流体力学
- 格式:doc
- 大小:900.50 KB
- 文档页数:12
流体力学的基本概念流体力学是研究流体在运动和静止时的物理学科,广泛应用于工程、自然科学和医学领域。
流体力学的基本概念包括:流体、速度场、流线、通量、压力、连通性、黏度等。
下面将对这些基本概念进行介绍。
1. 流体流体是指能够流动的物质,包括气体和液体。
与固体不同的是,流体没有一定的形状,并且具有很强的流动性。
流体力学研究的是在流体中运动和转化的能量和物质。
2. 速度场在流体力学中,速度场指的是在空间中的任何一个点(x,y,z)处,流体在该点的速度向量V(x,y,z)。
速度场可以用向量场表示,它是一个三维矢量,表示流体在不同点的速度和方向。
3. 流线流线是指在流体中某个时刻从每个点出发的一条曲线,它的方向与该点的速度向量方向相同。
流线可用于描述流体在空间中的流动状态,它的密度越集中,表示流体流动越迅速。
4. 通量在流体力学中,通量是指通过一定面积的流体的质量或者体积。
它可以通过流体穿过该面积的速度与面积相乘来计算。
通量是流体力学中的重要概念,与流体的流动速度和流体的面积有关。
5. 压力压力是指单位面积受到的力的大小,以牛顿/平方米表示。
在流体力学中,压力是指垂直于流体流动方向的单位面积上的压力大小,它与流体的密度和流速有关。
6. 连通性流体力学中的连通性是指流体不可穿透的性质,即两个靠近的流体体积不能相互穿透。
在流体运动中,连通性是一条重要的限制条件。
连通性是流体力学中常常需要掌握的概念,尤其是在流体的运动与静止的过程中。
7. 黏度黏度是指流体阻力的大小,它是描述流体的粘性的物理量。
黏度可以用来描述流体在运动中的阻力大小,阻力越大,黏度也就越大。
黏度是流体力学中非常重要的物理量,它影响了流体的运动和可塑性。
流体力学(简介)流体力学是在人类与自然界相处和生产实践中逐步发展起来的。
对流体力学学科的形成做出卓越贡献的是古希腊哲学家阿基米德(《论浮体》,公元前250年)建立了包括浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。
流体力学原理主要指计算流体动力学中的数值方法的现状;运用基本的数学分析,详尽阐述数值计算的基本原理;讨论流域和非一致结构化边界适应网格的几何复杂性带来的困难等。
一、发展简史各物理量关系构成牛顿内摩擦定律,τ=μ*du/dy动压和总压。
显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。
飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。
据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。
在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。
在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。
图为验证伯努利方程的空气动力实验。
补充:p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2(1)p+ρgh+(1/2)*ρv^2=常量(2)均为伯努利方程其中ρv^2/2项与流速有关,称为动压强,而p和ρgh称为静压强。
伯努利方程揭示流体在重力场中流动时的能量守恒。
由伯努利方程可以看出,流速高处压力低,流速低处压力高。
后人在此基础上又导出适用于可压缩流体的N-S方程。
N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。
它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。
例如当雷诺数Re1时,绕流物体边界层外,粘性力远小于惯性力,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-Ñp+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。
第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。
()⊥
-++
+φφφ
φφ1
4210
.01
Re 3
1Re
161
Re
8=
2
.0log 4.03
4
∥
D C
其中,面积
颗粒在迎流方向上投影
计算颗粒表面积
等体积球横截面积
-2=∥φ
向上投影面积
计算颗粒在垂直迎流方
等体积球横截面积
=⊥φ
The sphericity (Φ) represents the ratio between the surface area of the volume equivalent sphere and that of the considered particle, the cross-wise sphericity (Φ⊥) is the ratio between the cross-sectional area of the volume equivalent sphere and the projected cross-sectional area of the considered particle and the lengthwise sphericity (Φ||) is the ratio between the cross-sectional area of the volume equivalent sphere and the difference between half the surface area and the mean projected longitudinal cross-sectional area of the considered particle.
b/a=2回转椭球体A=90
C d
Re
流线型是前圆后尖,表面光滑,略象水滴的形状。
具有这种形状的物体在流体中运动时所受到的阻力最小,所以汽车、火车、飞机机身、潜水艇、轮船等外形常做成流线型。
是物体的一种外部形状,通常表现为平滑而规则的表面,没有大的起伏和尖锐的棱角。
流体在流线型物体表面主要表现为层流,没有或很少有湍流,这保证了物体受到较小的阻力。
流线型物体通常较为美观,经常出现在产品的外观设计等 比如说,动物鲸鱼就有一种流线体 流体与物体间相对运动速率.
接触面材质.
举例: 潜艇,飞机(空气也是流体).
(1)流体的阻力与物体的形状、正截面积大小、物体相对于流体的速度、流体的性质等有关;
(2)泳衣,船头,模仿鲔鱼体形的核潜艇,流线型汽车
与很多因素有关,比如流体的粘滞系数,物体的形状,以及流体面是不是无限宽广,他们之间的相对运动速度。
在流体力学中,钝体就是[非流线体],如圆柱,球,桥墩和汽车等等N 多.....
钝体有较大的甚至压倒优势的压差阻力.由于压差阻力的大小与物体的形状有很大关系,因此,压差阻力又称为形状阻力。
钝体尾流的双重小波包分解:根据湍流相干结构和非相干结构不相关的特性,提出了一种钝体尾流双重小波包分解的新算法,将湍流的运动分解成相干分量和非相干分量。
该算法以湍流相干分量和非相干分量的相关系数作为迭代的控制指标,减小了过去算法中的随意性。
用该算法对大长宽比的钝体尾流三维超声波流速仪测量数据的分析表明:1.钝体间距与宽度之比大于4时,钝体间的相互影响可以忽略不计;2.流线型的钝体尾流紊动强度较小。
b/a=2回转椭球体A=90
C d
Re
b/a=2回转椭球体A=0
C d
Re
b/a=2回转椭球体A=0
C d
Re
b/a=2回转椭球体A=90与A=0
C d
Re
b/a=2回转椭球体A=90与A=0
C d
Re
球
扁球面
长球面
不等边
其中是一点的,是
(注意,当时,也就是在极点时,这个参数不是一一对应的)
,其中是,是
其中
(扁球面)或(长球面),
;、是第一类和第二类不完
其中。
这样相对误差最多为%(Knud Thomsen公式);的值对于接近于球的椭球较为适宜,其相对误差最多为%(David W. Cantrell公式)。
对于的情况,有一个精确的公式:
扁球面:
长球面:
比和都小很多时,表面积近似等于。
[编辑]质量性质
均匀密度的椭球的质量为:
其中是密度。
均匀密度的椭球的转动惯量为:
其中、和分别是关于x、y和z轴的转动惯量。
惯性积为零。
容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。
反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:。