微积分2习题答案
- 格式:doc
- 大小:567.50 KB
- 文档页数:5
习题1—1解答 1. 设y x xy y x f +=),(,求),(1),,(),1,1(),,(y x f y x xy f y x f y x f -- 解yxxy y x f +=--),(;x xy y y x f y x y x xy f x y xy y x f +=+=+=222),(1;),(;1)1,1(2. 设y x y x f ln ln ),(=,证明:),(),(),(),(),(v y f u y f v x f u x f uv xy f +++=),(),(),(),(ln ln ln ln ln ln ln ln )ln )(ln ln (ln )ln()ln(),(v y f u y f v x f u x f v y u y v x u x v u y x uv xy uv xy f +++=⋅+⋅+⋅+⋅=++=⋅=3. 求下列函数的定义域,并画出定义域的图形: (1);11),(22-+-=y x y x f(2);)1ln(4),(222y x y x y x f ---=(3);1),(222222cz b y a x y x f ---=(4).1),,(222zy x z y x z y x f ---++=解(1)}1,1),{(≥≤=y x y x D (2)}{xy y x y x D 4,10),(222≤<+<=(3)⎭⎬⎫⎩⎨⎧≤++=1),(222222c z b y a x y x D(4){}1,0,0,0),,(222<++≥≥≥=z y x z y x z y x D4.求下列各极限:(1)22101limy x xy y x +-→→=11001=+- (2)2ln 01)1ln(ln(lim022)01=++=++→→e yx e x y y x(3)41)42()42)(42(lim 42lim000-=+++++-=+-→→→→xy xy xy xy xy xy y x y x(4)2)sin(lim )sin(lim202=⋅=→→→→x xy xy y xy y x y x5.证明下列极限不存在:(1);lim 00yx y x y x -+→→ (2)2222200)(lim y x y x y x y x -+→→ (1)证明 如果动点),(y x P 沿x y 2=趋向)0,0( 则322lim lim0020-=-+=-+→→=→x x xx y x y x x x y x ;如果动点),(y x P 沿y x 2=趋向)0,0(,则33lim lim 0020==-+→→=→y yy x y x y y x y所以极限不存在。
微积分习题集带参考答案综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
第十章习题10_11.指出下列各微分方程的阶数:)3 5(y,)4-y5 x°=0;(1) 2x(y' ) -2yy,xd0; ⑵(y〃⑶Xy 2y'' χ2yq ⑷ 2 2 2 2(X -y )dx (X y )dy=0.解: (1)因为方程中未知函数y的最高阶导数的阶数为1,故该方程为一阶微分方程(2) 二阶.(3) 三阶.(4) 一阶.2. 验证下列给定函数是其对应微分方程的解:(1) y=(x C)e», y' y=e»;X X(2) Xy=C I e C2e , xy'' 2y' -Xy ^0;(3) X -cos2t Cιcos3t C2sin3t, x" 9x=5cos2t;2 2⑷X -1, Xyy" X(y' )2-yy' oC l C2解(1):y = e」_(x C) e」y y = e~ -(X C)e」(X C)e」=ey = (x c)e」是微分方程y、y =e *的解.X _X . X X、 .(2) 在方程Xy =C l e ∙ c?e 两边对X求导有y ■ x√ = C l e -^e 上方程两边对X求导有 2 y Xy =C I eX c2e」,即2 y Xy =Xy 即Xy 2 y - xy = 0所以X y = C l^ ■ c2e」所确定的函数y = y( x)是方程x^ 2 y - xy = 0的解.(3)X= -2 Sin 2t 7c1sin 3t 3c2cos 3tX = -4 cos 2t —9c1cos 3t —9c2Sin 3tX 9^=-4 cos 2t —9c1cos 3t —9c2Sin 3t■ 9 cos 2t ' 9c1cos 3t 9c2Sin 3t=5 cos 2t所以X=CoS 2t c1cos 3t ■ c2 Sin 3t 是微分方程√ 9 5 cos 2t 的解.2 2Xy(3)方程 1两边对X 求导得C1c2C 2X C I yy=O(1)(1) 式两边对X 求导得2C 2 ■ C1( y )- syy = 0 (2)(2) 式两边同乘以X 得2C 2XC 1X (y ) C I Xyy =0(3)(3) -(2)得 Xyy (K^- y y 02 2所以 —^y ^ =1是方程Xy^ X(y ) - yy ■ = 0的解. C 1 C3. 已知曲线的切线在纵轴上的截距等于切点的横坐标,求这曲线所满足的微分方程.解:设(X , y)是曲线y = f (X )上任一点,则过该点的切线方程为 Y - y = y∙(X - x),由已知X =0时,Y = x,得x -y = -xy ■即xy "-y ∙ x = 0为y = f (x)所满足得微分方程 4. 求通解为y=Ce x ∙χ的微分方程,这里 C 为任意常数.解:由y=CeX-χ得√ = C e 1 ,而由已知C^ =^X 得 y >y -x T 故通解为 ^Ce XX 的微分方程为y ■ = y 一 X 1 .习题10-21. 求下列微分方程的通解或在给定的初始条件下的特解: (2) xydx 、.一1 一 X 2 dy=0;2 2⑶(Xy x)dx (y -χ y)dy=0;2 I 2(4) Sin XCoS ydχ cos xdy=0;(6) yy'∙χe y =0, y(1)=0; ⑺ y'=e 2τ,y x ^=0 .