴对称轴为直线x=2,顶点坐标为(2,12).15.已知抛物线y =-a(x -2)2+3经过点(1,2).(1)求a 的值;(2)若点A(m ,y 1),B(n ,y 2)(m >n >2)都在该抛物线上,试比较y 1与y 2的大小. 解:(1)把(1,2)代入y =-a(x -2)2+3,得2=-a(1-2)2+3,解得a =1;(2)由(1)知原抛物线的表达式为y =-(x -2)2+3,其开口向下,对称轴为直线x =2, ∴当x >2时,y 随x 的增大而减小. ∵m >n >2,∴y 1<y 2.16.如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B ,C 两点.(1)求该二次函数的表达式;(2)结合函数的图象探索,当y >0时,x 的取值范围.解:(1)由题意可得B(2,2),C(0,2),将B ,C 坐标代入y =-23x 2+bx +c ,解得c =2,b =43,所以二次函数的表达式是y =-23x 2+43x +2.(2)令y =0,解-23x 2+43x +2=0,得x 1=3,x 2=-1,由图象可知:y >0时,x 的取值范围是-1<x <3.17.如图,抛物线y =ax 2+bx -5(a ≠0)与x 轴交于点A(-5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的表达式;(2)若点E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC 时,求点E 的坐标.解:(1)∵抛物线经过A ,B 两点,∴把A(-5,0),B(3,0)代入y =ax 2+bx -5,得⎩⎨⎧25a -5b -5=0,9a +3b -5=0,解得⎩⎨⎧a =13,b =23,∴该抛物线的表达式为y =13x 2+23x -5.(2)∵y =13x 2+23x -5,∴令x =0,则y =-5.∴C 点的坐标为(0,-5),∵S △ABE =S △ABC ,∴点E的纵坐标与点C 的纵坐标相等,即点E 的纵坐标为-5,令13x 2+23x -5=-5,解得x 1=-2,x 2=0(舍去),∴点E 的坐标为(-2,-5).四、(本大题共3小题,每小题8分,共24分) 18.已知二次函数y =x 2-(2m -1)x +m 2-m.(1)求证:此二次函数图象与x 轴必有两个不同的交点;(2)若此二次函数图象与直线y =x -3m +4的一个交点在y 轴上,求m 的值.(1)证明:令y =0,有x 2-(2m -1)x +m 2-m =0,Δ=b 2-4ac =(2m -1)2-4(m 2-m)=1>0,∴结论成立;(2)解:令x =0,代入y =x 2-(2m -1)x +m 2-m 与y =x -3m +4,得m 2-m =-3m +4,∴m =-1+5或-1- 5.19.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看作一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4 m ,在一次表演中人梯到起点A 的水平距离为4 m ,问这次表演是否成功?请说明理由.解:(1)∵y =-35x 2+3x +1=-35⎝⎛⎭⎫x -522+194,∴该演员弹跳高度的最大值为194m ; (2)当x =4时,y =-35×42+3×4+1=3.4,∴这次表演是成功的.20.如图,已知抛物线y =ax 2-4x +c 经过点A(0,-6)和B(3,-9).(1)求出抛物线的表达式;(2)写出抛物线的对称轴及顶点坐标;(3)点P(m ,m)(其中m >0)与点Q 均在抛物线上,且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标.解:(1)依题意有⎩⎨⎧a ×02-4×0+c =-6,a ×32-4×3+c =-9,即⎩⎨⎧c =-6,9a -12+c =-3,∴⎩⎪⎨⎪⎧a =1,c =-6.∴抛物线的表达式为y =x 2-4x -6.(2)把y =x 2-4x -6配方得y =(x -2)2-10,∴对称轴为直线x =2,顶点坐标(2,-10).(3)由点P(m ,m)在抛物线上,有m =m 2-4m -6,即m 2-5m -6=0.∴m 1=6或m 2=-1(舍去),∴m =6,∴P 点的坐标为(6,6).∵点P ,Q 均在抛物线上,且关于对称轴x =2对称,∴Q 点的坐标为(-2,6). 五、(本大题共2小题,每小题9分,共18分)21.把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q.(1)求顶点P 的坐标; (2)写出平移过程;(3)求图中阴影部分的面积.解:(1)设抛物线m 的表达式为y =12x 2+bx +c ,把点A(-6,0),原点O(0,0)代入,得b =3,c=0,∴抛物线m 的表达式为y =12x 2+3x =12(x +3)2-92,所以顶点P 的坐标为⎝⎛⎭⎫-3,-92. (2)把抛物线y =12x 2先向左平移3个单位长度,再向下平移92个单位长度即可得到抛物线y =12(x +3)2-92.(3)Q 点横坐标为-3,代入y =12x 2,可得Q ⎝⎛⎭⎫-3,92,图中阴影部分的面积=S △OPQ =12×3×9=272. 22.(2019·南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔、一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?解:(1)设钢笔、笔记本的单价分别为x ,y 元,根据题意得,⎩⎨⎧2x +3y =38,4x +5y =70,解得:⎩⎪⎨⎪⎧x =10,y =6.答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 支,支付钢笔和笔记本的总金额为w 元, ①当30≤b ≤50时,a =10-0.1(b -30)=-0.1b +13,w =b(-0.1b +13)+6(100-b)=-0.1b 2+7b +600=-0.1(b -35)2+722.5,∵当b =30时,w =720,当b =50时,w =700, ∴当30≤b ≤50时,700≤w ≤722.5;②当50<b ≤60时,a =8,w =8b +6(100-b)=2b +600,700<w ≤720,∴当30≤b ≤60时,w 的最小值为700元.答:这次奖励一等奖学生50人时,购买的奖品总金额最少,最少为700元.六、(本大题共12分)23.(2019·新疆)如图,抛物线y =ax 2+bx +c 经过A (-1,0),B (4,0),C (0,4)三点. (1)求抛物线的表达式及顶点D 的坐标; (2)将(1)中的抛物线向下平移154个单位长度,再向左平移h (h >0)个单位长度,得到新抛物线.若新抛物线的顶点D ′在△ABC 内,求h 的取值范围;(3)点P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作x 轴的垂线交(1)中的抛物线于点Q ,当△PQC 与△ABC 相似时,求△PQC 的面积.题图 答图解:(1)函数表达式为y =a(x +1)(x -4)=a(x 2-3x -4),即-4a =4,解得a =-1,故抛物线的表达式为y =-x 2+3x +4,顶点D(32,254);(2)抛物线向下平移154个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D' (32-h ,52),将点A ,C 的坐标代入一次函数表达式并解得直线AC 的表达式为y =4x +4,将点D' 坐标代入直线AC 的表达式得:52=4(32-h)+4,解得h =158,故0<h<158;(3)过点P 作y 轴的平行线交抛物线和x 轴于点Q ,H ,∵OB =OC =4,∴∠PBA =∠OCB =45°=∠QPC ,直线BC 的表达式为y =-x +4,则AB =5,BC =42,AC =17,S ABC =12×5×4=10,设点Q(m ,-m 2+3m +4),点P(m ,-m +4),CP =2m ,PQ =-m 2+3m +4+m -4=-m 2+4m ,①当△CPQ ∽△CBA ,PC BC =PQ AB ,即2m42=-m 2+4m 5,解得m =114,相似比为PC BC =1116,②当△CPQ ∽△ACB ,同理可得相似比为PC AB =12225,利用面积比等于相似比的平方可得S PQC=10×(1116)2=605128或SPQC =10×(12225)2=576125. 第三章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知⊙P 的半径为4,圆心P 的坐标为(1,2),点Q 的坐标为(0,5),则点Q 与⊙P 位置关系是( C )A .点Q 在⊙P 外B .点Q 在⊙P 上C .点Q 在⊙P 内D .不能确定2.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD 等于( D ) A .20° B .40° C .50° D.80°3.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .πB.32πC .2πD .3π4.同一个圆的内接正六边形和外切正六边形的周长之比为( B )A .3∶4B .3∶2C .2∶ 3D .1∶25.如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm 6.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( B )A .3+12B .3-32C .3+13D .3-33二、填空题(本大题共6小题,每小题3分,共18分)7.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于69° . 8.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为533 cm . 9.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在BC ︵上(不与点B ,C 重合),连接BE ,CE.若∠D =40°,则∠BEC =115度.10.(2019·内江)如图,在平行四边形ABCD 中,AB<AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为2π3+ 3 . 11.如图,P 是反比例函数y =4x (x >0)的图象上一点,以点P 为圆心、1个单位长度为半径作⊙P ,当⊙P 与直线y =3相切时,点P 的坐标为 (1,4)或(2,2) .12.(2019·包头)如图,BD 是⊙O 的直径,A 是⊙O 外一点,点C 在⊙O 上,AC 与⊙O 相切于点C ,∠CAB =90°,若BD =6,AB =4,∠ABC =∠CBD ,则弦BC 的长为.三、(本大题共5小题,每小题6分,共30分)13.如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,BD =2,连接CD ,求BC 的长.解:在⊙O 中,∵∠A =45°,∴∠D =45°. ∵BD 为⊙O 的直径, ∴∠BCD =90°, ∴BC =BD·sin 45°=2×22= 2. 14.如图,已知CD 平分∠ACB ,DE ∥AC.求证:DE =BC.证明:∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴BD ︵=AD ︵,∵DE ∥AC ,∴∠ACD =∠CDE ,∴AD ︵=CE ︵,∴BD ︵=CE ︵,∴DE ︵=BC ︵,∴DE =BC.15.如图,两个同心圆中,大圆的弦AB ,AC 分别切小圆于点D ,E ,△ABC 的周长为12 cm ,求△ADE 的周长.解:连接OD ,OE.∵AB ,AC 分别切小圆于点D ,E , ∴OD ⊥AB ,OE ⊥AC , ∴AD =DB ,AE =EC , ∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6 cm .16.如图所示,⊙O 的直径AB 长为6,弦AC 的长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的面积.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°.在Rt △ABC 中,由勾股定理,得 BC =AB 2-AC 2=62-22=4 2. 又∵CD 平分∠ACB , ∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =BD =22AB =22×6=3 2. ∴S 四边形ADBC =S △ABC +S △ABD =42+9,∴四边形ADBC 的面积为42+9.17.如图,点I 是△ABC 的内心,AI 的延长线交BC 于点D ,交△ABC 的外接圆于点E.求证:IE 2=AE·DE.证明:连接BE ,BI.∵I 为△ABC 的内心,∴∠1=∠2,∠3=∠4. 又∵∠6=∠1+∠3,∠IBE =∠4+∠5, ∠5=∠2=∠1,∴∠IBE =∠6,∴IE =BE. ∵∠5=∠1,∠E =∠E ,∴△BED∽△AEB,∴BEDE=AEBE,∴BE2=AE·DE,∴IE2=AE·DE.四、(本大题共3小题,每小题8分,共24分)18.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C 两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线的表达式;(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.解:(1)直线BC表达式为y=-3x+3.(2)当BC切⊙O′于第二象限时,记切点为点D.易得DC= 5.∵BO=BD=b,∴BC=5-b.12+b2=(5-b)2,得b=25 5.同理当BC切⊙O′于第三象限D1点时,可求得b=-25 5.故当b>255或b<-255时,直线BC与⊙O′相离;当b=255或-255时,直线BC与⊙O′相切;当-255<b<255时,直线BC与⊙O′相交.19.(2018·南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.(1)证明:连接OC,BC,∵⊙O的半径为3,PB=2,∴OC=OB=3,OP=OB+PB=5.∵PC=4,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线.(2)解:∵AB是直径,∴∠ACB=90° ,∴∠ACO+∠OCB=90°,∵OC⊥PC,∴∠BCP+∠OCB =90°,∴∠BCP=∠ACO.∵OA=OC,∴∠A=∠ACO,∴∠A=∠BCP,在△PBC和△PCA中,∠BCP=∠A,∠P=∠P,∴△PBC∽△PCA,∴BCAC=PBPC=24=12,∴tan∠CAB=BC AC=12.20.(齐齐哈尔中考)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.又∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,即∠ABC=90°∴BC是⊙O的切线.(2)解:∵BF=BC=2且∠ADB=90°,∴∠CBD=∠FBD,又∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠DBE=∠OBE=13∠ABC=13×90°=30°,∴∠C=60°,∴AB=3BC=23,∴⊙O的半径为3,连接OD,∴阴影部分面积为S扇形OBD-S△OBD=16π×3-34×3=π2-334.五、(本大题共2小题,每小题9分,共18分)21.(2019·安顺)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E 两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:点H为CE的中点;(3)若BC=10,cos C=55,求AE的长.(1)解:DH与⊙O相切.理由:连接OD,AD,∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH为⊙O的切线.(2)证明:连接DE,∵A,B,D,E四点共圆,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴CD=ED,∵DH⊥CE,∴点H为CE的中点.(3)解:CD=12BC=5,∵cos C=CDAC=55,∴AC=55,∵cos C=CHCD=55,∴CH=5,∴CE=2CH =25,∴AE =AC -CE =3 5.22.