人工智能复习资料
- 格式:docx
- 大小:37.49 KB
- 文档页数:3
人工智能复习1.人工智能从能力的角度看,人工智能是指用人工的方法在机器上实现的智能。
从学科的角度看,人工智能是一门研究如何构造智能机器或智能系统,使它能模拟、延伸和扩展人类智能的学科。
2.人工智能的研究目标对智能行为有效解释的理论分析;解释人类智能;构造智能的人工制品3.人工智能研究中的三大学派:符号主义、联结主义和行为主义1)符号主义学:又称为逻辑主义(Logicism)、心理学派(Psychlogism)或计算机学派(Computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
认为人工智能源于数理逻辑。
2)联结主义:又称为仿生学派(Bionicsism)或生理学派(Physiologism),其原理主要为神经网络及神经网络间的连接机制与学习算法。
认为人工智能源于仿生学,特别是人脑模型的研究。
3)行为主义:又称进化主义(Evolutionism)或控制论学派(Cyberneticsism),其原理为控制论及感知-动作型控制系统。
认为人工智能源于控制论4.机器视觉是一门用计算机模拟或实现人类视觉功能的新兴学科。
主要研究目标是使计算机具有通过二维图像认知三维环境信息的能力。
5.模式识别是让计算机能够对给定的事务进行鉴别,并把它归入与其相同或相似的模式中。
6.衡量机器是否具有智能:图灵测试7.知识表示是对知识的描述,即用一些约定的符号把知识编码成一组可以被计算机接收,并便于系统使用的数据结构。
8.知识表示观是指人们对知识表示的看法。
主要有陈述性和过程性两种不同的知识表示观。
主要区别:陈述性知识表示观是以陈述式的方式把知识用一定数据结构表示出来,即把知识看成一种特殊的数据,使知识作为一种独立于程序的实体而存在;而过程性则把知识表示和知识运用结合起来。
9.推理是按照某种策略从已知事实出发利用知识去推出结论的过程。
10.智能系统的推理包括两个基本问题:推理的方法、推理的控制策略11.推理方法分类:按照推理的逻辑基础:演绎推理和归纳推理按照所用知识的确定性分:确定性推理和不确定性推理安装推理过程的单调性分:单调推理和非单调推理12.推理的控制策略包括:推理策略,主要解决推理方向,冲突消解;搜索策略,解决推理线路,推理效果,推理效率等问题。
一、选择填空1.产生式系统由综合数据库,规则库,控制策略三个部分组成2.α-β剪枝中,极大节点下界是α,极小节点是β。
3.发生β剪枝的条件是祖先节点β值<=后辈节点的α值。
4.发生α剪枝的条件是后辈节点β值<=祖先节点的α值。
5.在证据理论中,信任函数Bel(A)与似然函数Pl(A)的关系为0<=Bel(A)<=Pl(A)<=1。
6.深度优先算法的节点按深度递减的顺序排列OPEN中的节点。
7.宽度优先算法的节点按深度递增的顺序排列OPEN中的节点。
8.A 算法失败的充分条件是OPEN 表为空。
9.A算法中OPEN中的节点按f值从小到大排序。
10.爬山算法(不可撤回方式)是只考虑局部信息,没有从全局角度考虑最佳选择。
f(n)= g(n) 只考虑搜索过的路径已经耗费的费用11.分支界限算法(动态规划算法):f(n)= h(n)只考虑未来的发展趋势。
仅保留queue中公共节点路径中耗散值最小的路径,余者删去,按g 值升序排序。
12.回溯策略是试探性地选择一条规则,如发现此规则不合适,则退回去另选其它规则。
定义合适的回溯条件①新产生的状态在搜索路径上已经出现过。
②深度限制(走到多少层还没有到目标,就限制往回退) ③当前状态无可用规则。
13.A*选中的任何节点都有f(n)<=f*(s)<f(t)。
14.h(n)与h*(n)的关系是h(n)>=h*(n),g(n)与g*(n)的关系是g(n) ≥g*(n) 。
15.求解图的时候,选择一个正确的外向连接符是顺着现有的连接符的箭头方向去找,不能逆着箭头走。
16.根节点:不存在任何父节点的节点。
叶节点:不存在任何后继节点的节点。
17.两个置换s1,s2的合成置换用s1s2表示。
它是s2作用到s1的项。