(1) y =⑸亠d X-丄d y=0,y1 y 1 X解:(1)原方程分离变量得dy dx 1 y 1 - X(V^Z 0),两边积分得2In 1+y| = _ln 1 _x +G 即 In (1 一x)(1 + y) = G , 即 ∣(1 —x)(1 +y)∣ =e c1 , (1 — x)(1 +y) =±e c1 , 记_e c1 =c,有(1 —x)(1 ∙ y) =c(c =0),而当 y∙1=0即y = —1时,显然是方程的解,上又y = 0显然是方程的解方程的通解为 y = ce 1 * (C 为任意常数).2 y 2 X(3) ---------------------------- 分离变量得 dy = ——dx,两边积分得In(1 +y 2)=ln X^^C 1 ,即1 + y X -1In —2^^- =c 1从而 I J ry^= ±e°1 (x? -1),记 C= ±e°1有『 =c(x? -1) —1.X -1(4) 分离变量得,一S i n 2X dx ,两边积分得,tan y-— C 即 CoS y CoS XCoS Xtan y ■ SeC x = c .2 3 2 3(5) 原方程可化为:y(1 ∙ y)dy =x(1 - x)dx,两边积分得 - - - X C 2 3 23亠 11 5 、 由yχ±=1 得c=—+—=—,所以原方程满足初始条件的特解为2 3 6 23 23yy x x5 33 22即 2 (x 3 - y 3)3X 2 - y 2 )= . 52 32 362(6) 分离变量得-ye^y dy =xdx,两边积分得 y^ e C21由y(1) =0得C ,故原方程满足初始条件的特解为2.y 12(y 1)e(X 1). 21(7) 分离变量得 e y dy=e 2x dχ ,两边积分得e y =-e 2x +c,由yxτ=0 得式取C =O 时包含了 y - _1 ,故方程的解为(1 _x)(1 y) =c(C 为任意常数)(2)分离变量得21 一 X = 0, y = 0 ,两边积分得XdX dyJ 1 -x? =In y +c 1,可知1ιC,所以,原方程满足初始条件的特解为 e y (e 2x 1).2 22.物体冷却速度与该物质和周围介质的温差成正比,具有温度为 T o 的物体放在保持常温为:•的室内,求温度 T 与时间t 的关系. 解:设t 时刻物体的温度为 T,由题意有dTk(T-:.) (k 为比例系数)dt -J —p分离变量得 --------- =_kdt,两边积分得,In τ _- -kt ■ C 1 ,得 T =Ce —工,由题意有T 「: t =0时,T =T O ,代入上式得 ,C =T 0 —「・.T=(T O —:・)e*(k 为比例系数).3. 求下列微分方程的通解或在给定条件下的特解: y y⑵ y = Sin ;X X23 3、,⑶ 3χy dy = (2y -X )dχ;2 2⑷ xy'∙χy=y ,y(1)=1 ;(5) χy =y(lny-lnx),y(1) =1;(6) (y-x 2)dx =(x y 4)dy;⑺(X y)dx (3x 3y -4)dy =0.r du dxXU :=叮 U 即两边积分得 √V∏u 2 X即 u . 1 U =CX将u = 丫代入得 y X y =CXX 、V(2)令U 贝U y = uχ, y =U XU 代入原方程得X du du dχSin U 即 ------- =—dχS i ruX两边积分得I n t a-in := XnC l ,≡ta U n= =cx,u = 2 arctan CX ,22(1) ×y -y-χ2解:(1)原方程可化为1 (;)2 ,令=_yXy =U XU 代入原方程得:l n U 亠 1 U )= Xn 亠C将U='代入得y二2xX arctan CX .(3)原方程可化为找=2(Y)1X 2(一)”y du,令U ,则X U V,代入上式得dχ 3 X 3 y X dχdχ23U两边积分得ln(1 ::U 3)-_ I n X ■ C1 ,即 3x( j U )=CyU 代入得X原方程可化为du2U 「2U XdxU - 2 =GUXy(1) =1 得C »12二CXy - =(-)2,X X_u -2 Udxdu=UX , — =U X ,代入上式dxdy=I n X,两边积分得■ c1将U='代入得'-2=GXyy—2 = -Xy ,即2x2X所以原方程满足初始条件的特解为2x2 1 X(5)原方程可化为3lndx X 令UJ dyUdx• X巴,上方程可化为dxduU 亠X — =Ul n udu dXdx U(InUT) X两边积分得I n∣nu _ 1= IrX 即InU —1 =CX亦即u =e1 CX将U=Y 代入得 1 -CX^=Xe由初始条件y(i) =1得c--i故原方程满足初始条件的特解为^=Xe 1 -X(6)原方程可化为dydx X亠y亠4解方程组y —X 2=0X y 4=0 y ~ -3X=U _1,原方程化为y =V -3 dv du这是一个齐次方程,按齐次方程的解法:令' =~ ,方程可化为-^τdUdu两边积分可得,整理可得,2arctan ' ∙ In up 「2) = C 将∙=V 代入上式得UV222 arctan — In(U V)=C U将U=X 亠1,v = y 亠3代入上式得2即(3)dt =2dx ,t -2积分得 3t 2 In ∣t 「2 = 2 x C .将 t = X + y 代入上式得,x+3y+2ln x + y-2 = c∙4. 