如图,在Rt △ABC 与Rt △OCD 中,∠ACB =∠DCO =90°,点O 为AB 的中点.(1)求证:∠B =∠ACD ;(2)已知点E 在AB 上,且BC 2=AB ·BE . ①若tan ∠ACD =34,BC =10,求CE 的长;②试判断CD 与以A 为圆心,AE 为半径的⊙A 的位置关系,并请说明理由.(1)证明:∵∠ACB =∠DCO =90°,∴∠ACB -∠ACO =∠DCO -∠ACO ,即∠ACD =∠OCB ; 又∵点O 是AB 的中点,∴OC =OB , ∴∠OCB =∠B , ∴∠B =∠ACD .(2)解:①∵BC 2=AB ·BE ,∴BC AB =BEBC.∵∠B =∠B ,∴△ABC ∽△CBE ,∴∠ACB =∠CEB =90°. ∵∠ACD =∠B ,∴tan ∠ACD =tan B =34,设BE =4x ,则CE =3x .由勾股定理,可知BE 2+CE 2=BC 2, ∴(4x )2+(3x )2=100,∴解得x =2,∴CE =6.②CD 与⊙A 相切.理由如下: 过点A 作AF ⊥CD 于点F .∵∠CEB =90°,∴∠B +∠ECB =90°. ∵∠ACE +∠ECB =90°,∴∠B =∠ACE .∵∠ACD =∠B ,∴∠ACD =∠ACE ,∴CA 平分∠DCE .∵AF ⊥CD ,AE ⊥CE ,∴AF =AE ,∴直线CD 与⊙A 相切.六、(本大题共12分)23.(2019·荆州)如图AB 是⊙O 的直径,点C 为⊙O 上一点,点P 是半径OB 上一动点(不与O ,B 重合),过点P 作射线l ⊥AB ,分别交弦BC ,BC ︵于D ,E 两点,在射线l 上取点F ,使FC =FD .(1)求证:FC 是⊙O 的切线; (2)当点E 是BC ︵的中点时,①若∠BAC =60°,判断O ,B ,E ,C 为顶点的四边形是什么特殊四边形,并说明理由; ②若tan ∠ABC =34,且AB =20,求DE 的长.(1)证明:连接OC ,∵OB =OC ,∴∠OBC =∠OCB ,∵PF ⊥AB ,∴∠BPD =90°,∴∠OBC +∠BDP =90°,∵FC =FD, ∴∠FCD =∠FDC ,∵∠FDC =∠BDP ,∴∠FCD =∠BDP ,∴∠OCB +∠FCD =90°,∴OC ⊥FC ,FC 是⊙O 的切线.(2)解:连接OC ,OE ,BE ,CE ,OE 与BC 交于H. ①以O ,B ,E ,C 为顶点的四边形是菱形.理由:∵AB 是直径,∴∠ACB =90°,∵∠BAC =60°,∴∠BOC =120°,∵点E 是BC ︵的中点,∴∠BOE =∠COE =60°,∵OB =OE =OC ,∴△BOE ,△COE 均为等边三角形,∴OB =BE =CE =OC ,∴四边形BOCE 是菱形.②∵AC BC =tan ∠ABC =34,设AC =3k ,BC =4k ,k>0.由AC 2+BC 2=AB 2,即(3k)2+(4k)2=202,解得k =4,∴AC =12,BC =16,∵点E 是BC ︵的中心,∴OE ⊥BC ,BH =CH =8,∵S △BOE =12OE·BH =12OB·PE ,即12×10×8=12×10×PE ,∴PE =8,又OP =OE 2-PE 2=6,∴BP =OB -OP =4,∵DP BP =tan ∠ABC =34,∴DP =34BP =3,∴DE =PE -DP =8-3=5.期中检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.对于函数y =-2(x -m)2的图象,下列说法不正确的是( D ) A .开口向下 B .对称轴是x =m C .最大值为0 D .与y 轴不相交 2.在Rt △ABC 中,∠C =90°,AB =6,tan B =33,则Rt △ABC 的面积为( B ) A .9 3B .923C .9D .183.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( D )A .40海里B .60海里C .203海里D .403海里4.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点 ( B )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)5.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tan A 的值为( A )A .33B . 3C .12D .136.已知抛物线y =ax 2+bx +c 的图象如图所示,则|a -b +c|+|2a +b|等于( D ) A .a +b B .a -2b C .a -b D .3a 二、填空题(本大题共6小题,每小题3分,共18分)7.某种型号的迫击炮发射炮弹时的飞行高度h(m )与飞行时间t(s )的关系满足h =-13t 2+10t ,则经过 30 s ,发射的炮弹落地爆炸.8.在△ABC 中,∠A ,∠B 都是锐角,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫cos B -122=0,则∠C = 90° . 9.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为 0,2或-2 .10.(2019·盐城)在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为__2__. 11.(2019·宿迁)若∠MAN =60°,△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,BC12.已知抛物线y =23x 2+43x -2与x 轴交于A ,B 两点,与y 轴交于点C .点P 在对称轴上,当△PBC的周长最小时,点P 的坐标是⎝⎛⎭⎫-1,-43. 三、(本大题共5小题,每小题6分,共30分)13.计算:cos 60°-sin 45°+14tan 230°+cos 30°-sin 30°.解:原式=12-22+14×⎝⎛⎭⎫332+32-12=32-22+112. 14.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中,∠A =30°,tan B =,AC =43,求AB 的长”.这时小明去翻看了标准答案,显示AB =10.你能否帮助小明通过计算说明污渍部分的内容是什么?解:过点C 作CH ⊥AB 于点H ,在Rt △ACH 中,CH =AC ·sin A =43×sin 30°=23,AH =AC ·cos A =43×cos 30°=6, ∴BH =AB -AH =4, ∴tan B =CH BH =32,∴污渍部分的内容是32. 15.(2019·凉山州)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且1x 21+1x 22=1,求a 的值.解:函数y =x 2+x +a 的图象与x 轴交于A(x 1,0),B(x 2,0)两点,∴x 1+x 2=-1,x 1·x 2 =a ,∵1x 21+1x 22=x 21+x 22x 21x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2=1-2a a 2=1,∴a =-1+ 2 或a =-1- 2. 16.在同一平面直角坐标系中,一次函数y =x -4与二次函数y =-x 2+2x +c 图象交于点A (-1,m ).(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标. 解:(1)∵A 点在一次函数的图象上,∴m =-1-4=-5.∴点A 的坐标为(-1,-5),∵A 点在二次函数图象上,∴-5=-1-2+c ,解得c =-2. (2)由①可知二次函数表达式为y =-x 2+2x -2=-(x -1)2-1,∴二次函数的图象的对称轴为直线x =1,顶点坐标为(1,-1).17.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,2≈1.4)解:作AH ⊥CN 于点H .在Rt △ABH 中,∵∠BAH =45°,BH =10.5-2.5=8(m), ∴AH =BH =8(m), 在Rt △AHC 中,tan 65°=CH AH, ∴CH =8×2.1≈17(m),∴BC =CH -BH =17-8=9(m).四、(本大题共3小题,每小题8分,共24分)18.如图,直线y =x +2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上,若抛物线y =ax 2+bx +c 以C 为顶点,且经过点B ,求这条抛物线对应的函数表达式.解:∵直线y =x +2与x 轴交于点A ,与y 轴交于点B , ∴A (-2,0),B (0,2),∴△ABO 为等腰直角三角形.又∵AB ⊥BC ,∴△BCO 也为等腰直角三角形, ∴OC =OB =OA .∴C (2,0),设抛物线对应的函数表达式为y =a (x -2)2, 将点B (0,2)的坐标代入得2=a (0-2)2,解得a =12,∴此抛物线对应的函数表达式为y =12(x -2)2,即y =12x 2-2x +2.19.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC.(1)求sin B 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)∵BD =DC =9,AD =6, ∴AB =92+62=313.∴sin B =AD AB =6313=21313.(2)∵EF ∥AD ,BE =2AE ,∴△BEF ∽△BAD. ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =3,∴在Rt △DEF 中,DE =42+32=5米.20.为美化校园,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(只围AB ,BC 两边),设AB =x m .(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.解:(1)∵AB =x m ,则BC =(28-x)m ,∴x(28-x)=192,解得x 1=12,x 2=16,∴当花园的面积为192 m 2时,x 的值为12 m 或16 m .(2)由题意可得S=x(28-x)=-x2+28x=-(x-14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,28-15=13,∴6≤x≤13,∴当x=13时,S最大=-(13-14)2+196=195,∴花园面积S的最大值为195 m2.五、(本大题共2小题,每小题9分,共18分)21.如图,小河上有一拱桥,拱桥及河道的截面轮廓由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)抛物线的表达式为y=-364x2+11(-8≤x≤8).(2)令-1128(t-19)2+8=11-5.解得t1=35,t2=3.∴当3≤t≤35时,水面到顶点C的距离不大于5米,需禁止船只通行,禁止船只通行时间为35-3=32小时.答:禁止船只通行时间为32小时.22.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin 62.3°≈0.89,cos 62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.解:(1)四边形CDBG,HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt AHE中,tan∠AEH=AHHE,则AH=HE·tan∠AEH≈1.9a,∴AG=AH-GH=1.9a-0.2,在Rt ACG中,∠ACG=45°,∴CG=AG=1.9a-0.2,∴BD=1.9a-0.2,答:小亮与塔底中心。
2022-2023学年北师大版九年级数学下册《第2章二次函数》单元综合达标测试题(附答案)一.选择题(共10小题,满分30分)1.在下列关于x的函数中,一定是二次函数的是()A.y=﹣3x B.xy=2C.y=ax2+bx+c D.y=2x2+52.下列各点中,在抛物线y=x2﹣4上的是()A.(1,3)B.(﹣1,﹣3)C.(1,﹣5)D.(﹣1,﹣5)3.抛物线y=﹣(x﹣5)2+3的顶点坐标是()A.(﹣5,3)B.(5,3)C.(3,5)D.(5,﹣3)4.将抛物线y=x2﹣3向左平移2个单位后得到的抛物线表达式是()A.y=x2﹣1B.y=x2﹣5C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3 5.已知b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示:根据图象分析,a的值等于()A.﹣2B.﹣1C.1D.26.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加()A.1m B.2m C.(2﹣4)m D.(﹣2)m 7.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y28.如图,抛物线y1=a(x+1)2﹣5与抛物线y2=﹣a(x﹣1)2+5(a≠0)交于点A(2,4),B(m,﹣4),若无论x取任何值,y总取y1,y2中的最小值,则y的最大值是()A.4B.5C.2D.19.已知函数y=,若使y=k成立的x值恰好有两个,则k的值为()A.﹣1B.1C.0D.±110.抛物线y=ax2+bx+c的顶点坐标(﹣2,3),抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a﹣b=0;②a﹣b+c=0;③若(﹣4,y1),(1,y2)是抛物线上的两点,则y1>y2;④b2+3b=4ac.其中正确的个数有()A.4B.3C.2D.1二.填空题(共7小题,满分21分)11.已知抛物线y=(a+3)x2开口向下,那么a的取值范围是.12.请写出一个开口向下,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.13.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.14.抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是直线x=2,且它的最高点在直线y=x+2上,则m=,n=.15.二次函数y=ax2+bx+c的部分对应值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…则当x=2时对应的函数值y=.16.如图在平面直角坐标系中,二次函数y=x2+mx+2的图象与x轴交于A、B两点,与y 轴交于C点,其顶点为D,若△ABC与△ABD的面积比为3:5,则m值为.17.如图,在平面直角坐标系中,直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+2x+1与y轴交于C点,若点E在抛物线的对称轴上移动,点F在直线AB上移动,则CE+EF的最小值为.三.解答题(共9小题,满分69分)18.用配方法把二次函数y=x2﹣4x+5化为y=a(x﹣m)2+k的形式,并写出该函数图象的顶点坐标.19.已知抛物线y=ax2+bx+1经过点(1,﹣2),(﹣2,13).(1)求a,b的值;(2)若(5,n),(m,n)是抛物线上不同的两点,求m的值.20.已知二次函数的图象经过点A(﹣1,0)和点B(3,0),且有最小值为﹣2.(1)求这个函数的解析式;(2)函数的开口方向、对称轴;(3)当y>0时,x的取值范围.21.已知函数y=(n+1)x m+mx+1﹣n(m,n为实数)(1)当m,n取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n>﹣1,那么:①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;②它一定经过哪个点?请说明理由.22.如图所示,抛物线y=x2+bx+c与x轴交于点A和点B(5,0),与y轴交于点C(0,5).(1)求抛物线的表达式;(2)若点M是抛物线在x轴下方的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值.23.如图1,地面OB上两根等长立柱AO,CB之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AO为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)保持(2)中点N的位置不变,将立柱MN的长度提升为3米,发现抛物线F1和F2的形状和大小都一样,测得抛物线F1和F2的最低点到地面的高度相差0.5米,求抛物线F1对应函数的二次项系数.24.