18.LS和LN两个参数之间应该满足LS、LN>=0,不独立,LS、LN可以同时=1,LS、LN不能同时>1或<1。
一、填空题(40分)1.人工智能的主要学派:(1)符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要是为物理符号系统假设和有限合理性原理。
(2)连接主义:又称仿生学派或生理学派,其原理主要是为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义:又称进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
2.人工智能三个基本问题:知识获取、知识推理、知识利用。
3.常用的知识表示方法包括:状态空间法、问题归纳法、谓词演算法、语义网络法、框架表示法、本体表示法、过程表示法和神经网络表示法。
4.机器学习分为:监督学习、无监督学习、强化学习。
5.遗传算法基本操作分为:选择、交叉和变异。
6.产生式系统的构成分为:规则库、综合数据库和推理机。
7.问题状态空间包含的三种说明集合分别为:初始状态集(S)、操作符集合(F)、以及目标状态集合(G)。
8.可信度方法中,不精确推理规则的一般形式为:IF E THEN H (CF(H,E)),其中(CF(H,E))是该规则的可信度,称为可信度因子或规则强度。
(1)当证据E的可信度CF(E)的取值范围与CF(H,E)相同,即-1 ≤ CF(E)≤ 1;(2)当证据以某种程度为真时,CF(E) > 0(3)当证据肯定为真时,CF(E) = 1(4)当证据以某种程度为假时,CF(E) < 0(5)当证据肯定为假时,CF(E) = -1(6)当证据一无所知时,CF(E) = 09.用产生式方法表示张和李是同学关系:(classmate,Zhang,Li)10.模糊集合表示,例如有一组数据:85,90,82,70,98,模糊集合表示为:11.自然语言理解过程的层次有:语音分析、句词分析、语义分析。
12.人工生命研究实例有:人工脑、计算机病毒、计算机进程、细胞自动机、人工核苷酸。
13.计算智能涉及神经计算、模糊计算、进化计算、粒群计算、自然计算、免疫计算和人工生命等研究领域。
名词解释5X6分/简答题5X10分/论述题1X20分一、选择题1.下列哪个不是人工智能的研究领域( D )A.机器证明B.模式识别C.人工生命D.编译原理2.人工智能是一门( C )A.数学和生理学B.心理学和生理学C.语言学D.综合性的交叉学科和边缘学科3.神经网络研究属于下列( B )学派A.符号主义B.连接主义C.行为主义D.都不是4.(A->B)∧A => B是( C )A.附加律B.拒收律C.假言推理5.命题是可以判断真假的( D )A.祈使句B.疑问句C.感叹句D.陈述句6.MGU是(A)A.最一般合一B.最一般替换C.最一般谓词D.基替换7.要想让机器具有智能,必须让机器具有知识。
因此,在人工智能中有一个研究领域,主要研究计算机如何自动获取知识和技能,实现自我完善,这门研究分支学科叫( B )。
A.专家系统B.机器学习C.神经网络D.模式识别8.下列不在人工智能系统的知识包含的4个要素中( D )A.事实B.规则C.控制D.关系9.语义网络表达知识时,有向弧AKO 链、ISA 链是用来表达节点知识的( C )。
A.无悖性B.可扩充性C.继承性10.仅个体变元被量化的谓词称为( A )A.一阶谓词B.原子公式C.二阶谓词D.全称量词11.或图通常称为( D )A.框架网络B.语义图C.博亦图D.状态图12.不属于人工智能的学派是( B )A.符号主义B.机会主义C.行为主义D.连接主义。
13.所谓不确定性推理就是从( )的初始证据出发,通过运用( )的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。
( A )A.不确定性, 不确定性B.确定性, 确定性C.确定性, 不确定性D.不确定性确定性14.C(B|A) 表示在规则A->B中,证据A为真的作用下结论B为真的( B )A.可信度B.信度C.信任增长度D.概率15.已知初始问题的描述,通过一系列变换把此问题最终变为一个子问题集合;这些子问题的解可以直接得到,从而解决了初始问题。