求下列微分方程的通解或在给定初始条件下的特解: (1) y'-y =Si nx;n X⑵ y - y=x e ;X⑶(x-2y)dy dx=0;(4) (1 XSiny)y '-cosy -0;yX⑸ y -(x 1)e , y(0)=1;X +1 ,1 2⑺ y - y Inx, y(1)W; X X2(8) y'N xy =(xsinx) ∙, y(0)=1;(10) y=— X y Xy(9) y =X 4 y 32Xy2 arctan— In(X 1)2 (y 3)2 =C(7)原方程可化为巴dxX 亠y 3x 3y —4 d t令 t = X ■ y ,≡ 一 =1dxdy 、,代入上方程得dxdt 2t — 4 dx3t — 4,丄2x⑹y "22xy=Cy (o )二;3二 e ^y (2 ye'dy c) _yy=e (2e (y -1) C) =2( y -1) ce~y(4)原方程可化为Xtan y = SeC y ,这是一个关于y 的一阶非齐次线性微分方程dy且 P (y) = - tan y ,Q ( y) = SeC y ,所以解:(1)这是一阶非齐次线性微分方程P(X)= _1, Q(X) =Sin X_P(x)dxP.y =e ∙( Q(x)e- (X) dx dχ +c)dx卫X=e ( Sin χe 一 dx C) =e x ( Sin X e ^dχ ■ C)XXX-Sin x e 一 一CoS x e-=e (C)X1= Ce- -(Sin x 亠 CoS x)2这是一阶非齐次线性微分方程 ,P(x) =-n ,Q(x)Xn X=Xe-P (X )dχP.y =e( Q(x)e(x)dx dx +c)dx^e Xn X_严= nln X(X e e dx c) = e ( XX_pln X ■e e dx C)nn Xnx」n X =x ( X e X dχ c) = x ( e dχ c) = x (e C)原方程可化为 竺∙χ=2y,这是一个关于y 的一阶齐次线性微分方程,且dyP(y) =1,Q(y) =2y ,所以(Q(y)e;(y)dydy +c)(y )dy=eI d y(2y e dy C)_p (y)dyP X =e ∙ ( Q(y)e ■ tan ydy_ t=e ∙( SeC ye ■1 X------- (SeC y CoS ydy ■ C) CoS y ' 1 (y ■ C)cos y(5)这是一阶非齐次线性微分方程且P(X) J,Q(x) = (X - 1)e x ,所以 X 十1------dx—dx=e x 1 ( (X 1)e x e -X 1 dx C) ・ x ・X=(X 1)( e dx C)=(X 1)(e C)故,原方程满足初始条件的特解是2X2 X ,且 P(X)2 ,Q(x)2 ,所以1 +x1 + x_ P(x)dxy =e(Q(X)e(X)dXdx +c)将初始条件 y(0) =1代入上式中得C=O-P (x)dy = e(Q(X)e(X )dχdχ +c)22x^e-x 2dx c) 2C JD (I ÷ ), =e(I X( 一 .I X22Xeln(1 ∙x 2 )dy e dχ +c) 12 ( 2x 2dx ■ C) 1 x^(-x 3 ' C) 1 X 32将初始条件y(0) =1代入上式得C=,所以原方程满足初始条件的特解是3I 32(1 ■ X )χ2)(7)这是一阶非齐次线性微分方程,且 P(X)12,Q (X) = InX 所以 X X(y )d ydy +c)tan ydydy +c)(6)这是一阶非齐次线性微分方程Xdx c) = χ3( 3dx c) = 3χ4 cx 533 43z = y 代入上式得原方程的通解为y = 3x CX .d X3 3 1 _3 2(10)原方程可化为-Xy=X y ,这是关于y 的〉=3的伯努利方程,令Z=X X , dy上述方程可化为dx X dz 33z = 3X 3 ,这是一阶非齐次线性微分方程_ P (X)dχP(x)dχy =e_( Q(x)e dx C)1 1X dX 2 - 7d×1=e ( InXe dx 亠 C)X 2 =x^ - — In XdX 亠 C)2 2 二 x(_ In X ——C) X X =2(1 In x) CX 将初始条件 y(1) =1代入上式得 C = _1 所以,原方程满足初始条件的特解是 (8)这是一阶非齐次线性微分方程 -"P(x)dxy = 2(1 In x) - X . 2,且 P(X)= 2X , Q(x) = xsin X e^ ,所以 ∣P (x)dxy =e ( Q(x)e dx C) _2XdX 」2 2xd X=e ( XSin X e e dx ■ C )2=e ( X Sin XdX - C) 2 =e (Sin X-X cos X C) 将初始条件y(0) =1 代入上式得 C =:1 ,故原方程满足初始条件的特解是 2 y =e * (Sin X- XCaS X 亠1).(9)原方程可化为* 13y y = X X 1 3 3—y =X X-2 ,这是-2的伯努利方程,方程两边同除以14』)^y3=y ,则上面方程化为P(X) --,Q(x) =3X 3,其通解为XI dX 3 -z = e x( 3x e试求y=f(χ)所满足的微分方程,并求该微分方程满足条件y(2)的特解.9解:依题意有πtπI f (x)dx t2f(t)-f(1),两边同时对t 求导有:3 π- 2f (t) 2tf (t) t f3 -(t) t 2 f (t) =3f 2(t) —2tf (t)亦即χ2y ^3y 2 —2Xy故y=f(x)所满足的微分方程是χ2y'=3y 2-2Xy ,该方程可化为y 2 y=3( ) -2(), X X这是齐次方程•可求得该齐次方程的通解为3y —X 二CXy 将初始条件 y(2)2代入上式得 c = -1 ,所以,该微分方程满足条件 92y(2) 的特解是9*6 .设某生物群体的出生率为常数 a ,由于拥挤及对食物的竞争的加剧等原因,死亡率与当时群体中的个体量成正比 (比例系数为b >0).如果t=0时生物个体总数为 X 0,求时刻t 时 的生物个体的总数(注:将生物群体中的个体量当做时间t 的连续可微变量看待).解:设时刻t 时的生物个体的总数为 X,依题意得dxdx a bx 即 dtdt bx = a解得 Jata btX =e (_eC)b又t =0时x = X 0 ,代入上式得C =X oa ,, ,故 bdz32 yz = _2 y dy这是关于y 的一阶非齐次线性微分方程 ,且P (y) =2 y,Q( y) = _2 y 3 ,其通解为:2 2.y 3 y-e( (-2y e )dy C)2 2_y / y2=e (e (1 - y2_y 2=1 一 y CeZ=e-fydy((-2y 3)e∙2 ydyIdy■ C))■ C)将 ^X-代入上式得原方程的通解为1F =1X-y 2 ce 』5. 