已知二次函数y=x2+px+q图象的顶点M为直线y=x与y=﹣x+m的交点.(1)用含m的代数式表示顶点M的坐标;(2)若二次函数y=x2+px+q的图象经过点A(0,3),求二次函数的表达式;(3)当m=6且x满足t﹣1≤x≤t+3时,二次函数y=x2+px+q的最小值为2,求t的取值范围.25.某商品的进价为每件20元,售价为每件30元,每月可卖出180件.如果该商品的售价每上涨1元,就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x 元(x为整数)时,月销售利润为y元.(1)求y与x之间的函数解析式,并直接写出自变量x的取值范围.(2)当每件商品的售价定为多少元时,可获得的月利润最大?最大月利润是多少?26.在平面直角坐标系中,点A(0,4),点B(2m,4)(m为常数,且m>0),将点A绕线段AB中点顺时针旋转90°得到点C.经过A、B、C三点的抛物线记为G.(1)当m=2时,求抛物线G所对应的函数表达式.(2)用含m的式子分别表示点C的坐标和抛物线G所对应的函数表达式.(直接写出即可)(3)当抛物线G在直线x=﹣2和x=2之间的部分(包括边界点)的最高点与最低点的纵坐标之差为8时,直接写出m的取值范围.(4)连结AC,点R在线段AC上,过点R作x轴的平行线与抛物线G交于P、Q两点,连结AP、AQ.当点R将线段PQ分成1:3两部分,且△APQ的面积为时,求m的值.参考答案一.选择题(共10小题,满分30分)1.解:A、y=﹣3x是一次函数,不是二次函数,故此选项不符合题意;B、xy=2不是二次函数,故此选项不符合题意;C、a=0时不是二次函数,故此选项不符合题意;D、y=2x2+5是二次函数,故此选项符合题意;故选:D.2.解:当x=1时,y=x2﹣4=﹣3;当x=﹣1时,y=x2﹣5=﹣3;∴点(﹣1,﹣3)在抛物线上,点(1,3)、(1,﹣5)、(﹣1,﹣5)都不在抛物线上.故选:B.3.解:抛物线y=﹣(x﹣5)2+3的顶点坐标是(5,3).故选:B.4.解:将抛物线y=x2﹣3向左平移2个单位后得到的抛物线表达式是y=(x+2)2﹣3.故选:C.5.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣>0,a>0,则b<0,与b>0矛盾;故第四个图正确.由于第四个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向下,a=﹣1.故选:B.6.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,可求出OA和OB为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,比原先的宽度当然是增加了2﹣4.故选:C.7.解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是直线x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选:A.8.解:由题意可知:y的函数图象如图所示:观察函数图象可知:点A为函数y的图象的最高点,∴y的最大值为4.故选:A.9.解:函数y=的图象如图:根据图象知道当y=﹣1或y=1时,对应成立的x有恰好有2个,则k的值为±1.故选:D.10.解:∵抛物线y=ax2+bx+c的对称轴是直线x=﹣2,∴﹣=﹣2,∴4a﹣b=0,因此①正确;∵抛物线的对称轴为x=﹣2,图象与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,∴抛物线与x轴的另一个交点在点(﹣1,0)和点(0,0)之间,∴当x=﹣1时,y=a﹣b+c>0,因此②不正确;∵|﹣4﹣(﹣2)|<|1﹣(﹣2)|,∴(﹣4,y1)到对称轴的水平距离小于(1,y2)到对称轴的水平距离,且抛物线开口向下,∴y1>y2,故③正确;∵抛物线的顶点坐标为(﹣2,3),∴=3,∴b2+12a=4ac,∵4a﹣b=0,∴b=4a,∴b2+3b=4ac,故④正确;∴正确的有:①③④,故选:B.二.填空题(共7小题,满分21分)11.解:∵抛物线y=(a+3)x2开口向下,∴a+3<0,∴a<﹣3.故答案为:a<﹣3.12.解:∵抛物线开口向下,∴a<0,令a=﹣1,设抛物线的关系式为y=﹣(x﹣h)2+k,∵对称轴为直线x=2,∴h=2,把(0,3)代入得,3=﹣(0﹣2)2+k,解得,k=7,∴抛物线的关系式为:y=﹣(x﹣2)2+7,故答案为:y=﹣(x﹣2)2+7(答案不唯一).13.解:抛物线的对称轴为直线x=﹣=﹣m,∵a=1>0,∴抛物线开口向上,∵当x>2时,y的值随x值的增大而增大,∴﹣m≤2,解得m≥﹣2.故答案为:m≥﹣2.14.解:∵抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是直线x=2,且它的最高点在直线y =x+2上,∴,当x=2时,y=×2+2=3,∴m=﹣1,该抛物线的顶点坐标为(2,3),∴3=[(﹣1)2﹣2]×22﹣4×(﹣1)×2+n,解得,n=﹣1,故答案为:﹣1,﹣1.15.解:观察表格可知,当x=﹣3或5时,y=7,根据二次函数图象的对称性,(﹣3,7),(5,7)是抛物线上两对称点,对称轴为直线x==1,顶点(1,﹣9),根据对称性,x=2与x=0时,函数值相等,都是﹣8.16.解:∵y=x2+mx+2=(x+)2+2﹣,∴顶点D(﹣,2﹣),C(0,2),∴OC=2,∵S△ABC=AB•OC=AB×2=AB,S△ABD=AB•|2﹣|,△ABC与△ABD的面积比为3:5,∴AB:AB•|2﹣|=3:5,解得:m=﹣.故答案是:﹣.17.解:如图,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,直线AB的解析式为y=x+3,∵C(0,1),∴C′(2,1),∴直线C′F的解析式为y=﹣x+,联立直线C′F和直线AB得:x+3=﹣x+,解得x=,代入解得y=,∴F(,),∴C′F==,即CE+EF的最小值为.故答案为.三.解答题(共9小题,满分69分)18.解:y=x2﹣4x+5=(x2﹣8x)+5=(x2﹣8x+16)+5﹣8=(x﹣4)2﹣3,∴顶点(4,﹣3).19.解:(1)把点(1,﹣2),(﹣2,13)代入y=ax2+bx+1得,,解得:;(2)由(1)得函数解析式为y=x2﹣4x+1,∴对称轴是直线x=﹣=2,∵(5,n),(m,n)是抛物线上不同的两点,纵坐标相同,∴(5,n),(m,n)是对称点,∴=2,解得m=﹣1.20.解:(1)由题意得:函数的对称轴为x=1,此时y=﹣2,则函数的表达式为:y=a(x﹣1)2﹣2,把点A坐标代入上式,解得:a=,则函数的表达式为:y=x2﹣x﹣(2)a=>0,函数开口向上,对称轴为:x=1;(3)当y>0时,x的取值范围为:x>3或x<﹣1.21.解:(1)①当m=1,n≠﹣2时,函数y=(n+1)x m+mx+1﹣n(m,n为实数)是一次函数,它一定与x轴有一个交点,∵当y=0时,(n+1)x m+mx+1﹣n=0,∴x=,∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;②当m=2,n≠﹣1时,函数y=(n+1)x m+mx+1﹣n(m,n为实数)是二次函数,当y=0时,y=(n+1)x m+mx+1﹣n=0,即:(n+1)x2+2x+1﹣n=0,△=22﹣4(1+n)(1﹣n)=4n2≥0;∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;③当n=﹣1,m≠0时,函数y=(n+1)x m+mx+1﹣n是一次函数,当y=0时,x=,∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;(2)①假命题,若它是一个二次函数,则m=2,函数y=(n+1)x2+2x+1﹣n,∵n>﹣1,∴n+1>0,抛物线开口向上,对称轴:﹣==﹣<0,∴对称轴在y轴左侧,当x<0时,y有可能随x的增大而增大,也可能随x的增大而减小,②当x=1时,y=n+1+2+1﹣n=4.当x=﹣1时,y=0.∴它一定经过点(1,4)和(﹣1,0).22.解:(1)将(5,0),(0,5)代入y=x2+bx+c得,解得,∴y=x2﹣6x+5.(2)设直线BC解析式为y=kx+n,将(5,0),(0,5)代入y=kx+n得,解得,∴y=﹣x+5,设点M坐标为(m,m2﹣6m+5),则点N坐标为(m,﹣m+5),∴MN=﹣m+5﹣(m2﹣6m+5)=﹣m2+5m=﹣(m﹣)2+,∴MN最大值为.23.解:(1)∵>0,∴抛物线开口向上,抛物线的顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为m;(2)由(1)可知,对称轴为x=4,则BO=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,1.8),设F1的解析式为:y=a(x﹣2)2+1.8,将(0,3)代入得:4a+1.8=3,解得:a=0.3,∴抛物线F1为:y=0.3(x﹣2)2+1.8,当x=3时,y=0.3×1+1.8=2.1,∴MN的长度为2.1米;(3)∵MN=3,点M(3,3),∵抛物线F1和F2的形状和大小都一样,∴设抛物线F1的解析式为y=a(x﹣)2+k1,F2的解析式为y=a(x﹣)2+k2,抛物线F1和F2的最低点到地面的高度分别为k1和k2,由题意,得k1﹣k2=0.5,把点M(3,3)分别代入y=a(x﹣)2+k1和y=a(x﹣)2+k2,得k1=3﹣a,k2=3﹣a,∴3﹣a﹣(3﹣a)=0.5,解得:a=.∴抛物线F1对应函数的二次项系数为.24.解:(1)由,得,即顶点M坐标为(m,m);(2)∵此时二次函数为y=(x﹣m)2+m过点A(0,3),∴3=(0﹣m)2+m得m1=﹣3,m2=,∴y=(x+2)2﹣1或y=(x﹣)2+;(3)当m=6时,顶点为M(4,2),∴抛物线为y=(x﹣4)2+2,函数的最小值为2,∵x满足t﹣1≤x≤t+3时,二次函数的最小值为2,∴,解得1≤t≤5.25.解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x==4时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;26.解:(1)由题意可知,点C为抛物线G的顶点,当m=2时,C(2,6),设G所对应的函数的表达式为y=a(x﹣2)2+6(a≠0),将点A(0,4)代入y=a(x﹣2)2+6得4=4a+6,解得a=﹣.∴y=﹣(x﹣2)2+6.(2)∵抛物线对称轴为直线x==m,∴点C坐标为(m,m+4),设抛物线解析式为y=a(x﹣m)2+m+4,把(0,4)代入y=a(x﹣m)2+m+4得4=am2+m+4,解得a=﹣,∴y=﹣(x﹣m)2+m+4.(3)①0<m≤2时,在直线x=﹣2和x=2之间的部分的抛物线最高点为顶点(m,m+4),最低点为直线x=﹣2与抛物线交点(﹣2,﹣),m+4﹣(﹣)=8时,解得m=2.②当m>2时,图象最高点为直线x=2与抛物线交点(2,﹣+8),最低点为直线x=﹣2与抛物线交点(﹣2,﹣),﹣+8﹣(﹣)=8,∴m>2符合题意,∴m≥2.(4)作CD⊥PQ于点D,∵点R将线段PQ分成1:3两部分,∴PQ=4PR=2PD,∴PR=RD,∴CD=RD,∴PQ=4CD,设CD=t,则PQ=4t,∴点Q的坐标为(m+2t,m+4﹣t),∴=﹣(m+2t﹣m)2+m+4=m+4﹣t.解得t=m.∴点Q坐标为(m,m+4),PQ=m,∵△APQ的面积为,∴m(m+4﹣4)=,解得m=或m=﹣(舍).∴m=.。
第二章二次函数(单元测试)2022-2023学年九年级下册数学北师大版一、单选题(本大题共12小题,每小题3分,共36分)1.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-0.01(x -20)2+4,桥拱与桥墩AC 的交点C 恰好位于水面,且AC ⊥x 轴,若OA =5米,则桥面离水面的高度AC 为( )A .5米B .4米C .2.25米D .1.25米2.下列关于二次函数()()312y x x =+-的图像和性质的叙述中,正确的是( )A .点()0,2在函数图像上B .开口方向向上C .对称轴是直线1x =D .与直线3y x =有两个交点3.如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是( )A .a<0B .0c >4.在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( ) A .()221y x =-+ B .()221y x =++ C .()221y x =+- D .()221y x =-- 5.抛物线y =x 2+3上有两点A (x 1,y 1),B (x 2,y 2),若y 1<y 2,则下列结论正确的是( )A .0≤x 1<x 2B .x 2<x 1≤0C .x 2<x 1≤0或0≤x 1<x 2D .以上都不对6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:⊥234x <<,⊥320a b +>,⊥24b a c ac >++,⊥a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( )A .5-或2B .5-C .2D .2-8.关于二次函数()215y x =-+,下列说法正确的是( ) A .函数图象的开口向下 B .函数图象的顶点坐标是()1,5-9.已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .210.已知抛物线22()1y x =-+,下列结论错误的是( )A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大 11.如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是( )A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>12.将二次函数223y x x =-++的图象在x 轴上方的部分沿x 轴翻折后,所得新函数的图象如图所示.当直线y x b =+与新函数的图象恰有3个公共点时,b 的值为( )二、填空题(本大题共8小题,每小题3分,共24分)13.已知抛物线(1)(5)y x x =--与x 轴的公共点坐标是12(,0),(,0)A x B x ,则12x x +=_______.14.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣3,6),B (1,3),则方程ax 2﹣bx ﹣c =0的解是_________.15.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则铅球推出的水平距离OA 的长是_____m .16.如图,平行四边形ABCD 中,4AB =,点D 的坐标是(08),,以点C 为顶点的抛物线经过x 轴上的点A ,B ,则此抛物线的解析式为__________________.17.如图,二次函数2(0)y ax bx c a =++≠的图像过点(-1,0),对称轴为直线x =2,下列结论:⊥4a +b =0;⊥9a +c <3b ;⊥8a +7b +2c >0;⊥若点A (-3,1y )、点B (21,2y -)、点C (37,2y )在该函数图像上,则132y y y <<:⊥若方程()()153a x x +-=-的两根为12,x x ,且12x x <,则1215.x x <-<<其中正确的结论有__________. (只填序号)18.平面直角坐标系xOy 中,已知点()2,39P m n -,且实数m ,n 满足240m n -+=,则点P 到原点O 的距离的最小值为___________.19.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当1020x ≤≤时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).20.某游乐场的圆形喷水池中心O 有一雕塑OA ,从点A 向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y 16-=(x ﹣5)2+6 (1)雕塑高OA 的值是____m ;(2)落水点C ,D 之间的距离是____m .三、解答题(本大题共5小题,每小题8分,共40分)21.某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?(1)求抛物线的解析式;△面积的4倍,若存在,请直接写出点P的坐标:若不存在,请(2)抛物线上是否存在点P,使PBC的面积是BCD说明理由.24.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:销售单价x(元/件)…354045…每天销售数量y(件)…908070…(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?25.某电子科技公司研发出一套学习软件,并对这套学习软件在24周的销售时间内,做出了下面的预测:设第x 周该软件的周销售量为T(单位:千套),当0<x≤8时,T与x+4成反比;当8<x≤24时.T﹣2与x成正比,并预测得到了如表中对应的数据.设第x周销售该软件每千套的利润为K(单位:千元),K与x满足如图中的函数关系图象:(1)求T与x的函数关系式;(2)观察图象,当12≤x≤24时,K与x的函数关系式为________.(3)设第x周销售该学习软件所获的周利润总额为y(单位:千元),则:⊥在这24周的销售时间内,是否存在所获周利润总额不变的情况?若存在,求出这个不变的值;若不存在,请说明理由.⊥该公司销售部门通过大数据模拟分析后认为,最有利于该学习软件提供售后服务和销售的周利润总额的范围是286≤y≤504,求在此范围内对应的周销售量T的最小值和最大值.参考答案:1.C2.D3.C4.B5.D6.B7.B8.D9.A10.D11.D12.A13.614.x 1=﹣3,x 2=115.1016.221624y x x =-+-17.⊥⊥⊥⊥18310 19.12120. 116##156 22 21.(1)第二批每个挂件的进价为40元(2)当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元22.(1)0.55y x =-+(28x ≤≤,且x 为整数)(2)每平方米种植5株时,能获得最大的产量,最大产量为12.5千克23.(1)2=23y x x --(2)存在,()11P,()21P24.(1)y =﹣2x +160(2)销售单价应定为50元(3)当销售单价为54元时,每天获利最大,最大利润1248元25.(1)120(08)42(824)x T x x x ⎧<≤⎪=+⎨⎪+<≤⎩;(2)44K x =-+;(3)⊥存在,不变的值为240;⊥当周利润总额的范围是286≤y ≤504时,对应的周销售量T 的最小值是11千套,最大值是18千套.答案第3页,共1页。