人工智能工程复习资料单选题1、根据科学流行定义,人工智能就是和人类()相似的计算机程序。
[单选题] *A.思考方式B.表达方式C.行为方式(正确答案)D.外观外貌2、色彩的三原色模型是()。
[单选题] *A.红、绿、蓝(正确答案)B..红、黄、蓝C.黄、绿、蓝D.红、绿、黄2、在自动驾驶中,AI需要不断地通过路面信息来调整开车的决策,这种处理模式适合用()来训练出合理的策略。
[单选题] *A.监督学习B.非监督学习C.强化学习(正确答案)D.弱化学习3、从人文视角看,人工智能产生的影响不包括()。
[单选题] *A.对人的认识的冲击B.对人类心理的冲击C.彻底消除人类中的无用阶级(正确答案)D.推动进一步的专业分化4、()是人工智能发展的硬道理,没有它的人工智能是没有用的。
[单选题] *A.数据B.应用(正确答案)C.逻辑D.算法5、人工智能将加大减少支付流程中的()环节,大大提升交易速度。
[单选题] *A.信息传递B.人工处理(正确答案)C.到账确认D.转出授权6、谷歌公司的AlphaGo机器人战胜了人类围棋世界冠军李世石,这表明了()[单选题] *A.人工智能已经可以完全代替人类,其智力已经远远超过人类B.人工智能在某方面已经超过人类,它开创性的围棋算法是取胜的关键(正确答案)C.人工智能只是钻了人类无法长时间集中精力的空子,从而取胜D.人工智能的胜利为人类敲响了警钟,将来人类或将无法控制人工智能7、自然语言理解是人工智能的重要应用领域,下面列举中的()不是它要实现的目标。
[单选题] *A. 理解别人讲的话B. 对自然语言表示的信息进行分析概括或编辑C. 自动程序设计(正确答案)D. 机器翻译8、下列哪种情况是图灵测试的内容?() [单选题] *A. 当机器与人对话,两者相互询问,人分不清机器是人还是机器,说明它通过了图灵测试(正确答案)B. 当机器骗过测试者,使得询问者分不清是人还是机器时,说明它通过了图灵测试C. 当人与人对话,其中一人的智力超过另一人时,说明智者通过了图灵测试D. 两机对话,其中一机的智力超过另一机时,说明智者机器通过了图灵测试9、人工智能诞生于哪一年?() [单选题] *A. 1955B. 1957C. 1956(正确答案)D. 196510、目前人类在人工智能领域的发展属于哪个阶段()。
1.人工智能概念:人造智能,其英文表示是“Artifical Intelligence”,简称AI。
“人工智能”一词目前是指用计算机模拟或实验的智能,因此人工智能又称机器智能。
2.框架的概念:顾名思义,框架(frame)就是一种结构,一种模式,其一般形式是:<框架名><曹名1><槽值1>|<侧面名11><侧面值111,侧面值112,···><侧面名12><侧面值121,侧面值122,···>·<曹名2><槽值2>|<侧面名21><侧面值211,侧面值212,···><侧面名22><侧面值221,侧面值222,···>·<曹名k><槽值k>|<侧面名k1><侧面值k11,侧面值k12,···><侧面名k2><侧面值k21,侧面值k22,···>·即一个框架一般有若干个槽,一个槽有一个槽值或者有若干个侧面3.人工智能实际上是一门综合性的交叉学科和边缘学科。
4.数据挖掘(也称数据开采、数据采掘等)和数据库中的知识发现的本质含义是一样的,只是前者主要流行于统计、数据分析、数据库和信息系统等领域,后者则主要流行于人工智能和机器学习等领域。
5.PROLOG语言只有三种语句,分别称为事实、规则和问题。
6. PROLOG中称无值的变量为自由变量,有值的变量为约束变量。
7.一个完整的Turbo PROLOG程序一般包括常量段、领域段、数据字段、谓词段、目标段和子句段等六个部分。
(加粗字体为常用部分)8.在状态图中寻找目标或路径的基本方法就是搜索。