设函数f(x)在[1, + ∞)上连续,若由曲线 平面图形绕X 轴旋转一周所成的旋转体的体积为 y=f(x),直线x=1,x=t(t > 1)与X 轴所围成的bt za bta 、 a Z a 、 btX =e (— e+ x 0 — — ) = — +(x 0 — — )ebb b b 3x7.已知 f(x) = [ f-d X + 3x4,求 f(x).I 3 .丿解:方程两边对X 求导得f (X) =3f (x) ∙ 3 即 y '3y =3这是一阶非齐次线性微分方程 ,P(x) = _3,Q(X)=3 ,其通解为--∙3dχ∙3dχ .3x 3xy =e ( 3e dχ ∙ C) =e ( 3e 一 dx ∙ C)3x_3x3 X=e ( _e ∙ m e) - 一 1 x ・ce3xt由已知f (X) = f (―)dt ∙ 3x - 3 得 f (O) - -3 ,代入上式得 e - -2 ,所以 b 3&已知某商品的成本C = C(X)随产量X 的增加而增加,其增长率为且产量为零时,固定成本 C(O) = C O > 0.求商品的生产成本函数C(x).H 1 +x + C /白 H 1解:由C (X)得CC =1 ,这是一阶非齐次线性微分方程1 +x1+X1P(X),Q(x) =1,其通解为1 +x由初始条件C(0) =C °代入上式得 C 1 =c °∙所以商品的生产成本函数C(X)=(I - X) Iln(1 X) C 0 ].9.某公司对某种电器设备的使用费用进行考察,结果发现,随该电路使用时间 X 的延长,它的保养维修费会加倍增长, 因而平均单位时间的使用费 S 也在增加,即S 为X 的函数Sgx), 其变化率为d S b b 1 S — a , d X X X其中a,b 均为正常数•若当x=×0时S = S 0,试问:使用时间为多少时,其平均单位时间的 使用费S 最高?解:原方程 竺=b s -b Ja 可化为 竺- b s = -(b 2I)a ,这是一阶非齐次线性微分方 dx X X dx X X 程,且 P(X) - -b ,Q(x) - -(b 2I)a ,其通解为,X XC '(X)=IxC=(1 x)〔In(1 x) C 1 1丄dχ1 xdx C 1)2习题10;1.求下列微分方程的通解:(1) y :::=xe X;(2) y 〃 1 ;2 ;1 X2 (3) (1 x)y''∙ 2xy'=0; ⑷y 〃 -(y)2O 23d X(5) X2 仁0;(6) yy " -(y')2 (y)3=od t解:(1)对方程两端连续积分三次得Il- Xy =(X - 1)e' C 1X V 1“y =(X - 2)e 亠c 1x 亠 C 22X L C I X y = (x -3) e C 2X C 32这就是所求的通解•(2) 对方程两端连续积分两次得y =arctan X C 1由已知X b bS =e X dX ( J b I)a ^,dXb dχ Xb _1 b =X (ax C) e X dx c^x b ( -(b 2I)aX __bχ- dx 亠 C) =-CX bX =X o 时,S = S o 代入上式得 s o x o f a,C = X o b1S 二--a r bcx X ,令S y O 得唯一驻点 x =(2)r7 ,将C bc s o x o - bΓ x o =( ) bs 0x 0 -ab X o,由问题的实际意义知,最值存在,所 b ,rC X 得a代入得是时间=( )bs 0 X 0 - abX o时,其平均单位时间的使用费 S 最高.y = arctan XdX C I X=XarCtan1 X -―In(12X)C I XC 2这就是所求的通解(3) 令y = p(x),则y =P(X),于是原方程可化为2 *(IX)P 2xp = 0分离变量得 空 2^xτdx ,积分得P 1 X再积分得 y = c 1 arctan X C 2.d⅞=dX P亦即dx X C 1| X ■ C i | ■ C 2(5)令 X=P (X ),则 X=P,原方程变为 dxdp 卄 P 1=0,即 PdP = dx 13dx.X2两边积分得P 2 -1 C1X2C i Xd X亦即兰―dtXIdx =dt . 1 ■ cx 2 积分得一..1 C 2 . 从而 1 亠c 1χ2 =(C I t 亠C 2)2 . 这就是所求的通解• (6)令y =P(y),则∙ p,代入原方程得. dy dp 2 3 yp ——-P + P =0 即 P y dy J些-P P 2dy =O若P=O,则y = 0, y = c 是方程的解.c ι p=C ,即 y(4)令 y= P(X),则 y =P ■,原方程可化为两边积分得1 -=X PC i ,即1 X C 1dy再积分得若 y d ^.p.p 3 =O ,分离变量得y.dyp — Py积分得C l yp “y(1 - P )即 P^C l y于是:dyc1y Hn J即( c 1 )dy =c 1dx.dt 1 ■ c 1yy积分得 C l (X _y)y =c 2e 2. 求下列微分方程满足初始条件的特解:3⑴ y F nx , y(1)T, y '⑴,y 〃(1)=1; 32(2) xy 〃 对=1, y(l)=0, y ' (1)=1; (3) y 〃 y 2 =1,y(0)=0, y ' (0)=1.解:(1)方程两边积分得:y " = X In X —X ∙ q ,由 y 1 =1- 得 C 1 = 0 ,于是 y " = x In x - x ,2上式两边再积分得y = — In X -∙3 X?c 2.2 43由y(1)得C 2 4由 y (1) =1 得 C 1 =1 ,于是 (In X 1),从而X3X In 2=0 ,于是 两边再积分得 由y(1) =0得I3X In 6 II 11X- — X36 C 3.36所以,原方程满足初始条件的特解为 11 3In X-——X36 11+—— 36 (2)令y ■ = p(x),则y = p :原方程化为 X 2空XP =1.