北师大版九年级数学下册单元测试题及答案第一章达标测试卷一、选择题(每题3分,共30分)1.cos 30°的值为( )A.12B.32C.22D.332.如图,已知Rt △BAC 中,∠C =90°,AC =4,tan A =12,则BC 的长是( ) A .2 B .8 C .2 5 D .45(第2题) (第3题)3.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D 点,已知AC =5,BC =2,那么sin ∠ACD 等于( ) A.53 B.23 C.253 D.524.若3tan (α+10°)=1,则锐角α的度数是( )A .20°B .30°C .40°D .50°5.已知cos θ=0.253 4,则锐角θ约等于( )A .14.7°B .14°7′C .75.3°D .75°3′6.如图,某课外活动小组在测量旗杆高度的活动中,已测得仰角∠CAE =33°,AB =a ,BD =b ,则下列求旗杆CD 长的式子中正确的是( )A .CD =b sin 33°+aB .CD =b cos 33°+aC .CD =b tan 33°+a D .CD =b tan 33°+a(第6题) (第7题)7.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC的正切值是( )A .2 B.255 C.55 D.128.在△ABC 中,∠A =30°,∠B =45°,AB =2(1+3),则BC 等于( )A .2 B. 6 C .2 2 D .1+ 39.如图,在高楼前D 点测得楼顶的仰角为30°,向高楼前进60 m 到C 点,又测得仰角为45°,则该高楼的高度大约为( )A .82 mB .163 mC .52 mD .30 m(第9题) (第10题)10.如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC ′的位置,此时露在水面上的鱼线B ′C ′长为3 3 m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°二、填空题(每题3分,共30分)11.已知α为等腰直角三角形的一个锐角,则tan α=________. 12.若反比例函数y =k x的图象经过点(tan 30°,cos 60°),则k =________.13.在△ABC中,∠C=90°,BC=6,sin A=23,则AB=________.14.某梯子与地面所成的角α满足45°≤α≤60°时,人可以安全地爬上斜靠在墙面上的梯子的顶端,现有一个长6 m的梯子,则使用这个梯子最高可以安全爬上__________高的墙.15.某游客在山脚处看见一个标注海拔40 m的牌子,当他沿山坡前进50 m时,他又看见一个标注海拔70 m的牌子,于是他走过的山坡的坡度是__________.16.如图,△ABC的顶点A,C的坐标分别是(0,23),(2,0),且∠ACB=90°,∠B=30°,则顶点B的坐标是__________.(第16题) (第17题) (第18题)(第19题) (第20题)17.如图,一棵树的枝叶部分AB在太阳光下的投影CD的长是5.5 m,此时太阳光线与地面的夹角是52°,则AB的长约为__________ (结果精确到0.1 m.参考数据:sin 52°≈0.79,tan 52°≈1.28).18.如图,秋千链子的长度OA=3 m,静止时秋千踏板处于A位置,此时踏板距离地面0.3 m,秋千向两边摆动,当踏板处于A′位置时,摆角最大,此时∠AOA′=50°,则在A′位置,踏板与地面的距离约为________m(sin 50°≈0.766,cos 50°≈0.642 8,结果精确到0.01 m).19.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20 n m i l e 的速度沿南偏西50°方向匀速航行,1 h 后到达码头B 处,此时,观测灯塔C 位于北偏西25°方向上,则灯塔C 与码头B 的距离约是________n m i l e(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4).20.如图,正方形ABCD 的边长为22,过点A 作AE ⊥AC ,AE =1,连接BE ,则tan E =________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.计算:(1)2-1-3sin 60°+(π-2 019)0+⎪⎪⎪⎪⎪⎪-12;(2)12-3+4cos 60°·sin 45°-(tan 60°-2)2.22.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,2a =3b ,求∠B 的正弦、余弦和正切值.23.如图,在△ABD 中,AC ⊥BD 于点C ,BC CD =32,点E 是AB 的中点,tan D =2,CE =1,求sin ∠ECB 的值和AD 的长.(第23题)24.为建设“宜居宜业宜游”山水园林城市,正在对某城市河段进行区域性景观打造.某施工单位为测得某河段的宽度,测量员先在河对岸岸边取一点A ,再在河这边沿河边取两点B 和C ,在B 处测得点A 在北偏东30°方向上,在C 处测得点A 在西北方向上,如图,量得BC 长为200 m ,求该河段的宽度(结果保留根号).(第24题)25.如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为30 n m i l e/h,在此航行过程中,该渔船从B处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值)(第25题)26.如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15 m,BA的延长线与MN相交于点D,且∠BDN=30°.假设汽车在高架道路上行驶时,周围39 m以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q时,它与这一排居民楼的距离QC为39 m,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(结果精确到1 m,参考数据:3≈1.7)(第26题)答案一、1.B 2.A 3.A 4.A 5.C 6.C 7.D 8.A 9.A10.C 点拨:∵sin ∠CAB =BC AC =326=22,∴∠CAB =45°. ∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°. ∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.二、11.1 12.36 13.9 14.3 3 m 15.3∶4 16.(8,23) 17.7.0 m 点拨:过点B 作BE ∥CD ,交AD 于点E . ∵太阳光线与地面的夹角是52°,且太阳光线是平行的,∴tan 52°=AB BE,BE =CD =5.5 m. ∴AB =5.5×tan 52°≈5.5×1.28=7.04≈7.0(m).18.1.37 点拨:如图,作A ′D ⊥OA 于点D ,A ′C 垂直地面于点C ,延长OA 交地面于点B .(第18题)易得四边形BCA ′D 为矩形,∴A ′C =DB .∵∠AOA ′=50°,且OA =OA ′=3 m ,∴在Rt △OA ′D 中,OD =OA ′·cos ∠AOA ′≈3×0.642 8≈1.93(m). 又AB =0.3 m ,∴OB =OA +AB =3.3 m. ∴A ′C =DB =OB -OD ≈1.37 m.19.2420.23点拨:延长CA 到F 使AF =AE ,连接BF ,过B 点作BG ⊥AC ,垂足为G .根据题干条件证明△BAF ≌△BAE ,得出∠E =∠F ,然后在Rt △BGF 中,求出tan F 的值,进而求出tan E 的值.三、21.解:(1)原式=12-3×32+1+12=12-32+1+12=12; (2)原式=-(2+3)+4×12×22-(3-2)=-2-3+2-3+2=-23+ 2.22.解:由2a =3b ,可得a b =32. 设a =3k (k >0),则b =2k ,由勾股定理,得c =a 2+b 2=9k 2+4k 2=13k . ∴sin B =bc =2k 13k=21313, cos B =a c =3k 13k=31313, tan B =b a =2k 3k =23. 23.解:∵AC ⊥BD ,∴∠ACB =∠ACD =90°.∵点E 是AB 的中点,CE =1,∴BE =CE =1,AB =2CE =2.∴∠B =∠ECB . ∵BC CD =32, ∴设BC =3x ,则CD =2x .在Rt △ACD 中,tan D =2,∴AC CD=2. ∴AC =4x .在Rt △ACB 中,由勾股定理得AB =AC 2+BC 2=5x ,∴sin ∠ECB =sin B =AC AB =45. 由AB =2,得x =25, ∴AD =AC 2+CD 2=(4x )2+(2x )2=25x =25×25=455. 24.解:如图,过点A 作AD ⊥BC 于点D .(第24题)根据题意知∠ABC =90°-30°=60°,∠ACD =45°, ∴∠CAD =45°.∴∠ACD =∠CAD .∴AD =CD .∴BD =BC -CD =200-AD .在Rt △ABD 中,tan ∠ABD =AD BD, ∴AD =BD ·tan ∠ABD =(200-AD )·tan 60°=3(200-AD ). ∴AD +3AD =200 3.∴AD =20033+1=300-1003(m).答:该河段的宽度为(300-1003)m. 25.解:如图,过点A 作AP ⊥BC , 垂足为P ,设AP =x n mi l e.(第25题)在Rt △APC 中,∵∠APC =90°, ∠PAC =90°-60°=30°,∴tan ∠PAC =CP AP =33.∴CP =33x n mi l e.在Rt △APB 中,∵∠APB =90°, ∠PAB =45°, ∴BP =AP =x n mi l e.∵PC +BP =BC =30×12=15(n mi l e),∴33x +x =15.解得x =15(3-3)2.∴PB =15(3-3)2n mi l e.∴航行时间为15(3-3)2÷30=3-34(h).答:该渔船从B 处开始航行3-34h ,离观测点A 的距离最近.26.解:(1)如图,连接PA.(第26题)由已知得AP=39 m,在Rt△APH中,PH=AP2-AH2=392-152=36(m).答:此时汽车与点H的距离为36 m.(2)由题意,隔音板位置应从P到Q,在Rt△ADH中,DH=AHtan 30°=1533=153(m);在Rt△CDQ中,DQ=CQsin 30°=3912=78(m).∴PQ=PH+HQ=PH+DQ-DH=36+78-153≈114-15×1.7≈89(m).答:高架道路旁安装的隔音板至少需要89 m长.第二章达标测试卷1.下列函数属于二次函数的是( )A.y=5x+3 B.y=1x2C.y=2x2+x+1 D.y=x2+12.二次函数y=x2-2x+4化为y=a(x-h)2+k的形式,下列正确的是( ) A.y=(x-1)2+2 B.y=(x-1)2+3 C.y=(x-2)2+2 D.y=(x-2)2+43.一小球被抛出后,距离地面的高度h (m)和飞行时间t (s)满足的函数表达式为h=-5(t -1)2+6,则小球距离地面的最大高度是( )A.1 m B.5 m C.6 m D.7 m4.下列抛物线中,开口向下且开口最大的是( )A.y=-x2B.y=-23x2C.y=13x2D.y=-3x25.已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:x-1 0 1 2 3y 5 1 -1 -1 1 则该二次函数图象的对称轴为( )A.y轴B.直线x=52C.直线x=2 D.直线x=326.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是( ) A.m<2 B.m>2 C.0<m≤2 D.m<-27.将抛物线y=x2-4x-4向左平移3个单位长度,再向上平移5个单位长度,得到抛物线的函数表达式为( )A.y=(x+1)2-13 B.y=(x-5)2-3C.y=(x-5)2-13 D.y=(x+1)2-38.二次函数y=ax2+bx+c的图象如图所示,反比例函数y=ax与正比例函数y=bx在同一坐标系内的大致图象是( )9.以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是( )A.b≥54B.b≥1或b≤-1 C.b≥2 D.1≤b≤210.如图是抛物线y 1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点为B(4,0),直线y2=m x+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是( )A.①②③B.①③④C.①③⑤D.②④⑤二、填空题(每题3分,共30分)11.当a =________时,函数y =(a -1)xa 2+1+x -3是二次函数.12.已知抛物线y =-2(x -3)2+1,当x 1>x 2>3时,y 1________y 2(填“>”或“<”). 13.某一型号飞机着陆后滑行的距离y (单位:m)与滑行时间x (单位:s)之间的函数表达式是y =60x -1.5x 2,该型号飞机着陆后滑行距离为__________时才能停下来. 14.如图是二次函数y =ax 2-x +a 2-1的图象,则a =________.15.已知二次函数的图象经过原点及⎝⎛⎭⎪⎫-12,-14,且图象与x 轴的另一个交点到原点的距离为1,则该二次函数的表达式为________________________.16.若抛物线y =kx 2-7x -7和x 轴有交点,则k 的取值范围是__________________. 17.抛物线y =x 2-2kx +4k 通过一个定点,这个定点坐标是____________.18.廊桥是我国古老的文化遗产,如图是一抛物线形的廊桥示意图,已知抛物线的函数表达式为y=-140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8 m的点E,F处要安装两盏警示灯,则这两盏警示灯的水平距离EF约是________m(结果精确到1 m,5≈2.236).19.