名词解释5X6分/简答题5X10分/论述题1X20分一、选择题1.下列哪个不是人工智能的研究领域( D )A.机器证明B.模式识别C.人工生命D.编译原理2.人工智能是一门( C )A.数学和生理学B.心理学和生理学C.语言学D.综合性的交叉学科和边缘学科3.神经网络研究属于下列( B )学派A.符号主义B.连接主义C.行为主义D.都不是4.(A->B)∧A => B是( C )A.附加律B.拒收律C.假言推理5.命题是可以判断真假的( D )A.祈使句B.疑问句C.感叹句D.陈述句6.MGU7.8.9.10.11.12.13.15.16.17.A.用户B.综合数据库C.推理机D.知识库18.产生式系统的推理不包括( D )A.正向推理B.逆向推理C.双向推理D.简单推理19.子句~P?Q和P经过消解以后,得到( B )A. PB. QC.~PD.P?Q20. 反演归结(消解)证明定理时,若当前归结式是( C )时,则定理得证。
A.永真式B.包孕式(subsumed)C.空子句21. 谓词逻辑下,子句, C1=L∨C1‘, C2= ? L∨C2‘,?若σ是互补文字的(最一般)合一置换,则其归结式C=( A )A.C1’σ∨C2’σB.C1’∨C2’C.C1’σ∧C2’σD.C1’∧C2’22.A?(A?B)?A 称为(),~(A?B)?~A?~B称为( C )A.结合律B.分配律C.吸收律D.摩根律23. 如果问题存在最优解,则下面几种搜索算法中,( A )必然可以得到该最优解。
A.广度优先搜索B.深度优先搜索C.有界深度优先搜索D.启发式搜索24.AI的英文缩写是(A)A)Automatic Intelligence B)Artifical IntelligenceC)Automatice Information D)Artifical Information25. 从已知事实出发,通过规则库求得结论的产生式系统的推理方式是( A )A.正向推理B.反向推理C.双向推理26.1997年5月,着名的“人机大战”,最终计算机以3.5比2.5的总比分将世界国际象棋棋王卡斯帕罗夫击败,这台计算机被称为( A )A.深蓝B.IBMC.深思D.蓝天27.人工智能的含义最早由一位科学家于1950年提出,并且同时提出一个机器智能的测试模型,请问这个科学家是( C )A.明斯基B.扎德C.图林D.冯.诺依曼二、填空题综合数据库,知识库和推理机。
人工智能原理期末考试复习1. 什么是人工智能?发展经历了几个阶段?人工智能指的是能够感知或推断信息,并将其作为知识而拥有,以应用于环境或语境中适合的行为;机器的智能称为人工智能,通常在运用程序、间或适当硬件的计算机系统中得以实现.2. 人工智能研究的内容有哪些?机器学习、知识表示方法、搜索求解策略、进化算法及其应用、确定性及不确定性推理方法、群体智能算法及其应用。
3. 人工智能有哪些研究领域?安全防范、医疗诊断、语音识别、工业制造、计算机游戏、机器翻译。
4. 什么是知识?有哪些特性?有几种分类方法?知识是人们在长期的生活及社会实践中、在科学研究及实验中积累起来的对客观世界的认识与经验。
相对正确性、不确定性、可表示性与可利用性。
分类方法:(1)按知识的作用范围分为∶常识性知识和领域性知识﹔(2)按知识的作用及表示分为∶事实性知识、规则性知识、控制性知识和元知识;(3 )按知识的确定性分为:确定知识和不确定知识;(4) 按人类思维及认识方法分为:逻辑性知识和形象性知识。
5. 什么是知识表示、命题、谓词,一阶谓词逻辑、产生式、框架、语义网络?知识表示就是将人类知识形式化或者模型化;命题是一个非真即假的陈述句;谓词的一般形式: ),...,,(21n x x x P );n x x x ,...,,21是个体,某个独立存在的事物或者某个抽象的概念, P 是谓词名,用来刻画个体的性质、状态或个体间的关系。
一阶谓词逻辑表示:谓词不但可表示一些简单的事实,而且可以表示带有变量的“知识”,有时称为“事实的函数”。
进而可用谓词演算中的逻辑联接词“与()”、“或(v)"、“非(┐)”和“蕴含(→)”等来组合已有知识,从而表示出更复杂的知识。
产生式通常用于表示事实、规则以及它们的不确定性度量,适合于表示事实性知识和规则性知识。
框架是一种描述所论对象(一个事物、事件或概念)属性的数据结构。
语义网络:从图论的观点看,它其实就是“一个带标识的有向图”,由结点和弧(也称“边”)所组成。
⼈⼯智能期末复习材料⼀、选择填空。