即如1P dx Xdx一阶非齐次线性方微分方程1 P(X)= 一,Q(x) =X ,X-2其通解为 dx X-2(Xe1dx y X1dx c 1) = 一(In X ■ c 1)X1即 y (In X G ),X1 1 2y (In x 1)dx = j(ln X 1)d(ln X 1) (11 n x) c2• x 21由y(1) =O 得c221 2 1 1 2y (1 In x) 即y = In x In x.2 2 2(3)令y J p ,则y χ = p ■,原方程可化为d P 21 一p ,由y (0) =1 ,即X =0 时,P =1 . dxdy显然p =1是上述方程的解,即 1 ,积分得y = x ∙ c,由y(0) =0得C=O ,所以,dx原方程满足初始条件的特解为y = X .3. 已知某个二阶非齐次线性微分方程有三个特解y1=x, y2^∙e x和y3=1∙χ∙e x,求这个方程的通解.解:因为y1, y2, W是某二阶非齐次线性微分方程的三个特解,则y? - y1= e x, y3 - y? = 1是Xe某对应的齐次微分方程的特解且一=e x=常数,故e x和1是其对应的二阶齐次线性微分方1程的两个线性无关的特解,故对应齐次线性方程的通解为y = C1亠c2e x又y1 =x是这个二阶非齐次线性微分方程的特解,故这个方程的通解是y = C1亠C2e x亠X .4. 求下列齐次线性方程的通解或在给定条件下的特解:(1) y〃My' 4y=0; (2) y〃-y' -2y=0;(3) y〃5y' 6y=0, y(0)=1, y' (0) ≡6;πππ 6⑷ y" -2y' -10y=0, y( )=0, y'(—)= e .6 6解:(1)特征方程为r2 -4r ∙4 = 0 ,它有两个相等的特征根r1 = r2 = 2 ,所以,所求的通解为y = (c1■ c2x)e2x .(2) 特征方程为r —r —2 = 0 ,它有两个不相等的实特征根r1 = T,r2 = 2,故所求的通解为y = c1e ■ c2e2x.(3) 特征方程为r2 5r,6 = 0 ,它有两个不相等的实特征根r1 = -2, r2 = -3 ,故所求的通解为y =c1e I +c2e'x由y(0) =1 得G +c2=1 ,又由y(0) =6 及厂=—2c1e'x—3c2e'x得2c1 +3c2 = —6 ,解方程组c1 c2 =1 C1 = 91 2得42c1 3c2 = -6 J c2 = -8所以,原方程满足初始条件的特解为y =9e'x _8e^.(4) 特征方程为r2-2r -10 = 0,它有两个共轭复数根,1 X Oy = --e cos 3X35. 求下列非齐次线性微分方程的通解或给定初始条件下的特解:(1) y'' +3y' -10 y =144xe-2x;2⑵ y'' -6y' 8y=8x 4x-2;ππ(3) y" y=cos3x, y( )=4, y'(-)=-1;2 24x⑷ y〃-8y,16y=e , y(0)=0,y' (0) =1.2解: (1)特征方程r ∙ 3r -10 = 0有两个不相等的实数根r1 = -5, D = 2 ,故对应齐次方程的通解为Y ^C I e^X■ c2e2x因为■ - -2不是特征方程的根,故可特解为* 2 Xy =(AXB )e代入原方程可解得 A =「12, B =1.所以y =(1 -12 X) =e X .所求通解为-2 X -5 X 2 Xy = (1 —12 x)e ■ c1e ■ c2e(2)特征方程r2 - 6r= 0有两个不同的特征根r1 = 2, r2 = 4 ,故对应齐次方程的通4-2x=(-2 Ax A -2B)e 仏=1±3i ,故方程的通解为y =e x(c1CoS 3x 亠c2sin 3x),ππ- π Z由y( ) =o, y ( ) = e 得G =6 61-,C2 =0,故所求特解为3y = ( -4 AX 4B 4 Ax )e -2x2x 4 xY =c1e 亠c2e 又因为∙=O不是特征方程的根,故可设特解为* 2y =AX bx = 2Ax∙B,y =2A ,代入原方程可解得2 2=X 2x 1 =(x 1) ∙Y=G CoS X c2 Sin X为: 考察方程y y则y*l3iAe3ix3i X=e 因为w =3i不是特征方程的根,故可设特解为* 3ixy = Ae1■ -9 Ae ,代入方程y ■ y = e?",得A ,所以8* 1 3i x 1y e (cos 3x 亠i Sin 3x)8 8取y的实部,即得到方程y y = cos 3x的特解.故原方程y亠y = cos 3x的通解为由初始条件y — =4,12 J(4)特征方程r2 -8r* 1y 1 = -一cos 3x81y cos 3x c1 cos X c2 Sin X8y = 3 sin 3x - c1 Sin x 亠c2 cos X8y - =1得G =-,c^4,故所求的特解为2 81 丄5 丄y = --cos 3X 一cos X 4 sin x8 81^=0有两个相等的实根r1 = r2 = 4,故对应齐次方程的通解解为A =1,B =2,C =1,所求通解为y =(X ∙ 1)2 2x亠c1e 4x亠c?e(3)特征方程为r2 1 =0 , 它有两个共复数根r1,2=±i ,故对应齐次方程的通解为因为.=4是特征方程的重根,故可设特解为*2 4xy =AXe1将其代入方程y“—8y'16y =e 4x得A,故特解为 2所以原方程的特解为 y = 1x 5e 4x (c 1 ■ c 2 x)e 4x24x -24x4 X4x_又由 y =Xe 2x e c 2e 4c 2xe 及 y (0) = 1 ,得 C 2 =1 .1所以,所求特解为y =丄x 2e 4x xe 4x2 6. 设对一切实数X,函数f(x)连续且满足等式f '(x )=x 2 ∙ ∖ (t)dt ,且 f(0)=2,求函数f(x). f (x) = 2x 亠f (x),即y —y = 2x ,特征方程r —1=0有两个不同的实根r 1 =1,r 2 =-1,故对应齐次方程的通解为Y =C I e X ∙c 2e^因为■ =0不是特征方程的根,故可设特解为Y= Ax B,代入原方程得--2xC 1 e x ■ C 2e J又由题设得「(0) = 0 ,及 y • = -2 ■ C I e X -■ C 2得y " +ay ' +by=θe xf^c 1 +c 2 =2 解方程得C 1 =2, C 2C1 -C2 =2所以满足题设条件特解为y - -2x 2e x--2, B =0 ,故特解为y =…2 ∏,所以方程的通解为C i -C 2 = 2 .