某商店经营一种水产品,成本为每千克40元,据市场分析,若按每千克50元销售,一个月能售出500 k g;销售单价每涨1元,月销售量减少10 k g,针对这种水产品的销售情况,销售单价定为________元时,获得的月利润最大.20.如图,在边长为10 cm的正方形ABCD中,P为AB边上任意一点(P不与A,B两点重合),连接DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为__________.三、解答题(21~24题每题9分,其余每题12分,共60分)21.已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:求:(1)这个二次函数的表达式;(2)这个二次函数图象的顶点坐标及上表中m的值.22.如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.23.如图,已知抛物线与x轴交于A(-1,0),E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线对应的函数表达式;(2)若抛物线的顶点为D,求四边形AEDB的面积.24.已知函数y=(m+6)x2+2(m-1)x+m+1的图象与x轴总有交点.(1)求m的取值范围;(2)当函数图象与x轴两交点的横坐标的倒数和等于-4时,求m的值.25.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润为6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1 120元,求该产品的质量档次.26.有一个例题:有一个窗户形状如图①,上部是一个半圆,下部是一个矩形.如果制作窗框的材料总长为6 m,如何设计这个窗户,使透光面积最大?这个例题的答案:当窗户半圆的半径约为0.35 m时,透光面积的最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m.解答下列问题:(1)若AB为1 m,求此时窗户的透光面积;(2)与上面的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明理由.答案一、1.C 2.B 3.C 4.B 5.D 6.A 7.D8.C 点拨:由y =ax 2+bx +c 的图象开口向下,得a <0;由图象,得-b2a>0;由不等式的基本性质,得b >0. ∵a <0,∴y =a x的图象位于第二、四象限. ∵b >0,∴y =bx 的图象经过第一、三象限. 9.A10.C 点拨:对于抛物线y 1=ax 2+bx +c (a ≠0),对称轴为直线x =-b 2a ,∴-b2a=1,∴2a+b =0,①正确;由图象可知a <0,c >0,x =-b2a>0, ∴b >0,∴abc <0,②错误;∵抛物线y 1=ax 2+bx +c (a ≠0)与直线y =3只有一个交点,∴方程ax 2+bx +c =3有两个相等的实数根,③正确;设抛物线与x 轴的另一个交点是(x 2,0),由抛物线的对称性可知4+x 22=1,∴x 2=-2,即抛物线与x 轴的另一个交点是(-2,0),④错误; 通过函数图象可直接得到当1<x <4时,有y 2<y 1,⑤正确. 故选C .二、11.-1 12.< 13.600 m14.1 点拨:∵抛物线过原点,∴0=a ×02-0+a 2-1,∴a =±1.又∵抛物线开口向上,∴a =1.15.y =x 2+x 或y =-13x 2+13x点拨:由题意知,抛物线与x 轴的另一个交点坐标为(1,0)或(-1,0),故可得相应函数表达式为y =-13x 2+13x 或y =x 2+x .16.k ≥-74且k ≠0 17.(2,4)18.18 点拨:当y =8时,-140x 2+10=8,得x =±45,∴E (-45,8),F (45,8).∴EF =2×45=85≈18(m).19.70 点拨:设销售单价为x (元),且利润为y (元),则y =(x -40)·[500-10(x -50)],即y =-10(x -70)2+9 000(50≤x ≤100),当x =70时,y 有最大值,获得月利润最大. 20.52cm 点拨:设AP =x cm ,BE =y cm.如图,∵四边形ABCD 是正方形,∴∠A =∠B =90°.∴∠1+∠2=90°.∵PE ⊥DP ,∴∠2+∠3=90°.∴∠1=∠3.∴△ADP ∽△BPE .∴AD BP =APBE ,即1010-x =x y .整理得y =-110(x -5)2+52(0<x <10),∴当x =5时,y 有最大值52.三、21.解:(1)将点(-1,-5),(0,1),(2,1)的坐标代入y =ax 2+bx +c ,得⎩⎨⎧a -b +c =-5,c =1,4a +2b +c =1,解得⎩⎨⎧a =-2,b =4,c =1.∴这个二次函数的表达式为y =-2x 2+4x +1.(2)y =-2x 2+4x +1=-2(x -1)2+3,故图象的顶点坐标为(1,3).当x =4时,m =-2×16+16+1=-15.22.解:(1)将点A (1,0)的横纵坐标代入y =(x -2)2+m ,得(1-2)2+m =0,解得m =-1.∴二次函数的表达式为y =(x -2)2-1. 当x =0时,y =4-1=3, ∴C 点坐标为(0,3).∵点C 和点B 关于对称轴直线x =2对称,∴B 点坐标为(4,3).分别将A (1,0),B (4,3)的坐标代入y =kx +b ,得⎩⎨⎧k +b =0,4k +b =3,解得⎩⎨⎧k =1,b =-1.∴一次函数的表达式为y =x -1. (2)A ,B 两点的坐标分别为(1,0),(4,3).当kx +b ≥(x -2)2+m 时,在坐标系内对应的直线不在抛物线的下方,此时1≤x ≤4. 23.解:(1)因为抛物线与y 轴交于点B (0,3),所以设抛物线对应的函数表达式为y =ax 2+bx +3(a ≠0). 由题意得⎩⎨⎧a -b +3=0,9a +3b +3=0,解得⎩⎨⎧a =-1,b =2.所以抛物线对应的函数表达式为y =-x 2+2x +3.(2)由顶点坐标公式得抛物线的顶点坐标为(1,4). 作抛物线的对称轴,与x 轴交于点F , 所以S四边形AEDB =S △ABO +S梯形BOFD +S △DEF=12AO ·BO +12(BO +DF )·OF +12EF ·DF =12×1×3+12×(3+4)×1+12×2×4=9.24.解:(1)当m +6=0即m =-6时,函数y =(m +6)x 2+2(m -1)x +m +1,即y =-14x -5的图象与x 轴有交点;当m +6≠0时,Δ=4(m -1)2-4(m +6)·(m +1)=4(-9m -5)≥0,解得m ≤-59,即m ≤-59且m ≠-6时抛物线与x 轴有交点.综合m +6=0和m +6≠0两种情况可知,当m ≤-59时,此函数的图象与x 轴有交点.(2)设x 1,x 2是方程(m +6)x 2+2(m -1)x +m +1=0的两个实数根,则x 1+x 2=-2(m -1)m +6,x 1x 2=m +1m +6.∵1x 1+1x 2=-4,即x 1+x 2x 1x 2=-4,∴-2(m -1)m +1=-4,解得m =-3.当m =-3时,m +6≠0,Δ>0,符合题意,∴m 的值是-3.25.解:(1)∵第1档次的产品一天能生产95件,每件利润为6元,每提高一个档次,每件利润增加2元,但一天产量减少5件,生产第x 档次的产品提高了(x -1)档, ∴y =[6+2(x -1)][95-5(x -1)],即y =-10x 2+180x +400(其中x 是正整数,且1≤x ≤10).(2)由题意,得-10x 2+180x +400=1 120,整理得x 2-18x +72=0, 解得x 1=6,x 2=12(舍去). ∴该产品的质量档次为第6档.26.解:(1)由已知得AD =54 m ,∴窗户的透光面积为54×1=54(m 2).(2)窗户透光面积的最大值变大. 理由:设AB =x m , 则AD =⎝ ⎛⎭⎪⎫3-74x m ,∵3-74x >0,且x >0,∴0<x <127. 设窗户透光面积为S m 2,由已知得S =x ⎝ ⎛⎭⎪⎫3-74x =-74x 2+3x =-74⎝ ⎛⎭⎪⎫x -672+97,当x =67时(x =67在0<x <127的范围内),S 最大=97>1.05.∴与例题比较,现在窗户透光面积的最大值变大.第三章达标测试卷一、选择题(每题3分,共30分)1.⊙O的半径为6,点P在⊙O内,则OP的长可能是( )A.5 B.6 C.7 D.82.如图,在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径为( ) A.5 B.10 C.8 D.6(第2题)(第3题)(第4题)3.如图,AB是⊙O的直径,BC是⊙O的弦,若∠OBC=60°,则tan∠BAC的值是( )A. 3 B.1 C.32D.334.如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD等于( ) A.128° B.100° C.64° D.32°5.已知扇形的面积为4π,扇形的弧长为π,则该扇形的半径为( ) A.4 B.6 C.8 D.8π6.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则⊙O的半径是( ) A.1 B.2 C. 3 D. 5(第6题)(第7题)(第9题)(第10题)7.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,CD ⊥AB 于点E ,则下列结论中不成立的是( )A .∠A =∠D B.CB ︵=BD ︵C .∠ACB =90° D.∠COB =3∠D8.同一个圆的内接正六边形和外切正六边形的周长之比为( )A .3∶4 B.3∶2 C .2∶ 3 D .1∶29.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A (8,0),与y 轴分别交于点B (0,4)和点C (0,16),则圆心M 到坐标原点O 的距离是( ) A .10 B .8 2 C .413 D .24110.如图,已知⊙O 是等腰直角三角形ABC 的外接圆,点D 是AC ︵上一点,BD 交AC 于点E ,若BC =4,AD =45,则AE 的长是( ) A .3 B .2 C .1 D .1.2 二、填空题(每题3分,共30分)11.如图,在⊙O 中,AB ︵=AC ︵,∠A =40°,则∠B =________.(第11题)(第12题)(第13题)(第14题)12.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连接OB,OD.若∠ABC=40°,则∠BOD的度数是________.13.如图,AB为⊙O的直径,点C在AB的延长线上,CD,CE分别与⊙O相切于点D,E,若AD=2,∠DAC=∠DCA,则CE=________.14.如图,⊙P的半径为2,P在函数y=8x(x>0)的图象上运动,当⊙P与x轴相切时,点P的坐标为__________.15.如图,AB是⊙O的直径,AB=8,点C在圆上,且∠BAC=30°,∠ABD=120°,CD⊥BD 于点D,则BD=________.(第15题)(第16题)(第17题)16.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧BC的长为________.17.如图,已知在⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM,OP以及⊙O 上,而且∠POM=45°,则AB的长为________.18.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=________.(第18题)(第19题)(第20题)19.如图,直线y =33x +3与x 轴、y 轴分别相交于A ,B 两点,圆心P 的坐标为(1,0),⊙P 与y 轴相切于点O ,若将⊙P 沿x 轴向左移动,当⊙P 与该直线相交时,横坐标为整数的点P 有________个.20.如图,在Rt △ABC 中,∠ACB =90°,AC =23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD ︵绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为__________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,A ,B ,C 三点都在⊙O 上,AE 是⊙O 的直径,AD 是△ABC 的高,⊙O 的半径R =4,AD =6.求证:AB ·AC 的值是一个常数.(第21题)22.如图,⊙O 的直径AB =10,弦DE ⊥AB 于点H ,AH =2. (1)求DE 的长;(2)延长ED 到点P ,过P 作⊙O 的切线,切点为C ,若PC =25,求PD 的长.(第22题)23.如图,已知P为反比例函数y=4x(x>0)图象上一点,以点P为圆心,OP长为半径画圆,⊙P与x轴相交于点A,连接PA,且点A的坐标为(4,0).求:(1)⊙P的半径;(2)图中阴影部分的面积.(第23题)24.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆O交AC于点D,点E为BC的中点,连接DE.(1)求证:DE是半圆O的切线;(2)若∠BAC=30°,DE=2,求AD的长.(第24题)25.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线对应的函数表达式.(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.(第25题)26.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB,BC于点M,N,点P 在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=25,sin ∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.(第26题)答案一、1.A 2.A 3.D 4.A 5.C 6.A7.D 8.B9.D 点拨:连接BM,OM,AM,过点M作MH⊥BC于点H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8.∴∠OAM=∠MHO=∠HOA=90°.∴四边形OAMH是矩形,∴AM=OH.∵点B的坐标为(0,4),点C的坐标为(0,16),∴OB=4,OC=16.∴BC=12.∵MH⊥BC,∴CH=BH=12BC=12×12=6.∴OH=OB+BH=4+6=10.∴AM=10.在Rt△AOM中,OM=AM2+OA2=102+82=241.10.C点拨:∵⊙O是等腰直角三角形ABC的外接圆,BC=4,∴AB为⊙O的直径,AC=4,AB=4 2.∴∠D=90°.在Rt△ABD中,AD=45,AB=42,∴BD=28 5.∵∠D=∠C,∠DAE=∠CBE,∴△ADE∽△BCE.∴AD∶BC=AE∶BE=DE∶CE=45∶4=1∶5.∴相似比为1∶5.设AE=x,∴BE=5x.∴DE=285-5x.∴CE =5DE =28-25x . 又∵AC =4,∴x +28-25x =4. 解得x =1.二、11.70° 12.70° 13.2 14.(4,2) 15.2 16.4π3 17. 518.392 点拨:延长CO 与圆交于点D ,连接AD ,可得∠B =∠D ,故sin B =sin D .∴AH AB =AC CD ,即18AB =2426,可得AB =392. 19.3 20.23-2π3点拨:依题意,有AD =BD ,又∠ACB =90°,所以CB =CD =BD ,即△BCD 为等边三角形,∠BCD =∠ABC =60°,∠BAC =∠ACD =30°;由AC =23,得BC =2,AB =4.阴影部分面积为S △ACD -S 弓形AD =S △ACD -S 弓形BD =S △ACD -(S 扇形BCD -S △BCD )=S △ABC -S 扇形BCD ,根据面积公式计算即可.三、21.证明:连接BE ,如图所示.(第21题)∵AE 为⊙O 的直径,AD 是△ABC 的高, ∴∠ABE =∠ADC =90°. 又∵∠C =∠E ,∴△ADC ∽△ABE .∴AC AE =AD AB. ∴AB ·AC =AD ·AE =6×2R=6×2×4=48, 即AB ·AC 的值是一个常数. 22.解:(1)连接OD .∵AB =10,∴OA =OD =5.∵AH=2,∴OH=3.∵AB⊥DE,∴∠DHO=90°,DH=EH.∴DH=OD2-OH2=52-32=4.