流体力学
- 格式:ppt
- 大小:290.50 KB
- 文档页数:20
绪 论在学习流体力学这门课程之前,本绪论将主要回答以下几个问题:什么是流体力学?它的主要研究内容是什么?为什么要学习流体力学?流体力学的发展历史、研究方法,以及怎样学好流体力学?使同学们对流体力学有一个大致的了解,帮助学生在以后的学习中掌握流体力学的主要脉络和学习方法。
一、流体力学的概念及其研究内容流体力学(fluid mechanics)是力学的一个独立分支。
它是研究流体的平衡和流体的机械运动规律及其在工程实际中应用的一门学科。
流体力学的研究对象是流体,包括液体和气体。
在力学研究中,根据研究对象的不同,一般可分为:以受力后不变形的绝对刚体为研究对象的理论力学;以受力后产生微小变形的固体为研究对象的固体力学;以受力后产生较大变形的流体为研究对象的流体力学。
流体是气体和液体的总称。
在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学与人类日常生活和生产事业密切相关。
它是一门应用较广的科学,航空航天、水运工程、流体机械、给水排水、水利工程、化学工程、气象预报以及环境保护等学科均以流体力学为其重要的理论基础。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。
20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。
航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相联的。
这些学科是流体力学中最活跃、最富有成果的领域。
石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。
渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。
燃烧离不开气体,燃烧过程中涉及到许多有化学反应和热能变化的流体力学问题是物理―化学流体动力学的内容之一。
爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。
沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
第十一讲流体力学我们通常所说的流体包括了气体和液体。
流体具有形状和大小可以改变的特征,这一点和弹性体是类似的,然而,流体仅仅具备何种压缩弹性,例如,用力推动活塞可以压缩密闭气缸中的气体,在撤消外力后,气体将恢复原状,将活塞推出;但流体不具备抵抗形状改变的弹性,在力的作用下,流体因流动而发生形状的改变,,撤消外力后,流体并不恢复原来的形状,流体的这种性质称为流动性。
流体力学的任务在于研究流体流动的规律以及它与固体之间的相互作用。
一、理想流体无论是气体还是流体都是可以压缩的,只不过在通常的情况下,气体较容易被压缩,而液体难以被压缩。
但是,在一定的条件下,我们常常把流动着的流体看着是不可压缩的,这一点对于液体是比较好理解的,因为在对液体加压时,其何种的改变是极其微小的,是可以忽略的;我们之所以把流动着的气体也看作是不可压缩的,是因为气体的密度小,即使压力差不大,也能够迅速驱使密度较大处的气体流向密度较小的地方,使密度趋于均匀,这样使得流动的气体中各处的密度密度不随时间发生明显的变化,这样,气体的可压缩性便可以不必考虑。
不过,当气流的速度接近或超过声速时,因气体的运动造成的各处的密度不均匀的差别不及消失,这时气体的可压缩性会变得非常的明显,不能再看作是不可压缩的。
总之,在一定的问题中,若可不考虑气体的可压缩性,便可将它抽象为不可压缩的理想模型,反之,则需看作是可压缩的液体。
液体都的或多或少的粘性,在静止液体中,粘性无法表现,在流体流动时,,将明显地表现出粘性。
所谓粘性,就是当流体流动时,层与层之间有阻碍相对运动的内摩擦力,如河流中心的水流速度较快,由于粘性,靠近河岸的水几乎不动。
在研究流体时,若流体的流动性是主要的,粘性居于次要地位时,可认为流体完全没有粘性,这样的理想模型叫做非粘性流体,若粘性起着重要的作用,则需将流体看作粘性流体。
如果在流体的运动过程中,流体的可压缩性和粘性都处于极为次要的地位,就可以把流体看作是理想流体。