1. ⼈⼯智能:1956年⼈⼯智能作为⼀个专业术语出现。
智能有以下⼏点:AI(ArtificialIntelligence)1.智能具有感知能⼒;2.智能具有记忆和思维能⼒:记忆和思维是⼈脑最重要的功能,记忆和思维需要同时具备,它们是⼈由智能的根本原因;思维分为好⼏种:逻辑思维,形象思维,以及顿悟思维;3.智能具有学习能⼒,⾃适应能⼒及⾏为能⼒。
2.图灵1950年发表“计算机与智能”的论⽂,⽂章以“机器能思维吗?”开始,论述并提出了著名的“图灵测试”,以测试⼀个计算机系统是否具有智能。
3.⼈⼯智能界主要由符号主义,⾏为主义和连结主义等研究学派。
4.⼈⼯智能主要的研究领域(挑选5或6个认真看)1.专家系统2.模式识别3.机器⼈学4.⾃动定理证明5.博弈6.智能检索7.⾃动程序设计 8.组合调度问题 9.软计算 10.分布式⼈⼯智能 11.数据挖掘5.⼈⼯智能研究的3个主要内容:知识的获取、知识的表⽰和知识的运⽤。
6.知识的描述:知识的某领域中所涉及的各有关⽅⾯的⼀种符号表⽰。
7.知识的特点:(1)相对正确性(2)不确定性(3)可表⽰性(4)可利⽤性8.知识的分类(1)事实性知识(2)过程性知识(3)⾏为性知识(4)实例性知识(5)类⽐性知识(6)元知识9.确定性和不确定性规则知识的产⽣式表⽰:确定性:P Q 或者 if P then Q不确定性:P Q (可信度)或者 if P then Q (可信度)10.确定性和不确定性事实性知识的产⽣式表⽰:确定性事实性知识⼀般使⽤三元组(对象,属性,值)或(关系,对象1,对象2)不确定性事实性知识⼀般使⽤四元组(对象,属性,值,不确定度量值)或(关系,对象1,对象2,不确定度量值)11.产⽣式系统通常由规则库、数据库、推理机这3个基本部分组成。
它们之间的关系可以表⽰为12.规则库是专家系统的核⼼。
数据库,⼜称事实库。
13.产⽣式系统推理机的推理⽅式:正向推理,反向推理,双向推理和混合式推理。
知识点1.什么是人工智能?它的研究目标是什么?人工智能的研究目标远期目标揭示人类智能的根本机理,用智能机器去模拟、延伸和扩展人类的智能涉及到脑科学、认知科学、计算机科学、系统科学、控制论等多种学科,并依赖于它们的共同发展近期目标研究如何使现有的计算机更聪明,即使它能够运用知识去处理问题,能够模拟人类的智能行为。
相互关系远期目标为近期目标指明了方向近期目标则为远期目标奠定了理论和技术基础2.人工智能有哪几个主要学派?各自的特点是什么?人工智能研究的三大学派:随着人工神经网络的再度兴起和布鲁克(R.A.Brooks)的机器虫的出现,人工智能研究形成了符号主义、联结主义和行为主义三大学派。
符号主义学派是指基于符号运算的人工智能学派,他们认为知识可以用符号来表示,认知可以通过符号运算来实现。
例如,专家系统等。
联结主义学派是指神经网络学派,在神经网络方面,继鲁梅尔哈特研制出BP网络之后,人工神经网络研究掀起了第二次高潮。
之后,随着模糊逻辑和进化计算的逐步成熟,又形成了“计算智能”这个统一的学科范畴。
行为主义学派是指进化主义学派,在行为模拟方面,麻省理工学院的布鲁克教授1991年研制成功了能在未知的动态环境中漫游的有6条腿的机器虫。
智能科学技术学科研究的主要特征(1)由对人工智能的单一研究走向以自然智能、人工智能、集成智能为一体的协同研究;(2)由人工智能学科的独立研究走向重视与脑科学、认知科学、等学科的交叉研究;(3)由多个不同学派的独立研究走向多学派的综合研究;(4)由对个体、集中智能的研究走向对群体、分布智能的研究;(5)智能技术应用已渗透到人类社会的各个领域。
知识表示的类型按知识的不同存储方式:陈述性知识:知识用某种数据结构来表示;知识本身和使用知识的过程相分离。
过程性知识:知识和使用知识的过程结合在一起。
知识表示的基本方法非结构化方法:一阶谓词逻辑产生式规则结构化方法:语义网络框架知识表示的其它方法状态空间法和问题归约法。
⼈⼯智能期末复习资料⼈⼯智能技术期末复习纲要⼀、填空(20分)+判断(10分)1、⼈⼯智能:Artificial Intelligence,简称AI2、计算智能就是计算⼈⼯智能, 它是模拟(群智能)的⼈⼯智能。