∴DE=2DH=2×4=8.(2)连接OC,OP.∵CP与⊙O相切,∴OC⊥CP.∴OP=OC2+CP2=52+(25)2=3 5.∴PH=OP2-OH2=(35)2-32=6.∴PD=PH-DH=6-4=2.23.解:(1)过点P作PD⊥x轴于点D.∵A点的坐标为(4,0),∴OA=4.∴OD=2,即点P的横坐标为2.将x=2代入y=4x,可得y=2,即PD=2.在Rt△OPD中,根据勾股定理可得OP=22,即⊙P的半径为2 2.(2)由(1)可得PD=OD,且∠ODP=90°,∴∠OPD=45°.又∵OP=PA,∴∠APD=∠OPD=45°.∴∠OPA=90°.又∵OA=2OD=4,∴S阴影=S扇形OPA-S△OPA=90×(22)2×π360-4×22=2π-4.24.(1)证明:连接OD,OE,BD.∵AB为半圆O的直径,∴∠ADB=∠BDC=90°.在Rt△BDC中,E为斜边BC的中点,∴DE=BE.在△OBE和△ODE中,⎩⎨⎧OB =OD ,OE =OE ,BE =DE ,∴△OBE ≌△ODE (SSS ).∴∠ODE =∠OBE =90°.∴DE 为半圆O 的切线.(2)解:在Rt △ABC 中,∠BAC =30°,∴BC =12AC . ∵BC =2BE =2DE =4,∴AC =8.由题知∠C =60°,DE =BE =EC ,∴△DEC 为等边三角形.∴DC =DE =2.∴AD =AC -DC =8-2=6.25.解:(1)设经过B ,C 两点的直线对应的函数表达式为y =m x +n (m≠0且m ,n 为常数).由题易知B (0,3),C (1,0),分别将B (0,3),C (1,0)的坐标代入y =m x +n ,得⎩⎨⎧3=n ,0=m +n ,解得⎩⎨⎧m =-3,n =3.∴经过B ,C 两点的直线对应的函数表达式为y =-3x +3.(2)当BC 切⊙O ′于第二象限时,记切点为D ,易得DC = 5.∵BO =BD =b ,∴BC =5-b .在Rt △OBC 中,易得12+b 2=(5-b )2,解得b =255. 同理当BC 切⊙O ′于第三象限D 1点时,可求得b =-25 5. 故当b >255或b <-255时,直线BC 与⊙O ′相离; 当b =255或-255时,直线BC 与⊙O ′相切;当-255<b <255时,直线BC 与⊙O ′相交. 26.(1)证明:如图,连接AN .∵∠ABC =∠ACB ,∴AB =AC .∵AC 为直径,∴AN ⊥BC .∴∠CAN =∠BAN ,BN =CN .∵∠CAB =2∠BCP ,∴∠CAN =∠BCP .∵∠CAN +∠ACN =90°,∴∠BCP +∠ACN =90°,即∠ACP =90°.∴直线CP 是⊙O 的切线.(第26题)(2)解:如图,过点B 作BH ⊥AC 于点H ,由(1)得BN =CN =12BC = 5. ∵AN ⊥BC ,∴sin ∠CAN =CN AC. 又∵∠CAN =∠BCP ,sin ∠BCP =55, ∴CNAC =55,∴AC =5. ∴AN =AC 2-CN 2=2 5.∵∠ANC =∠BHC =90°,∠ACN =∠BCH ,∴△CAN ∽△CBH .∴AC BC =AN BH. ∴BH =4,即点B 到AC 的距离为4.(3)解:易知CH=BC2-BH2=2,则AH=AC-CH=3.∵BH∥CP,∴BHPC=AHAC.∴PC=20 3.∴AP=AC2+PC2=253.∴△ACP的周长是AC+AP+PC=5+253+203=20.。
北师大版九年级数学下册第二章综合素质评价一、选择题(每题3分,共30分)1.【教材P30随堂练习T1改编】下列函数是二次函数的是()A.y=1x B.y=-x C.y=x2+2 D.y=12x-22.【教材P39习题T3改编】【2021·徐州】在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x-2)2+1 B.y=(x+2)2+1 、C.y=(x+2)2-1 D.y=(x-2)2-13.【教材P35想一想变式】下列抛物线中,开口向下且开口最大..的是()A.y=-x2B.y=-23x2C.y=13x2D.y=-3x24.【2022·兰州】已知二次函数y=2x2-4x+5,当函数值y随x值的增大而增大时,x的取值范围是()A.x<1 B.x>1 C.x<2 D.x>2 5.【2021·广州】抛物线y=ax2+bx+c经过点(-1,0),(3,0),且与y轴交于点(0,-5),则当x=2时,y的值为()A.-5 B.-3 C.-1 D.56.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是() A.m<2 B.m>2 C.0<m≤2 D.m<-2 7.如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF. 四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x 之间的函数关系式为()A.y=5-x B.y=5-x2C.y=25-x D.y=25-x28.【2022·广西】已知反比例函数y=bx(b≠0)的图象如图所示,则一次函数y=cx-a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()9.【中考·河池】如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误..的是()A.ac<0 B.b2-4ac>0 C.2a-b=0 D.a-b+c=0 10.【2022·嘉兴】已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1 B.32C.2 D.52二、填空题(每题3分,共24分)11.若抛物线y=x2+(a-2)x+c的顶点在y轴上,则a的值是.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c>0的解集是__________.(第12题)(第16题)(第18题)13.已知二次函数y=3(x+1)2-m的图象上有三点A(1,y1),B(2,y2),C(-2,y3),则y1,y2,y3的大小关系为____________.14.某工厂今年八月份医用防护服的产量是50万件,计划九月份和十月份增加产量,如果月平均增长率为x,那么十月份医用防护服的产量y(万件)与x之间的函数表达式为____________________________.15.抛物线y=x2-2kx+4k通过一个定点,这个定点的坐标是__________.16.廊桥是我国古老的文化遗产,如图是一抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8 m的点E,F处要安装两盏警示灯,则这两盏警示灯的水平距离EF 约是______________m(结果精确到1 m,5≈2.236).17.【教材P50习题T2改编】某商店经营一种水产品,成本为每千克40元,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量减少10千克,针对这种水产品的销售情况,销售单价定为________元时,获得的月利润最大.18.如图,在边长为10 cm的正方形ABCD中,P为AB边上任意一点(P不与A,B两点重合),连接DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE 的最大长度为__________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.已知二次函数y=x2+2x+m的图象过点A(3,0).(1)求m的值;(2)当x取何值时,函数值y随x的增大而增大?20.【教材P39例1改编】已知抛物线y=3x2-2x+4.(1)通过配方将抛物线的表达式写成y=a(x-h)2+k的形式;(2)写出抛物线的开口方向和对称轴.21.【教材P44例2变式】已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表:x…-1 0 2 4 …y…-5 1 1 m…求:(1)这个二次函数的表达式;(2)这个二次函数图象的顶点坐标及上表中m的值.22.如图,二次函数y=x2-2x-3的图象与x轴交于点A,B(A在B的左侧),与一次函数y=-x+b的图象交于A,C两点.(1)求b的值;(2)求△ABC的面积;(3)根据图象直接写出当x为何值时,一次函数的值大于二次函数的值.23.“双减”政策落地后,对校外培训机构的影响巨大,不管是机构还是机构老师都面临着转型,培训机构李老师推出了“热学文化”新零售项目.他新开了甲、乙两家分店共同销售,因地段不同,甲店一天可售出某品牌科技产品20件,每件盈利26元;乙店一天可售出同一品牌科技产品32件,每件盈利20元.经调查发现,每件此种科技产品每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件降价a元时,一天可盈利y1元,乙店每件降价b元时,一天可盈利y2元.(1)当a=5时,求y1的值;(2)求y2关于b的函数表达式;(3)若李老师规定两家分店下降的价格必须相同,请求出每件此种科技产品下降多少元时,两家分店一天的盈利和最大,最大是多少元?24.【2022·大庆】某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75 kg.在确保每棵果树平均产量不低于40 kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为y kg,它们之间的函数关系满足如图所示的图象.(1)图中点P所表示的实际意义是______________________________,每增种1棵果树时,每棵果树平均产量减少________kg.(2)求y与x之间的函数表达式,并直接写出自变量x的取值范围.(3)当增种果树多少棵时,果园的总产量w(kg)最大?最大总产量是多少?答案一、1.C 2.B3.B 点要点:抛物线y =ax 2的开口大小由|a |决定,|a |越大,开口越小;|a |越小,开口越大.4.B 5.A 6.A 7.D 8.D 9.C10.C 点思路:由题意得ak +3=b ,4k +3=c .从而将ab 看成二次函数的因变量,化成顶点式:ab =k (a +32k )2-94k ,则ab 的最大值为-94k =9, 解得k =-14.从而c =4×⎝ ⎛⎭⎪⎫-14+3=2. 二、11.2 12.-1<x <3 13.y 3<y 1<y 2 14.y =50(x +1)2 15.(2,4) 16.18 17.70 18.52 cm 点拨:如图,设AP =x cm ,BE =y cm.∵四边形ABCD 是正方形,∴∠A =∠B =90°. ∴∠1+∠2=90°. ∵PE ⊥DP , ∴∠2+∠3=90°. ∴∠1=∠3. ∴△ADP ∽△BPE .∴AD BP =AP BE ,即1010-x =x y .整理,得y =-110(x -5)2+52(0<x <10).∴当x =5时,y 有最大值52.三、19.解:(1)∵二次函数y =x 2+2x +m 的图象过点A (3,0),∴9+6+m =0,解得m =-15.(2)∵y =x 2+2x -15=(x +1)2-16, ∴二次函数的图象的对称轴为直线x =-1. ∵a =1>0,∴当x >-1时,函数值y 随x 的增大而增大.20.解:(1)y =3x 2-2x +4=3[x 2-23x +⎝ ⎛⎭⎪⎫132-⎝ ⎛⎭⎪⎫132]+4=3⎝ ⎛⎭⎪⎫x -132-13+4=3(x -13)2+113.(2)开口向上,对称轴是直线x =13.21.解:(1)将⎩⎨⎧x =-1,y =-5,⎩⎨⎧x =0,y =1和⎩⎨⎧x =2,y =1分别代入y =ax 2+bx +c ,得⎩⎨⎧a -b +c =-5,c =1,4a +2b +c =1, 解得⎩⎨⎧a =-2,b =4,c =1.∴这个二次函数的表达式为y =-2x 2+4x +1. (2)∵y =-2x 2+4x +1=-2(x -1)2+3, ∴图象的顶点坐标为(1,3).当x =4时,y =-2×16+16+1=-15, 即m =-15.22.解:(1)令y =0,则y =x 2-2x -3=0,解得x =3或x =-1. ∴A (-1,0),B (3,0).将点A (-1,0)的坐标代入y =-x +b ,得1+b =0,解得b =-1. (2)解方程组⎩⎨⎧y =x 2-2x -3,y =-x -1,得⎩⎨⎧x =-1,y =0或⎩⎨⎧x =2,y =-3,∴点C 的坐标为(2,-3). ∴△ABC 的面积为12×4×3=6.(3)当-1<x <2时,一次函数的值大于二次函数的值. 23.解:(1)由题意可得y 1=(26-a )(20+2a ),当a =5时,y 1=(26-5)×(20+2×5)=630.(2)由题意可得,y 2=(20-b )(32+2b )=-2b 2+8b +640.(3)设两家下降的价格都为x 元,两家的盈利和为w 元,则w =(26-x )(20+2x )+(-2x 2+8x +640)=-4x 2+40x +1 160=-4(x -5)2+1 260. ∴当x =5时,w 取得最大值,此时w =1 260.答:每件此种科技产品下降5元时,两家分店一天的盈利和最大,最大是1 260元.24.解:(1)增种果树28棵时,每棵果树平均产量为66 kg ;12(2)设y 与x 之间的函数表达式为y =kx +b . 把⎩⎨⎧x =10,y =75,⎩⎨⎧x =28,y =66分别代入上式,得⎩⎨⎧10k +b =75,28k +b =66,解得⎩⎪⎨⎪⎧k =-12,b =80.∴y 与x 之间的函数表达式为y =-12x +80, 自变量x 的取值范围是0≤x ≤80.(3)w =(60+x )⎝ ⎛⎭⎪⎫-12x +80=-12x 2+50x +4 800.∵-12<0,∴x =-502×⎝ ⎛⎭⎪⎫-12=50时,w 最大=6 050.答:当增种果树50棵时,果园的总产量w (kg)最大,最大总产量是6 050 kg.。
一、选择题1.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( )A .18m >B .18mC .18m >-且0m ≠ D .18m 且0m ≠ 2.在同一坐标系中,函数y ax b =+与2(0)y ax bx a =+≠的图象可能是( ) A . B . C . D . 3.对称轴为y 轴的二次函数是( )A .y=(x+1)2B .y=2(x-1)2C .y=2x 2+1D .y=-(x-1)2 4.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .5.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<;②13a c =-;③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有 A .1个B .2个C .3个D .4个 6.抛物线221y x =--的顶点坐标是( )A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)7.二次函数223y x =-+在14x -≤≤内的最小值是( )A .3B .2C .-29D .-308.汽车刹车后行驶的距离s (单位:m )关于行驶的时间t (单位:s )的函数解析式是2156s t t =-.汽车刹车后到停下来前进了多远?( )A .10.35mB .8.375mC .8.725mD .9.375m 9.已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论:①abc >0;②a ﹣b +c >0;③4a ﹣2b +c <0,其中结论正确的个数为( )A .0个B .1个C .2个D .3个10.已知二次函数223y x x =--+,下列叙述中正确的是( )A .图象的开口向上B .图象的对称轴为直线1x =C .函数有最小值D .当1x >-时,函数值y 随自变量x 的增大而减小11.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④ 12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.如图,直线334y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线233384y x x =-++经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为_____.14.如图,二次函数2y x mx =-+的图象与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在14x <<的范围内有解,则t 的取值范围是_______.15.