=0f(x)X--2x 2e .7.设二阶常系数非齐次线性微分方程12 4x =—X e 2解:方程两边求导得由已知 f (0) =2 得 c 1 ■ C 2 =2的一个特解为y=e2x∙(1 x)e x,试确定常数a,b「并求该微分方程的通解. 解:将已给的特解代入原方程,得(4 2a b)e2x (3 2 a b)e X (I a b)Xe X= : e x比较两端同类项的系数,有4 2a b =OIab=O3 2a b =:解得a = _3, b = 2, = _1.于是原方程为y J3y 2y 二_e x .其特征方程为r2-3r∙2=0,特征根为r1=1,r2=2 ,对齐次方程的通解为X 2 X= c1e 亠c2e又因为,=1是特征方程的单根,故设特解为y = AXe X ,代方程y'"—3y ' 2y = -e x,可解得A=1,故特解为y^xe x所以该微分方程的通解为X 丄2χ丄Xy = c1e 亠c2e 亠Xe .& 设函数(X)可微,且满足X X「(x)=e 亠I (t 一X):(t)d t,求(X) •X X X解:由:(X) = e X亠I (t —x) '(t)d t 得:(0) = 1,又:(x) = e X亠∣ t「(t)d t —x ∣(t)d t ⅛*0*0X两边求导得::(x)=e X∙χ>(x)-°:(t)dt -X :(x),即X「(X) =e x - 0 ;:(t)dt ,从而:(0) =1再求导得::(X)= ^^(X),即、、二e可求得对应齐次方程的通解为Y =C I CoSX ∙ C2 sin X ,又因为,=1不是特征方程2r 7=0的根,故可设特解为* Xy =Ae1将其代方程y'y=e x中可求得 A = 1,故方程的通解为y=c一一--1XI CoS X c2 Sin X — e ..又2 2由1(0) =1, :(0) =1 及y - -G Sin X c2 cos X e得1 1C l, C2 ,所以2 2 2y1 X. 1 X =-(C ox S S i, r即(Xe = 丁(CoS X Sin X e ).2 29∙求方程y'' -y' -2y=3e^在x=0处与直线^X相切的解.解:特征方程r 2 —r _2=0有两个实根r 1=-1,r 2=2,故对应的齐次方程的通解为Y =c 1e* ■ c 2e 2x ,又因为‘ --1是特征方程的单根,故可方程的特解为*Xy = AXe _代入原方程可解得 A=-I ,故原方程的通解为_x2x_xy = c 1e _ ■ c 2e—xe _ , (1)由已知在X =O 处与直线y =X 相切,则y(0)= 0, y (0) =1 ,又X2 XXXy = -c 1 e ^ - 2c 2e-e ^ ■ Xe 一, (2)将y(0) =0, y(0) =1分别代入(1),( 2)式中得2可解得c 1 , c 2 32 2所以,所求的解为 y--—e -Xe3 310.设函数y(x)的二阶导函数连续且 y'(0)=0,试由方程y(x)=1 1 ∙ y (t)-2y(t) 6t e 」d t3占确定此函数.1解:方程两边对X 求导得y (x) = —[ —y ∙(x) — 2 y(x)亠6xe 」],即y 亠3 y 亠2 y = 6xe 」 (1)3 它的特征方程r 2 3r ∙2 =0有两个相异的实根 r 1 =-1,r 2 =-2,故方程(1)对应的齐次方程的通解是Y ^C I e ^ ■ c 2e^x又• = -1是特征方程的单根,故方程(1)的特解可设为*-K 2y =X(AX B)e (AX Bx) =e将其代入方程(1),可解得A=3, B=—6 ,从而特解为y =(3x 2—6x)e 」,方程(1)的 通解为_V2 X2 _Vy = c 1e C 2e(3 X - 6x)e ,…⑵1由 y(x) =1— ;[ —y (t) —2y(t) 6te 丄]dt 得 y(0) =1 ,又 3 •V2 Yy2 __x^=-C I e —2c 2e (6 x —6)e—(3 X —6x)e ,… ⑶c 1 c 2 = 0 c 1 2C 2 - -2由y(0) =1,y(0) =0 及(2),(3)式可得G c 2 =1 G 亠 2c 2 - -6X2 X2Xy =8J7e 一 (3x -6x)e 一即由所给方程确定的函数为y(x^8e^ -7e-x (3χ6 _6x)e 」11. 一质点徐徐地沉入液体, 的运动规律.解:由题设条件与牛顿第二定律有习题10∙41.某公司办公用品的月平均成本 C 与公司雇员人数 X 有如下关系:C ' =C 2e^-2C6m g2 •因而有 kd 2sm —7 = mg dt -k 空 (k 为比例系数) dt 2d S k ds即 g,…⑴ dt m dt这是一个二阶线性非齐次方程,它的特征方程 kr = 0有两个不相等的实根 mk r =0, r ,它对应的齐次方程的通解m c 2 e k tm,又因∙ =0特征方程的单根,故 可设特解为S =At ,代入方程(1)可得A mg kk ,故方程(1)的通解为 c 1 c 2e m mg t. k且 s _ _kc 2e mkηm mg,又开始沉入时即kt=0 时,s = 0, ds = 0 ,将其代入上两式可解得dtC1C22m g S 厂 k2m g2kmg t.k故方程(1)的满足已知条件y(0) =1, y (0) =0 的特解为 当沉入时,液体的反作用力与下沉的速度成正比例,求质点且C(0)=1,求C(X).