《流体力学》 第1章 绪论
- 格式:ppt
- 大小:9.09 MB
- 文档页数:150
第一章绪论人类生活在一个被大气包围的星球上,而这颗星球表面的3/4又被广阔的海洋覆盖,我们的生活一刻也离不开流体。
流体力学在工业和日常生活中都有着广泛的应用,例如:飞行器、舰船、港口、石油平台、桥梁、水库、城市给排水管网、化工机械、动力设备、医疗设备等的设计需要流体力学;气象、海况和洪水的预报需要流体力学;大气、海洋、湖泊、河流和地下水中环境污染的防治也需要流体力学。
因此,掌握一定的流体力学知识和方法实在是有必要的。
本章内容提要:1)什么是流体?什么是流体力学?2)流体力学的研究方法;3)流体的主要物理性质;4)流体质点的概念和连续介质模型(或连续介质假定)。
连续介质假定是整个流体力学的基石之一,务必深入理解。
1.1 流体力学的研究对象和任务流体力学属于力学的一个重要分支,它是研究流体在各种力的作用下的平衡(静止)和运动规律的一门科学。
Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid statics) and the subsequent effects of the fluid upon the boundaries, which may be either solid surfaces or interfaces with other fluid (Frank M. White).传统上,流体力学的研究对象包括液体(liquid)和气体(gas),二者统称为流体。
近年来,等离子体也被纳入流体力学的研究范畴,因此等离子体在某些情况下也被视为流体。
本书将要讨论的流体限于液体和气体。
此外,在流体力学研究中,通常从形态上将物体分为固体(solid)和流体(fluid)两类。
流体力学研究的是流体中大量分子的宏观运动规律,而不是具体的分子运动,属于宏观力学的范畴。
这一点在本章第3节中将具体讨论。
第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。
其单位是牛顿,N。
单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。
其单位是N/kg。
2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。
3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。
4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。
其单位为N/(㎡·s),以符号Pa·s表示。
运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
国际单位制单位㎡/s。
动力黏度μ与运动黏度ν的关系:μ=ν·ρ。
5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。
毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。
6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。
(P12,还需看看书,了解什么是以上三种模型!)。
第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。
2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。
两水头中的压强P必须采用相对压强表示。
b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。
3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。
第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。
分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V)压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变Ev=dp/(dρ/ρ)(低速流动气体不可压缩)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。
质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动.第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程 =0 流体平衡微分方程重力场下的简化:dρ=—ρdW=—ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;不可压缩流体静压强基本公式z+p/ρg=C不可压缩流体静压强分布规律 p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强—当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。
第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。
流体力学知识点总结流体力学知识点总结第一章绪论1液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3流体力学的研究方法:理论、数值、实验。
4作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
ΔFΔPΔTAΔAVτ法向应力pA周围流体作用的表面力切向应力作用于A上的平均压应力作用于A上的平均剪应力应力为A点压应力,即A点的压强法向应力为A点的剪应力切向应力应力的单位是帕斯卡(pa),1pa=1N/㎡,表面力具有传递性。
(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5流体的主要物理性质(1)惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下):4℃时的水20℃时的空气(2)粘性huu+duUzydyx牛顿内摩擦定律:流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知——速度梯度,剪切应变率(剪切变形速度)粘度μ是比例系数,称为动力黏度,单位“pa·s”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度单位:m2/s同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体T↑μ↓气体T↑μ↑无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
(3)压缩性和膨胀性压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。
T一定,dp增大,dv减小膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。
P一定,dT增大,dV增大A液体的压缩性和膨胀性液体的压缩性用压缩系数表示压缩系数:在一定的温度下,压强增加单位P,液体体积的相对减小值。
流体力学重点概念总结(可直接打印版)第一章绪论表面力,也称面积力,是指直接施加在隔离体表面上的接触力,其大小与作用面积成比例。
剪力、拉力和压力都属于表面力。
质量力是指作用于隔离体内每个流体质点上的力,其大小与质量成正比。
重力和惯性力都属于质量力。
流体的平衡或机械运动取决于流体本身的物理性质(内因)和作用在流体上的力(外因)。
XXX通过著名的平板实验,说明了流体的粘滞性,并提出了牛顿内摩擦定律。
根据该定律,剪切应力τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ是反映流体粘滞性大小的系数,单位为N•s/m2.运动粘度ν等于动力粘度μ除以流体密度ρ。
第二章流体静力学流体静压强具有以下特性:首先,流体静压强是一种压应力,其方向总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
其次,在静止的流体中,任何点上的流体静压强大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
流体静力学基本方程为P=Po+pgh,其中Po为参考压力,p为流体密度,g为重力加速度,h为液体高度。
等压面是压强相等的空间点构成的面。
绝对压强以无气体分子存在的完全真空为基准起算,而相对压强以当地大气压为基准起算。
真空度是绝对压强不足当地大气压的差值,即相对压强的负值。
测压管水头是单位重量液体具有的总势能。
在平面上,净水总压力是潜没于液体中的任意形状平面的总静水压力P,其大小等于受压面面积A与其形心点的静压强pc之积。
需要注意的是,只要平面面积与形心深度不变,面积上的总压力就与平面倾角θ无关,压心的位置与受压面倾角θ无直接关系,是通过XXX表现的,而压心总是在形心之下。
对于作用在曲面壁上的总压力,水平分力Px等于作用于该曲面的在铅直投影面上的投影(矩形平面)上的静水总压力,方向水平指向受力面,作用线通过面积Az的压强分布图体积的形心。
垂直分力Pz等于该曲面上的压力体所包含的液体重,其作用线通过压力体的重心,方向铅垂指向受力面。
流体力学第1章 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。
解:由g γρ=得,3327000N /m 714.29kg/m9.8m /mγρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。
解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。
解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500sdy y 0.510--===⨯由牛顿切应力定律d d u yτμ=,可得两块平板间流体的动力黏度为3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。
题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。
在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA 2r dr dz ωμπμδ==由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。
(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dyτμ=得du (1250y 50)dyτμρν==-+y=0cm 时,221510N /m τ-=⨯;y=2cm 时,222 2.510N /m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。