1、流体:在静力平衡时,不能承受拉力或剪力的物体。
2、连续介质:由无穷多个、无穷小的、紧密毗邻、连绵不断的流体质点所组成的一种绝无间隙的连续介质。
3、流体的黏性:流体运动时,其内部质点沿接触面相对运动,产生的内摩擦力以阻抗流体变形的性质。
4、流体的压缩性:温度一定时,流体的体积随压强的增加而缩小的特性。
5、流体的膨胀性:压强一定时,流体的体积随温度的升高而增大的特性。
6、不可压缩流体:将流体的压缩系数和膨胀系数都看做零,称作不可压缩流体。
/密度等于常数的流体,称作不可压缩流体。
7、可压缩流体:流体的压缩系数和膨胀系数不等于零,称作可压缩流体。
/密度不等于常数的流体,称作可压缩流体。
8、质量力:指与流体微团质量大小有关并且集中作用在微团质量中心上的力。
9、表面力:指与流体表面积有关且分布作用在流体表面上的力。
10、等压面:流体中压强相等的各点所组成的平面或曲面叫做等压面。
11、绝对压强:以绝对真空或完全真空为基准计算的压强称绝对压强。
12、相对压强:以大气压强为基准计算的压强称相对压强。
13、真空度:如果某点的压强小于大气压强时,说明该点有真空存在,该点压强小于大气压强的数值称真空度。
14、迹线:指流体质点的运动轨迹,它表示了流体质点在一段时间内的运动情况。
15、流线:指流体流速场内反映瞬时流速方向的曲线,在同一时刻处在流线上所有各点的流体质点的流速方向与该点的切线方向重合。
16、定常流动:如果流体质点的运动要素只是坐标的函数而与时间无关,这种流动称为定常流动。
17、非定常流动:如果流体质点的运动要素,既是坐标的函数又是时间的函数,这种流动称为非定常流动。
18、流面:通过不处于同一流线上的线段的各点作出的流线,则可形成由流线组成的一个面称为流面。
19、流管:通过流场中不在同一流面上的某一封闭曲线上的各点做流线,则形成由流线所组成的管状表面,称为流管。
20、微元流束:充满于微小流管中的流体称为微元流束。
第一章连续介质假设:把流体当作是由密集质点构成的、内部无空隙的连续体来考虑。
表面力:作用在流体表面上的力;质量力:作用在所取流体体积内每个质点上的力;单位2/m s牛顿内摩擦定律:dudyτμ=μ动力粘度系数,υ运动粘度系数:μυρ=; 无粘性流体:指无粘性,0μ=的流体;不可压缩流体:指流体的每个质点在运动全过程中,密度不变化的流体。
常温常压下气体状态方程:pRT ρ=第二章静止流体的应力特征1.应力方向沿作用面的内法线方向;2.静压强的大小与作用面方位无关。
等压面:流体中压强相等的空间点构成的面(平面或曲面)称为等压面。
重力作用下流体静压强分布o p p gh ρ=+推论:静压强的大小与液体的体积无关两点的压强差等于两点之间单位面积垂直液柱的重量在平衡状态下,液体内任意一点压强的变化等值地传递到其他各点。
压强的度量:绝对压强:流体实有的全部压强相对压强:绝对压强与当地大气压的差值真空度:指绝对压强不足当地大气压的差值,即相对压强的负值v a abs p p p =-;p z c gρ+=,c 为测压管水头(总势能),其中z 为位置水头;pgρ压强水头; 作用在平面上的静水压力 图算法:p bs =(矩形板)b 为受压面宽度,s 为压强分布图的面积总压力的作用线通过压强分布图的形心 解析法:c p gh A ρ=(任意形状平面板)c h :受压面形心的淹没深度A :受压面面积作用在曲面上的静水压力x c x z p gh A p gvρρ==压力体:实压力体,虚压力体,混合压力体第三章描述流体运动的方法:拉格朗日法和欧拉法 拉格朗日法:以个别质点为观察对象,再将每个质点的运动情况汇总起来描述整个流体运动; 欧拉法:以流体运动的空间点作为观察对象,观察不同时刻各空间点上流体质点的运动,再将每个质点的运动情况汇总起来描述整个流体运动。
x x x x x x y z y y y y y x y z z z z zz x y z u u u ua u u u t x y z u u u u a u u u t x y z u u u u a u u u t x y z ∂∂∂∂=+++∂∂∂∂∂∂∂∂=+++∂∂∂∂∂∂∂∂=+++∂∂∂∂流动的分类恒定流和非恒定流:以时间为标准,若各空间点上的运动参数(速度,压强,密度等)都不随时间变化,这样的流动是恒定流,反之则为非恒定流。