解:方程C ∙ = C 2e* _2C 可变形为:C 2C =e~ C=这是:• = 2的伯努利方程,令 Z -C I --C J ,方程可化为:Z •一2Z ,这是一阶非齐次线性微分方程且P(X)= -2 ,Q(x) = _e —,其通解为:= e 2x (1e~x dx m) =1e3311(为了与成本C 区别,这里的任意常数用 m 表示),于是 e 」 me 2x ,由已知C(O)=I ,可C 3其中a , b 为正的已知常数,若R o) =0, S (0) =S(购买成本),求R(t)与S (t ).解:先解一阶线性方程 S - _bS ,求出S(t),分离变量得:竺-_bdt ,积分得 ^C I e^tSS(0) = S 0 ,可得C 1 = S 0 ,所以S(t) = S 0M ,将S(t) = S 0/ 代入所给方程—e bt ,积分得:R(t) — e bt C 2,由已知条件R(0) =0得C ? SCbS3.设D=D(t)为国民债务,Y=Y(t)为国民收入,它们满足如下的关系:D' R Y +P , Y' ="Y其中:■, ^-,为正已知常数. (1)若 D(O)=D 0,Y(0)=Y °,求 D(t)和 Y(t);⑵求极限Iim D°tτ 乂 丫⑴解:(1)先解方程Y= Y,求出Y(t);分离变量得:也 =dt ,积分得Y=C 1e t ,由Y(O)=Y O 得YC l =丫0 ,所以 Y(t) =Λe t ,将 Y(t) =Y °e t 代入D 丄〉丫「中得:D =〉Y °e t 「,积分得 O(Y O Y QG Y OD -e ,-C ?,由 D(O)=D O 得 C^D O,所以Z =e^-2dx-Jdx.X ∣~i'2x .3x((-e 一)edx m) = e ( -e~ dx m) 得:m =2,从而 1=1e js 2e 2x3 C 333x1 2eX3e2.设R=R(t)为小汽车的运行成本, 3e x,所以 C(X)=FS=S(t)为小汽车的转卖价值,它满足下列方程: aR'-,S ' --bS, S由已知条件 所以R(t)=a bS。
一、填空题1.设)(x P 是x 的多项式,且26)(lim 23=-∞→x x x P x ,3)(lim 0=→xx P x ,则=)(x P 2.=-++∞→))(arcsin(lim 2x x x x6π x x x 32623++↑ 3.=⎪⎭⎫⎝⎛-∞→321lim x x x 32-e4.设A x x ax x x =-+--→14lim31,则有=a ,=A 4,-2 5.设xxx x x f sin 2sin )(+=,则=∞→)(lim x f x 26.=⋅+→232031sinsin limx x x x x 31 7.函数)2)(1(1+-+=x x xy 的间断点是 1=x8.为使函数()x x x f tan 1⋅=在点0=x 处连续,应补充定义()=0f 19.设函数⎪⎩⎪⎨⎧=≠-=00)1(3x Kx x y x 在0=x 处连续,则参数=K 3-e 10.函数⎩⎨⎧>+≤+=010)(x e x a x x f x 在点0=x 处连续,则=a 2二、单项选择题1.设0>n x ,且n n x ∞→lim 存在,则n n x ∞→lim ②①0> ②0≥ ③0= ④0< 2.极限=-→111lim x ex ③①∞ ②1 ③不存在 ④0 3.=++∞→-→xx x x xx 1sinlim )1(lim 10 ④①e ; ②1e -; ③1e +; ④11e -+4.()()213++-=x x x y 的连续区间是__________________ ②①()()()+∞----∞-,11,22, ②[)+∞,3③()()+∞--∞-,22, ④()()+∞--∞-,11,5.函数1211111+----=x x x x y 的不连续点有 ③ ①2个 ②3个 ③4个 ④4个以上6.下列函数中,.当0→x 时,与无穷小量x 相比是高阶无穷小量的是___________;是等价无穷小量的是__________________ ①,②①x cos 1- ②2x x + ③x ④x 2sin7.当+→0x 时,x sin 与||x 相比是 ② ①高阶无穷小量 ②低阶无穷小量 ③同阶但不等价的无穷小量 ④等价无穷小量8.当0→x 时,x 2cos 1-与2x 相比是 ② ①高阶无穷小量 ②同阶但不等价的无穷小量③低阶无穷小量 ④等价无穷小量9.设()⎪⎩⎪⎨⎧=≠-=00,3sin x k x xx x f 为连续函数,则k =_______________ ② ① 1 ② -3 ③ 0 ④ 310.函数()x f 在点0x 处有定义是()x f 当0x x →时极限存在的 ④ ①充分但非必要条件 ②必要但非充分条件③充分必要条件 ④既非充分又非必要条件11.当0→x 时,下列函数中比x 高阶的无穷小量是 ②①x x sin + ②x x sin - ③()x +1ln ④()x -1ln 12.当0→x 时,下列函数中为无穷小量的是 ② ①x x 1sin+ ②x x 1sin ⋅ ③x x sin 1+ ④x xsin 1⋅ 13.当∞→x 时,下列函数中为无穷小量的是 ③①x x 1sin+ ②x x 1sin ⋅ ③x x sin 1+ ④x xsin 1⋅ 14.设在某个极限过程中函数()x f 与()x g 均是无穷大量,则下列函数中哪一个也必是无穷大量 ③ ① ()()x g x f + ② ()()x g x f - ③ ()()x g x f ⋅ ④()()x g x f 15.设()a x f =0,()b x f x x =-→0lim ,()c x f x x =+→0lim ,则函数()x f 在点0x 处连续的充分必要条件是 ④ ①b a = ②c a = ③c b = ④c b a ==16.1=x 是⎪⎩⎪⎨⎧=≠--=-10111)(112x x ex x x f x 的 ④ ①连续点 ②跳跃间断点 ③可去间断点 ④无穷间断点三、求下列极限1.)1(lim 2x x x -++∞→011lim2=++=+∞→xx x2.)1(lim 2x x x -+-∞→+∞=3.)2222(lim 22+--+++∞→x x x x x22212214lim22224lim2222=+-+++=+-+++=+∞→+∞→xx x x x x x x xx x4.