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc >;②20a b -=;③320b c +>;④2(am bm a b m +≤-为实数).其中正确结论是_____________(只填序号).16.如图1,AO ,BC 是两根垂直于地面的立柱,且长度相等.在两根立柱之间悬挂着一根绳子,如图2建立坐标系,绳子形如抛物线21410y x x =-+的图象.因实际需要,在OA 与BC 间用一根高为2.5m 的立柱MN 将绳子撑起,若立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,则点D 到地面的距离为______.17.已知抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点.若()15,P y ,()2,Q m y 是抛物线上的两点,且12y y >,则m 的取值范围是______.18.写出一个二次函数,使其满足:①图象开口向下;②当0x >时,y 随着x 的增大而减小.这个二次函数的解析式可以是______.19.若函数2(1)42y a x x a =+-+的图像与x 轴有且只有一个交点,则a 的值为____. 20.把函数y =x 2+3的图像向下平移1个单位长度得到的图像对应的函数关系式为________.三、解答题21.某产品的成本是120元/件,在试销阶段,当产品的售价为x (元/件)时,日销售量为(200-x )件.(1)写出用售价x (元/件)表示每日的销售利润y (元)的表达式(2)当日销售利润是1500元时,产品的售价是多少?日销售量是多少件?(3)当售价定位多少时,日销售利润最大?最大日销售利润是多少元?22.已知地物线2y x bx c =-++()0a ≠与y 轴交于点A ,点()3,2B 在该抛物线上 (1)若抛物线的对称轴是直线x m =,请用含b 的式子表示m ;(2)如图1,过点B 作x 轴的垂线段,垂足为点C .连结AB 和AC ,当ABC 为等边三角形时,求抛物线解析式;(3)如图2,在(2)条件下,已知P 为x 轴上的一动点,连结AP 和BP ,当30APB ∠=︒时,求满足条件的点P 的坐标.23.抛物线y =2x 2+4mx +m -5的对称轴为直线x =1,求m 的值及抛物线的顶点坐标. 24.已知抛物线的顶点坐标是()1,4-,且过点(0,3).()1求这个抛物线对应的函数表达式.()2在所给坐标系中画出该函数的图象.()3当x 取什么值时,函数值小于0?25.已知抛物线2y ax c =+经过点()0,2A 和点()1,0B -.(1)求抛物线的解析式;(2)将(1)中的抛物线平移,使其顶点坐标为()2,1,平移后的抛物线与x 轴的两个交点分别为点,C D (点C 在点D 的左边).求点,C D 的坐标;(3)将(1)中的抛物线平移,设其顶点的纵坐标为m ,平移后的抛物线与x 轴两个交点之间的距离为n .若15m <≤,直接写出n 的取值范围.26.如图,已知某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A(1)求该二次函数的表达式;(2)点(,)P m n 是该二次函数图象上一点,若点P 到y 轴的距离不大于4,请根据图象直接写出n 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数,∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则△=240b ac ->,即221410m m m -⨯->(+)(), 解得18m >-. ∴m 的取值范围是18m >-且0m ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.2.A解析:A【分析】根据二次函数的c 值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解.【详解】解:2(0)y ax bx a =+≠,0c ,∴二次函数经过坐标原点,故B 、C 选项错误; A 、根据二次函数开口向上0a >,对称轴b x 02a =->, 所以,0b <,一次函数经过第一三象限,0a >,与y 轴负半轴相交,所以,0b <,符合,故本选项正确;D 、二次函数图象开口向下,0a <,一次函数经过第一三象限,0a >,矛盾,故本选项错误.故选:A .【点睛】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.3.C解析:C【分析】由已知可知对称轴为x =0,从而确定函数解析式y =ax 2+bx +c 中,b =0,由选项入手即可.【详解】解:二次函数的对称轴为y 轴,则函数对称轴为x =0,即函数解析式y =ax 2+bx +c 中,b =0,故选:C .【点睛】本题考查二次函数的性质;熟练掌握二次函数的图象及性质是解题的关键.4.B解析:B【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-, ∴抛物线一定经过原点,∴选项A 排除;∵()222y mx m x =+- , ∴对称轴为直线x=22224m m m m ---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m -<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m ->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合;故选B.【点睛】 本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.5.D解析:D【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由抛物线的开口方向向上可推出a >0,∵图像与x 轴的交点A 、B 的横坐标分别为-1,3,∴对称轴x =1,∴当x =1时,y <0,∴a +b +c <0;故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0,又∵b =﹣2a ,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴13a c =-∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E , ,要使△ABD 是等腰直角三角形,则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确 ④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC ,Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7,即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c 7=-,∴a 73c =-=.Ⅱ、当AB =AC =4时,在Rt △OAC 中,∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15,即c 2=15,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 3c =-= Ⅲ、当AC =BC 时,∵OC ⊥AB ,∴点O 是AB 的中点,∴AO =BO ,这与AO =1,BO =3矛盾,∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确.故答案选:D【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2b a=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.6.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 7.C解析:C【分析】根据图象,直接代入计算即可解答 【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C . 【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.8.D解析:D 【分析】求出函数的最大值即可得求解. 【详解】∵22575156648s t t t ⎛⎫--- ⎪⎝⎭==+, ∴当54t =时,s 取得最大值759.3758=,即汽车刹车后到停下来前进的距离是9.375m 故选D . 【点睛】本题主要考查二次函数的应用,根据题意理解其最大值的实际意义是解题的关键.9.D解析:D 【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,得到②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,得到③正确,从而得出结论. 【详解】解:∵抛物线的开口向下,∴a <0.∵02ba -<, ∴b <0.∵抛物线与y 轴交于正半轴, ∴c >0,∴abc >0,故①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,故②正确; 根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,故③正确. 则其中正确的有3个,为①②③. 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y =ax 2+bx +c (a ≠0)来说,a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x =﹣1,﹣2时对应函数值的正负.10.D解析:D 【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论. 【详解】解:A. 2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,故选项A 错误; B.2223=(1)4y x x x =--+-++∴图象的对称轴为直线1x =-,故选项B 错误; C.2223=(1)4y x x x =--+-++ ∵a=-1<0,∴图象的开口向下,函数有最大值,故选项C 错误; D. 2223=(1)4y x x x =--+-++∴当1x >-时,函数值y 随自变量x 的增大而减小,故选项D 正确; 故选:D . 【点睛】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.11.A解析:A 【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案. 【详解】 解:图像开口向下, a ∴<0,12bx a=-=-<0, b ∴<0,函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12bx a=-=-, 2,b a ∴= 即1,2a b =当1x =时,y a b c =++<0, 12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A 【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.12.D解析:D 【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案. 【详解】解:由图象开口向上,可知a<0, 与y 轴的交点在x 轴的下方,可知c<0,又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误;∵122b a -= ∴=-a b ,∴0a b +=,故B 错误;当12x =时,则11042y a b c =++>,∵=-a b ,∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误; 当21x n =+时,222(1)(1)y a n b n c =++++ 4222an an a an a c =++--+ 42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥, ∴22(1)an n c c ++≤, 即y c ≤,故D 正确; 故选:D . 【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】设出E 的坐标表示出M 坐标进而表示出EM 化成顶点式即可求得EM 的最大值【详解】解:∵点E 是直线BC 上方抛物线上的一动点∴点E 的坐标是(m )点M 的坐标是(m )∴EM =﹣()==(m2﹣4m )=(解析:32【分析】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【详解】解:∵点E 是直线BC 上方抛物线上的一动点, ∴点E 的坐标是(m ,233384m m -++),点M 的坐标是(m ,334m -+), ∴EM =233384m m -++﹣(334m -+)=23382m m -+=38-(m 2﹣4m )=38-(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32, 故答案为32. 【点睛】本题考查了二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.14.【分析】求出函数解析式求出函数值取值范围把t 的取值范围转化为函数值的取值范围【详解】先由已知可得二次函数y=−x2+mx 的图象与x 轴交于坐标原点和(40)所以对称轴x==所以m=4代入方程y=−x2 解析:04t <≤【分析】求出函数解析式,求出函数值取值范围,把t 的取值范围转化为函数值的取值范围. 【详解】先由已知可得,二次函数 y=−x 2+mx 的图象与 x 轴交于坐标原点和 (4,0) 所以对称轴 x=2b a-=()221m -=⨯-, 所以m=4,代入 方程y=−x 2+mx 得, y=-x 2+4x , 当x=2时,y=4 即顶点坐标是(2,4) 当x=1时,y=3, 当x=4时,y=0 由x 2−mx+t=0 得 t=-x 2+4x=y因为当 1<x<4 时, 0<y≤4,所以在 1<x<4 范围内有实数解,则 t 的取值范围是0<t≤4, 故答案为:0<t≤4 . 【点睛】本题考查了二次函数和一元二次方程数形结合分析问题,注意函数的最低点和最高点.15.①②④【分析】根据抛物线开口向下对称轴抛物线与轴相交于正半轴可得可以判断①和②正确;当时有解得由图像可知化简后可判断得③错误;由图像可知当时抛物线有最大值当时根据得到化简后得故④正确【详解】解:抛物解析:①②④. 【分析】根据抛物线开口向下,对称轴12bx a=-=-,抛物线与y 轴相交于正半轴,可得0a <,20b a =<,0c >,可以判断①和②正确;当0y =时,有210a x c a ,解得11a cx a ,21a cx a,由图像可知,011a c a,化简后可判断得③错误;由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,根据12y y ≥得到20a bcam bmc化简后得2am bm a b +≤-,故④正确.【详解】 解:抛物线开口向下,0a ∴<,抛物线的对称轴12bx a=-=-, 20b a ∴=<,抛物线与y 轴相交于正半轴,0c ∴>,∴0abc >,故①正确;∴2220a b a a -=-=,故②正确;当0y =时,2220ax bx c ax ax c ,∴210a x c a∴11a cx a, 21a cx a由图像可知,011a c a∴14a c a则有30a c +<,∴62320a c b c +=+<,故③错误; 由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,∵12y y ≥ ∴20a bcam bmc则2am bm a b +≤-,故④正确; 故答案是:①②④. 【点睛】本题考查了二次函数的图象与系数的关系,熟悉相关性质是解题的关键.16.2m 【分析】根据起始抛物线确定点A 的坐标结合已知确定N 的坐标从而确定新抛物线的解析式即可求解【详解】∵抛物线解析式为∴点A 的坐标为(04)∵立柱到的水平距离为左侧抛物线的最低点与的水平距离为∴新抛物解析:2m . 【分析】根据起始抛物线,确定点A 的坐标,结合已知确定N 的坐标,从而确定新抛物线的解析式即可求解. 