计算智能以(数值数据)为基础, 主要通过数值计算,运⽤算法进⾏问题求解。
3、(判断)⼈⼯智能作为⼀门学科, 其研究⽬标就是制造智能机器和智能系统, 实现智能化社会4、(判断)⼈⼯智能学科的研究策略则是先部分地或某种程度地实现机器的智能,并运⽤智能技术解决各种实际问题特别是⼯程问题, 从⽽逐步扩展和不断延伸⼈的智能, 逐步实现智能化。
5、(判断)符号智能采⽤搜索⽅法进⾏问题求解,⼀般是在(问题空间)搜索;计算智能也采⽤搜索⽅法进⾏问题求解,⼀般是在(解空间)搜索。
6、(填空)表⽰、运算和搜索是⼈⼯智能的三个最基本、最核⼼的技术。
7、PROLOG语⾔只有三种语句,分别称为(事实)、(规则)和(问题)。
8、(填空)PROLOG程序的执⾏过程是⼀个(归结)演绎推理过程9、(填空)⼀个完整的Turbo PROLOG(2.0版)程序⼀般包括常量段、领域段、数据库段、(谓词段)、(⽬标段)和(⼦句段)等六个部分。
10、(填空)按连接同⼀节点的各边间的逻辑关系划分,图可分为(或图)或(与或图)两⼤类,图搜索也就可分为(或图搜索)和(与或图搜索)两⼤类。
或图通常称为(状态图)。
11、(填空)⽤计算机来实现状态图的搜索, 有两种最基本的⽅式:(树式搜索)和(线式搜索)。
12、(填空)按搜索范围的扩展顺序的不同, 搜索⼜可分为(⼴度优先)和(深度优先)两种类型。
13、(填空)与或图搜索也分为(盲⽬搜索)和(启发式搜索)两⼤类。
前者⼜分为穷举搜索和盲⽬碰撞搜索。
14、(填空)遗传算法中有三种关于染⾊体的运算: (选择-复制)、(交叉)和(变异)。
15、(判断、填空)遗传算法是⼀种随机搜索算法,遗传算法⼜是⼀种优化搜索算法。
第一章1.人工智能的定义(能力)?人工智能的研究目标?人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
近期目标:实现机器智能——理论和技术基础远期目标:制造智能机器——发展方向2.人工智能的起源与发展过程;典型人物、事件(1)古希腊,亚里士多德,形式逻辑的基本规律(2)英国,培根,归纳法(3)德国,莱布尼茨,数理逻辑(4)英国,布尔,布尔代数(5)奥地利,哥德尔,一阶谓词完备性(6)英国,图灵,图灵机(7)美国,Mauchly,ENIAC(8)美国,McCulloch,神经网络模型(9)美国,香农,信息论1956年,麦卡锡,人工智能之父,50年代开始符号处理,70年代理论走向实践,Nilson A*算法,1977年,专家系统广泛应用,80年代达到顶峰,90年代趋向小型化、并行化、网络化、智能化。
3.人工智能的主要学派及观点符号主义,认为人工智能源于数理逻辑。
联结主义,认为人工智能源于仿生学。
行为主义,认为人工智能源于控制论。
4.人工智能所研究的范围与应用领域智能感知:模式识别、自然语言理解智能推理:问题求解、逻辑推理与定理证明、专家系统、自动程序设计智能学习:机器学习、神经网络、计算智能与进化计算智能行动:机器人学、智能控制、智能检索、智能调度与指挥、分布式人工智能与Agent、数据挖掘与知识发现、人工生命、机器视觉5.人工智能的基本技术推理技术、搜索技术、知识表示与知识库技术、归纳技术、联想技术第二章1.概念:知识及形式化描述、同构变换、同态变换把有关信息关联在一起所形成的信息结构称为知识。
同构变换可使问题更明确,便于求解,同构问题的解答等价于原始问题的解答。
同态变换可使问题更加简化,易于求解。
原始问题有解,则同态问题有解,同态问题无解,则原始问题无解,它们之间是蕴含关系。
2.知识、信息和数据的区别数据是记录信息的符号,是信息的载体和表示;信息是对数据的解释,是数据在不同场合下的具体含义;只有将有关的信息关联到一起才能使用,才称之为知识。
⼈⼯智能考试复习资料⼈⼯智能第⼀章绪论1、智能(intelligence )⼈的智能是他们理解和学习事物的能⼒,或者说,智能是思考和理解能⼒⽽不是本能做事能⼒。
2、⼈⼯智能(学科)⼈⼯智能研究者们认为:⼈⼯智能(学科)是计算机科学中涉及研究、设计和应⽤智能机器的⼀个分⽀。
它的近期主要⽬标在于研究⽤机器来模仿和执⾏⼈脑的某些智⼒功能,并开发相关理论和技术。