⎪⎭⎫⎝⎛⋅∞→x x x 1arcsinarctan lim 0=5.)111)(110()110()13()12()1(lim 2222--++++++++∞→x x x x x x x (27=)6.)21(lim 222nn nn n n n n ++++++∞→[解] 记n n nn n n n x n ++++++=22221 因为 222222n nn n n n x n n n n n n n n n n +++≤≤++++++即 11≤≤+n x n n ,由于11lim =+∞→n n n ,所以由夹逼定理,得1lim =∞→n n x7.设2006)1(lim =--∞→ββαn n n n ,求βα,[解] 原式左端⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=∞→∞→n o n n n n n n n n 1111lim111limββαββαβββα11lim 1=⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛-=-∞→n n o n n n (1-=βα)由于极限存在,故1-=βα。
20061=β ∴20061=β,200620051200611-=-=-=βα 四、分析题1.讨论极限x x x |sin |lim 0→[解] 因为1|sin |lim 0=+→x x x ,1|sin |lim 0-=-→x x x ,故原极限不存在。
2.求23122+--=x x x y 的间断点,并判别间断点的类型。
[解] 因为)2)(1(232--=+-x x x x ,而2231lim 221-=+--→x x x x ,∞=+--→231lim 222x x x x 因此有间断点:1=x 为可去间断点,2=x 为无穷间断点。
.3.求函数xx y 16+=的连续区间,若有间断点,试指出间断点的类型。
[解] 函数的连续区间为),0()0,(+∞-∞ ,点0=x 为函数的第二类无穷间断点。
4.讨论函数tx t x t t x x f -→⎪⎭⎫⎝⎛--=11lim )(的连续性。
[解] ()1)1(011lim 11lim 11lim )(--+→--=-→-→=+⎪⎭⎫⎝⎛--+=⎪⎭⎫ ⎝⎛--==x xx y yx y t tx y tx t x t tx t x t e y t t x t x x f 令 在点1=x 处没有定义,是间断点,故)(x f 的连续区间为),1()1,(+∞-∞ ,点1=x 为)(x f 的第二类无穷间断点。
5.讨论函数⎩⎨⎧<+≥=010cos )(x x x x x f 在点0=x 处的连续性。
[解] 1cos lim )(lim 0==++→→x x f x x ,1)1(lim )(lim 0=+=--→→x x f x x∴ )(x f 在点0=x 处连续性。
6.设函数()⎪⎪⎩⎪⎪⎨⎧≥+<--==02cos 0x x x x x xa a x f y (0>a )(1)当a 取何值时,点0=x 是函数()x f 的间断点?是何种间断点?(2)当a 取何值时,函数()x f 在()∞+∞-,上连续?为什么? [解](1)在点0=x 处,21)0(=f ,212cos lim )(lim 00=+=++→→x x x f x x ,ax a a x x a a x f x x x 211lim lim )(lim 000=-+=--=---→→→ 当0>a 且1≠a 时,由于)(lim )(lim 0x f x f x x -+→→≠,所以点0=x 是()x f 的跳跃间断点。
(2)当1=a 时,由于)0()(lim )(lim 0f x f x f x x ==-+→→,则()x f 在点0=x 处连续。
又因为在)0,(-∞或),0(∞+上,()x f 为初等函数,所以连续。
故当1=a 时,函数()x f 在()∞+∞-,上连续。
7.设函数()⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<≤<+==4110011x a x x x x x f y(1)求函数()x f 的定义域;(2)讨论函数()x f 在点0=x 处的极限是否存在?为什么?(3)a 为何值时,函数()x f 在点1=x 处连续?并求函数()x f 的连续区间;(4)画出函数()x f y =的图形。
[解](1)]4,1()1,(---∞= f D(2)因为111lim )(lim 00=+=--→→x x f x x ,0lim )(lim 00==-+→→x x f x x ,所以)(lim 0x f x →不存在(3)在点1=x 处,a f =)1(,1lim )(lim 11==--→→x x f x x ,a a x f x x ==++→→11lim )(lim , 所以,当1=a 时,)1()(lim )(lim 11f x f x f x x ==-+→→,即函数()x f 在点1=x 处连续。
此时,()x f 的连续区间为:]4,1()1,(---∞ (4)略 五、证明题1.证明方程475=-x x 在区间)2,1(内至少有一个实根。
[证] 设47)(5--=x x x f ,)(x f 在]2,1[上连续,又010)1(<-=f ,014)2(>=f ,由零点定理知,在)2,1(内至少存在一点ξ,使得0)(=ξf ,即0475=--ξξ,故方程475=-x x 在区间)2,1(内至少有一个实根。
2.证明:方程k x x =-sin 2(0>k )至少有一个正根。
[证] 设),0[sin 2)(∞+∈--=C k x x x f因为0)0(<-=k f ,0)3sin(23)3(>+-=+k k f故由零点定理知,)3,0(+∈∃k ξ,使得0)(=ξf ,所以方程k x x =-sin 2至少有一正根。
3.证明方程2sin +=x a x (0>a )至少有一个正根,并且不超过2+a 。
[证] 设2sin )(--=x a x x f ,下面分两种情形来讨论:情形1 若 1)2sin(=+a ,则因为0>a ,故2+a 是方程2sin +=x a x (0>a )的正根,并且不超过2+a 。