【详解】∵抛物线解析式为21410y x x =-+, ∴点A 的坐标为(0,4),∵立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,∴新抛物线的顶点坐标的横坐标为2,点N 的坐标为(3,52), 设抛物线的解析式为y=a 2(2)x k -+,把(0,4),(3,52)分别代入解析式,得 5a 244k a k ⎧+=⎪⎨⎪+=⎩, 解得1a 22k ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为y=21(2)22x -+, ∴抛物线的最小值为2即点D 到地面的距离为2, 故答案为:2. 【点睛】本题考查了二次函数的生活应用,解析式的确定,熟练把生活问题转化为函数问题,灵活确定抛物线的解析式是解题的关键.17.【分析】根据图像经过的两点确定抛物线的对称轴利用对称轴确定P 的对称点利用数形结合思想确定m 的范围即可【详解】∵抛物线经过两点∴解得b=-6a ∴抛物线的对称轴为直线x==3∴的对称点为∵∴故填【点睛】解析:15m <<. 【分析】根据图像经过的两点,确定抛物线的对称轴,利用对称轴,确定P 的对称点,利用数形结合思想,确定m 的范围即可. 【详解】∵抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点,∴4201640a b c a b c ++=⎧⎨++=⎩, 解得b=-6a ,∴抛物线的对称轴为直线x=2ba-=3, ∴()15,P y 的对称点为()11,P y ', ∵12y y >, ∴15m <<, 故填15m <<. 【点睛】本题考查了二次函数的对称性,熟记二次函数的性质是解题的关键.18.y=-x2-2x-1【分析】首先由①得到a <0;由②得到-≤0;只要举出满足以上两个条件的abc 的值即可得出所填答案【详解】解:二次函数y=ax2+bx+c①开口向下∴a <0;②当x >0时y 随着x 的解析:y=-x 2-2x-1. 【分析】首先由①得到a <0;由②得到-2ba≤0;只要举出满足以上两个条件的a 、b 、c 的值即可得出所填答案. 【详解】解:二次函数y=ax 2+bx+c , ①开口向下, ∴a <0;②当x >0时,y 随着x 的增大而减小,-2ba≤0,即b <0; ∴只要满足以上两个条件就行,如a=-1,b=-2,c=-1时,二次函数的解析式是y=-x 2-2x-1.故答案为:y=-x2-2x-1.【点睛】本题主要考查了二次函数的性质,熟练运用性质进行计算是解此题的关键.此题是一道开放型的题目.19.或或【分析】分该函数是一次函数和二次函数两种情况求解若为二次函数由抛物线与x轴只有一个交点时b2−4ac=0据此求解可得【详解】解:当a+1=0即a=−1时函数解析式为y=−4x−2与x轴只有一个交-或1解析:2-或1【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2−4ac=0,据此求解可得.【详解】解:当a+1=0,即a=−1时,函数解析式为y=−4x−2,与x轴只有一个交点;当a+1≠0,即a≠−1时,根据题意知,(−4)2−4×(a+1)×2a=0,整理,得:a2+a−2=0,解得:a=1或a=−2;综上,a的值为−1或−2或1.-或1.故答案为:2-或1【点睛】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2−4ac决定抛物线与x轴的交点个数:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.20.y=x2+2【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标再利用顶点式写出解析式即可【详解】解:函数y=x2+3的顶点坐标为(03)∵函数图象向下平移1个单位长度∴得到的函数图象顶点坐标为(0解析:y=x2+2.【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标,再利用顶点式写出解析式即可.【详解】解:函数y=x2+3的顶点坐标为(0,3),∵函数图象向下平移1个单位长度,∴得到的函数图象顶点坐标为(0,2),∴得到函数解析式为y=x2+2.故答案为:y=x2+2.【点睛】本题考查了二次函数的平移变换,通过平移求出新图象顶点坐标是关键.三、解答题21.(1)y=-x 2+320x-24000 ;(2)当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件;(3)当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元. 【分析】(1)根据利润=(销售价-成本价)×销售量可以得到解答;(2)令(1)中y=1500可以得到关于x 的一元二次方程,解方程即可得到产品售价x 的值,并进一步得到日销售量;(3)把(1)得到的函数配方,再根据二次函数的性质即可得到解答 . 【详解】解:(1)y =(x -120)(200-x )=-x 2+320x-24000 ; (2)日销售利润是1500元,即y=1500,则 1500=-x 2+320x-24000 解得:x 1=170,x 2=150当x=170时,日销售量是30件,当x=150时,日销售量是50件∴当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件 .(3)∵y=-x 2+320x-24000 =-(x-160)2+1600∴当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元. 【点睛】本题考查二次函数的综合应用,由题意列出二次函数关系式,然后根据二次函数的性质求解即可.22.(1)2b m =;(2)21y x =-+;(3))12,0P ,)22,0P【分析】(1)直接根据对称轴为2bx a=-代入a ,b 计算即可得出答案; (2)首先根据点B 的坐标及等边三角形求出AC ,OC 的长度,然后利用勾股定理求出AO 的长度,从而得出c 的值,最后将点B 代入解析式中即可求解;(3)根据等边三角形的性质及圆周角定理确定出点P 的位置从而可确定出点P 的坐标. 【详解】 (1)∵22b b x a =-=, ∴2b m =.(2)∵ABC 为等边三角形,BC x ⊥轴,)B ,∴2AC BC ==,3OC =, 在Rt AOC 中, 221AO AC OC =-=∴1c =把()3,2B 代入21y x bx =-++,得43b =, ∴2431y x x =-++. (3)如图,由(2)知ABC 为等边三角形,∴60ACB ∠=︒,∵30APB ∠=︒,∴2ACB APB =∠∠,由同弦所对圆周角等于圆心角的一半可知,以点C 为圆心,BC 为半径作圆,经过点P . ∵P 在x 轴上,∴点P 即为圆C 与x 轴的交点,∵2BC =,∴2r,2CP = ∵()3,0C, ∴()132,0P -, 由轴对称性可知,()232,0P +.【点睛】本题主要考查二次函数与几何综合,掌握待定系数法,等边三角形的性质及圆的有关性质是解题的关键.23.m 的值是-1,抛物线的顶点坐标是(1,-8).【分析】根据y=2x 2+4mx+m-5的对称轴为直线x=1,可以求得m 的值,然后代入原来的解析中,将解析式化为顶点式即可解答本题.【详解】解:∵y =2x 2+4mx +m -5的对称轴为直线x =1,∴-422m ⨯=1, 解得m =-1, ∴y =2x 2-4x -6=2(x -1)2-8,∴此抛物线的顶点坐标为(1,-8),∴m 的值是-1,抛物线的顶点坐标是(1,-8).【点睛】本题考查二次函数的性质,解答本题的关键是知道抛物线的对称轴是直线x=-2b a,由二次函数的顶点式可以写出它的顶点坐标.24.()()2114y x =-++或223y x x =--+;()2见解析;()33x <-或1x > 【分析】(1)由抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,由抛物线()214y a x =++过点(0,3),1a =-即可;(2)列表,描点在平面直角坐标系中描出点(-3,0),(-2,3),(-1,4),(0,3),(1,0)用平滑曲线连接即可;(3)由函数值小于0,可得函数图像再x 轴下方,在-3左侧和1右侧即可.【详解】解:(1)∵抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,抛物线()214y a x =++过点(0,3), 4=3a +,1a =-,抛物线的解析式为()214y x =-++;(2)列表:0)连线:用平滑曲线连接,(3)∵函数值小于0,∴函数图像再x 轴下方,在-3左侧和1右侧,当x<-3或x>1时,函数值小于0.【点睛】本题考查抛物线的解析式,画函数图像,函数图像的位置关系,掌握抛物线的解析式的求法,描点画函数图像的方法,函数图像与x 轴关系自变量范围是解题关键.25.(1)222y x =-+;(2)222,0,222C D ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(3210n <≤【分析】(1)把点A 、B 的坐标分别代入函数解析式,列出关于a 、c 的方程组,通过解方程求得它们的值;(2)根据平移的规律写出平移后抛物线的解析式,然后令0y =,则解关于x 的方程,即可求得点C 、D 的横坐标;(3)根据抛物线与x 轴两个交点之间的距离为2211212||()4x x x x x x -+-的关系来即可求n 的取值范围;【详解】解:(1)抛物线2y ax c =+经过点(0,2)A 和点(1,0)B -, ∴20c a c =⎧⎨+=⎩, 解得:22a c =-⎧⎨=⎩, ∴此抛物线的解析式为222y x =-+;(2)此抛物线平移后顶点坐标为(2,1),∴抛物线的解析式为22(2)1y x =--+,令0y =,即22(2)10x --+=,解得 1222x =+,2222x =-,点C 在点D 的左边,(C ∴ 2-0),(2D +,0); (3)设平移后抛物线的解析式是22y x m =-+,该抛物线与x 轴的两交点横坐标为1x ,2x ,整理为:220x m -=.此时120x x +=,122m x x =-.则21||x x n -==.当1m =时,n =当5m =时,n =.所以,n n <≤【点睛】本题考查了待定系数法求二次函数解析式,二次函数图象的几何变换.要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.26.(1)223y x x =--;(2)421n -.【分析】(1)设二次函数的解析式是y=a (x-h )2+k ,先代入顶点A 的坐标,再把B 的坐标代入,即可求出a ,即可得出解析式;(2)由点P 到y 轴的距离不大于4,得出 ,结合二次函数的图象可知,请根据图象直接写出n 的取值范围.【详解】解:(1)某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A ,设二次函数的解析式为2(1)4y a x =--,把(4,5)A 代入得:25(41)4a =--解得:1a =,所以函数表达式为:223y x x =--.(2)点P 到y 轴的距离为||m ,∴||m ≤4,∴44m -,∵2223(1)4y x x x =--=--,在44m -时,当m=1时,有最小值n=-4;当m=-4时,有最大值n=21,∴421n -.【点睛】本题考查了待定系数法求二次函数的表达式,二次函数求最值,二次函数图象和性质的应用,求二次函数的取值范围,掌握二次函数的图象和性质的应用是解题的关键.。
初中数学试卷
金戈铁骑整理制作
九年级数学(下)单元评估试卷
第一 章 直角三形的边角关系(总分:100分;时间:90分钟) 姓名 学号 成绩 一、精心选一选,相信自己的判断!(每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10 答案
1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosB 的值是( ) A.4/5 B.3/5 C.3/4 D.4/3
2、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化
3、等腰三角形的底角为30°,底边长为23,则腰长为( ) A .4
B .23
C .2
D .22
4、如图1,在菱形ABCD 中,∠ABC =60°,AC =4,则BD 长为( ) A .83
B .43
C .23
D .8
5、在△ABC 中,∠C =90°,下列式子一定能成立的是( )
A .sin a c
B = B .cos a b B =
C .tan c a B =
D .tan a b A =
6、△ABC 中,∠A ,∠B 均为锐角,且有2
|tan 3|2sin 30B A -+-=(
)
,
则△
ABC 是( )
A .直角(不等腰)三角形
B .等腰直角三角形
C .等腰(不等边)三角形
D .等边三角形
7、已知tan 1α=,那么2sin cos 2sin cos αα
αα-+的值等于( )
A .
13
B .12
C .1
D .16
8、如图2,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC
上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )
A .500sin55°米
B .500cos55°米
C .500tan55°米
D .500tan35°米
9、如图3,在矩形ABCD 中,D E ⊥AC ,垂足为E ,设∠ADE =α,且cos α=3
5
,AB =4, 则AD 的长为( ) A .3
B .
163
C .
203
D .
165
10、如图4,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( ) A .1
B .2
C .
22
D .3
二、耐心填一填:(把答案填放相应的空格里。
每小题3分,共24分)。
11.等腰直角三角形的一个锐角的余弦值等于 12、在△ABC 中,∠C =90°,sinA=
3
5
,cosA 13、比较下列三角函数值的大小:sin400
sin500
14、化简:
sin 30tan 60sin 60︒
-︒=︒
15、若A ∠是锐角,cosA >
2
3
,则∠A 应满足 16、小芳为了测量旗杆高度,在距棋杆底部6米处测得顶端的仰角是600
,小芳的身高不计,则旗杆高 米。
17、在ABC ∆中,若90C ∠=︒,1
sin 2
A =
,2AB =,则ABC ∆的周长为 18、已知菱形ABCD 的边长为6,∠A=600
,如果点P 是菱形内一点,且PB=PD=23,那么
AP 的长为
三、细心做一做:(本大题共5小题,每小题6分,共30分。
)
19、如图,CD 是平面镜,光线从A 出发经CD 上点E 发射后照射到B 点。
若入射角为α, AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6,CD=11求tan α的值。
20、在ABC ∆,︒=∠90C ,5,3==AB BC ,求A A A tan ,cos ,sin 的值。
B α
A C E D
21、如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是中线,5,4BC CD ==,求AC 的长。
22、某村计划开挖一条长1500米的水渠,渠道的断面为等腰梯形,渠道深0.8米,下底宽
1.2米,坡角为450
(如图所示),求挖土多少立方米。
23、如图10,在电线杆上离地面高度5米的C 点处引两根拉线固定电线杆.一根拉线AC 和地面成60°角,另一根拉线BC 与地面成45°角,试求两根拉线的长度.
A B C D D C
B A
四、勇敢闯一闯:(本大题共 2小题,每小题 8分,共16分。
)
24、如图11为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=24m,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?
25、如图,为测得峰顶A到河面B的高度h,当游船行至C处时测得峰顶A的仰角为α,前进m米至D处时测得峰顶A的仰角为β(此时C、D、B三点在同一直线上).
(1)用含α、β和m的式子表示h ;
(2)当α=45°,β=60°,m=50米时,求h的值.
(精确到0.1m,2≈1.41,3≈1.73)
参考答案:
一、1、A 2、D 3、C 4、B 5、D 6、D 7、A 8、B 9、B 10、B 11、2/2 12、4/5 13、< 14、-3
23 15、00∠A ∠300 16、63 17、3+3
18、23 或 43 19、911
20、53 54 4
3 21、5 22、开挖的立方2400立方米, 23、
3
10
3米.52米 24、 甲楼的影子在乙楼上的高度约为83 m . 25、(1)h=
α
ββ
αtan tan tan tan -⋅⋅m , (2)75+253米。