3、⼈⼯智能(能⼒)⼈⼯智能(能⼒)是智能机器所执⾏的通常与⼈类智能有关的智能⾏为,这些智能⾏为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、⾏动和问题求解等活动。
4、⼈⼯智能:就是⽤⼈⼯的⽅法在机器上实现的智能,或者说,是⼈们使⽤机器模拟⼈类的智能。
5、⼈⼯智能的主要学派:符号主义:⼜称逻辑主义、⼼理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
代表⼈物有纽厄尔、肖、西蒙和尼尔逊等。
连接主义:⼜称仿⽣学派或⽣理学派,其原理主要为神经⽹络及神经⽹络间的连接机制与学习算法。
⾏为主义:⼜称进化主义或控制论学派,其原理为控制论及感知—动作模式控制系统。
6、⼈类认知活动具有不同的层次,它可以与计算机的层次相⽐较,见图⼈类计算机认知活动的最⾼层级是思维策略,中间⼀层是初级信息处理,最低层级是⽣理过程,即中枢神经系统、神经元和⼤脑的活动,与此相对应的是计算机程序、语⾔和硬件。
研究认知过程的主要任务是探求⾼层次思维决策与初级信息处理的关系,并⽤计算机程序来模拟⼈的思维策略⽔平,⽽⽤计算机语⾔模拟⼈的初级信息处理过程。
7、⼈⼯智能研究⽬标为:1、更好的理解⼈类智能,通过编写程序来模仿和检验的关⼈类智能的理论。
思维策略初级信息处理⽣理过程计算机程序计算机语⾔计算机硬件图:⼈类认知活动与计算机的⽐2、创造有⽤和程序,该程序能够执⾏⼀般需要⼈类专家才能实现的任务。
⼀般来说,⼈⼯智能的研究⽬标⼜可分为近期研究⽬标和远期研究⽬标两种。
人工智能1、人工智能(学科2)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。
2、物理符号系统的六种基本功能符号输入、输出、存储、复制、符号结构、条件转移3、人工智能的各种认知观符号主义(Symbolicisni)基于物理符号系统假设和有限合理性原理连接主义(Connect ion ism)基于神经网络及其间的连接机制与学习算法行为主义(Actionism)基于控制论及感知一动作型控制系统4、应用领域的应用1)问题求解;2)逻辑推理与定理证明;3)自然语言理解;4)自动程序设计;5)专家系统;6)神经网络;7)机器学习;8)模式识别;9)智能检索。
5、知识表示方法包括:状态空间法(**)、问题归约法(*)、谓词逻辑法(**)、语义网络、框架、面向对象表示、剧本6、问题归约法中的内容可解节点与不可解节点可解节点:(1 )任何终止节点都是可解节点;(2)若某个非终叶节点含有或后继节点,则只有当其后继节点至少有一个可解时,此节点才可解。
(3)若某个非终叶节点含有与后继节点,则只有当其后继节点全部为可解节点时,此节点才是可解节点。
不可解节点:(1)没有后裔的非终叶节点是不可解节点;(2)若某个非终叶节点含有或后继节点,当其全部后裔节点都为不可解节点时,该节点为不可解节点。
(3)若某个非终叶节点含有与后继节点,只要其子节点中有一个为不可解节点,该节点是不可解节点。
问题归约的与/或图(树)表示时个或树与树与树把一个原问题分解为若干个子问题可用一个“与树”表示。
或树把一个原问题等价变换为若干个子问题可用一个“或树”表示。
7—^谓■词谡辑表示法是一种基于数理谡牌的$咿兼怀片足其根本目的在于把数学中的逻辑论证符号化,给出了一种城学W建方*:旧知识一一数学演绎一新知识8、置换:是形为{tl/xl,…,tn/xn}的一个有限集。
一、智能化智能体1.什么是智能体?什么是理性智能体?智能体的特性有哪些?智能体的分类有哪些?智能体定义:通过传感器感知所处环境并通过执行器对该环境产生作用的计算机程序及其控制的硬件。
理性智能体定义:给定感知序列(percept sequence)和内在知识(built—in knowledge),理性智能体能够选择使得性能度量的期望值(expected value)最大的行动。
智能体的特性:自主性(自主感知学习环境等先验知识)、反应性(Agent为实现自身目标做出的行为)、社会性(多Agent及外在环境之间的协作协商)、进化性(Agent自主学习,逐步适应环境变化)智能体的分类:简单反射型智能体:智能体寻找一条规则,其条件满足当前的状态(感知),然后执行该规则的行动。