流体力学:是力学的一个分支,主要研究流体的各种运动特性,在各种里的作用下流体的运动规律,以及流体与其他界面(固体壁面,不同密度的流体等)由于存在相对运动时的相互作用。
惯性:是物体保持原有运动状态的性质质量:是用来度量物体惯性大小的物理量。
、粘性:反映流体客服外界切向力的物理属性。
气蚀:如这种运动是周期的,将对固体表面产生疲劳并导致剥落,这种现象称为气蚀。
表面张力:由于分子间的吸引力,在液体的自由表面上能够承受及其微小的张力,这种张力称表面张力。
表面力:是通过直接接触,施加在接触面上的力,它正比于接触面面积,通常用单位面积上所受的力表示应力。
质量力:作用在隔离体内每个流动质点上的力称为质量力。
流体静力学:是研究流体处于静止或相对静止状态下的力学规律。
等压面:压强相等的空间点构成的面称为等压面绝对压强:以无物质分子存在的或虽存在但处于绝对静止状态下的压强为起算点,所表示的压强为绝对压强。
相对压强:以当地同高程的大气压强为起算点,所表示的压强为相对压强。
恒定流:在流场中,任意空间位置上运动参数都不随时间而改变,即对时间的偏导数等于零,这种流动称为恒定流。
非恒定流:在流场中,任意空间位置上只要存在某一运动参数是时间的函数,即对时间的偏导数不等于零,这种流动称为非恒定流。
流线:在流场中,流线是一条瞬时曲线,在曲线上每一点的切线方向代表该点的流速方向,流线是由无限多个流体质点组成的。
迹线:在流场中,迹线是由一个流体质点随着时间的推移在空间中所勾画的曲线,即为流体质点的轨迹线。
流管:在流场中任意取一非流线的封闭曲线,通过该曲线上的每一点作流场的流线,这些流线所构成的一封闭管状曲面称为流管。
过流断面:在流束上作与流线正交的横断面称为过流断面。
元流:当流束的过流断面为微元时,该流束称为元流。
总流:总流是由无数元流组成的流束,断面上各点的运动参数一般不相等。
流量:单位时间通过某一过流断面的流体体积或质量称为该断面的流量。
流体力学(简介)流体力学是在人类与自然界相处和生产实践中逐步发展起来的。
对流体力学学科的形成做出卓越贡献的是古希腊哲学家阿基米德(《论浮体》,公元前250年)建立了包括浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。
流体力学原理主要指计算流体动力学中的数值方法的现状;运用基本的数学分析,详尽阐述数值计算的基本原理;讨论流域和非一致结构化边界适应网格的几何复杂性带来的困难等。
一、发展简史各物理量关系构成牛顿内摩擦定律,τ=μ*du/dy动压和总压。
显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。
飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。
据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。
在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。
在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。
图为验证伯努利方程的空气动力实验。
补充:p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2(1)p+ρgh+(1/2)*ρv^2=常量(2)均为伯努利方程其中ρv^2/2项与流速有关,称为动压强,而p和ρgh称为静压强。
伯努利方程揭示流体在重力场中流动时的能量守恒。
由伯努利方程可以看出,流速高处压力低,流速低处压力高。
后人在此基础上又导出适用于可压缩流体的N-S方程。
N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。
它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。
例如当雷诺数Re1时,绕流物体边界层外,粘性力远小于惯性力,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-Ñp+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。