基于模型的反射型智能体:智能体根据内部状态和当前感知更新当前状态的描述,选择符合当前状态的规则,然后执行对应规则的行动。
基于目标的智能体:为了达到目标选择合适的行动,可能会考虑一个很长的可能行动序列,比反射型智能体更灵活。
基于效用的智能体:决定最好的选择达到自身的满足。
学习型智能体:自主学习,不断适应环境与修正原来的先验知识.2.描述几种智能体类型实例的任务环境PFAS,并说明各任务环境的属性。
答题举例:练习:给出如下智能体的任务环境描述及其属性刻画。
o机器人足球运动员o因特网购书智能体o自主的火星漫游者o数学家的定理证明助手二、用搜索法对问题求解1。
简述有信息搜索(启发式搜索)与无信息搜索(盲目搜索、非启发式搜索)的区别。
非启发式搜索:按已经付出的代价决定下一步要搜索的节点。
具有较大的盲目性,产生较多的无用节点,搜索空间大,效率不高。
启发式搜索:要用到问题自身的某些信息,以指导搜索朝着最有希望的方向前进.由于这种搜索针对性较强,因而原则上只需搜索问题的部份状态空间,搜索效率较高。
2.如何评价一个算法的性能?(度量问题求解的性能)▪完备性:当问题有解时,算法是否能保证找到一个解;▪最优性:找到的解是最优解;▪时间复杂度:找到一个解需要花多长时间▪搜索中产生的节点数▪空间复杂度:在执行搜索过程中需要多少内存▪在内存中存储的最大节点数3。
人工智能复习资料
一、引言
人工智能(Artificial Intelligence,简称AI)是一门研究如何使计算机能够像人一样思考和行动的科学与工程领域。
它涵盖了多个子领域,包括机器学习、自然语言处理、计算机视觉等。
本文将围绕人工智能的基本概念、发展历程、应用领域以及未来发展趋势等方面进行复习。
二、人工智能的基本概念
1. 人工智能的定义和特点
人工智能是指使计算机具备智能的能力,能够模拟和实现人类的思维和行为。
其特点包括自主学习、推理、问题解决、语言理解和感知等。
2. 人工智能的分类
人工智能可以分为弱人工智能和强人工智能。
弱人工智能是指在特定领域内具备智能的计算机系统,而强人工智能则是指能够在各个领域都表现出与人类相当的智能水平的计算机系统。
三、人工智能的发展历程
1. 人工智能的起源
人工智能的起源可以追溯到20世纪50年代。
当时,人们开始研究如何使计算机能够模拟人类的思维和行为,提出了“人工智能”这一概念。
2. 人工智能的发展阶段
人工智能的发展可以分为符号主义阶段、连接主义阶段和混合主义阶段。
符号主义阶段主要研究基于逻辑和规则的推理和知识表示;连接主义阶段则侧重于神经网络和模式识别;混合主义阶段则将符号主义和连接主义相结合。
四、人工智能的应用领域
1. 机器学习
机器学习是人工智能的重要分支,它通过让计算机从数据中学习和改进,实现自主学习和决策能力。
机器学习在语音识别、图像识别、推荐系统等领域有广泛应用。
2. 自然语言处理
自然语言处理是指让计算机能够理解和处理人类语言的能力。
它在机器翻译、语音识别、智能客服等方面有着重要应用。
3. 计算机视觉
计算机视觉是指让计算机能够理解和分析图像和视频的能力。
它在人脸识别、目标检测、智能监控等领域有广泛应用。
4. 智能机器人
智能机器人是指具备感知、决策和执行能力的机器人系统。
它在工业生产、医疗护理、军事作战等领域有着广泛应用。
五、人工智能的未来发展趋势
1. 深度学习
深度学习是机器学习的一种方法,通过构建多层神经网络实现对大规模数据的学习和分析。
未来,深度学习将在人工智能领域发挥更重要的作用。
2. 增强学习
增强学习是一种通过试错和奖惩机制来让计算机自主学习和优化决策的方法。
未来,增强学习将在自动驾驶、智能游戏等领域得到广泛应用。
3. 人机协作
人机协作是指人与计算机之间的紧密合作和交互。
未来,人机协作将在工业制造、医疗保健等领域发挥重要作用。
六、结论
人工智能作为一门前沿的科学与工程领域,对于推动社会和经济的发展具有重要意义。
通过深入了解人工智能的基本概念、发展历程、应用领域以及未来发展趋势,我们可以更好地把握人工智能的发展方向和应用前景。
希望本文能够对您的人工智能复习提供帮助。