南京大学2013年微积分2期末考试试卷及详解答案
- 格式:pdf
- 大小:32.95 MB
- 文档页数:5
微积分Ⅱ期末考试试卷1一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1.若c x g dx x f +=⎰)()(,则=⎰dx x xf )(cos sin ________.2.极限=⎰→xtdt xx 020cos lim________.3.已知xy z =而)tan(t s x +=,)cot(t s y +=则=∂∂sz________. 4.设{}10,10),(≤≤≤≤=y x y x D 则=⎰⎰Dxy d xe σ________.5.微分方程02=+''y y 的通解为________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1.设⎰=+21xdx ________.A. c x +arctanB. c x x +++)1ln(2C. c x ++212D. c x ++)1ln(212.2.下列积分值为0的是________.A. ⎰+∞+0211dx xB. ⎰-1121dx xC. ⎰-++ππdx x x x )cos 1sin (2D. ⎰--1121dx x . 3.函数),(y x f z =在点),(00y x 处可微的充分条件是函数在该点处________. A.有极限 B.连续 C.偏导数存在 D.有连续的偏导数. 4. =⎰⎰10),(xdy y x f dx ________.A. ⎰⎰1010),(dx y x f dy B. ⎰⎰y dx y x f dy 01),(C. ⎰⎰100),(y dx y x f dy D. ⎰⎰101),(ydx y x f dy .5.下列级数收敛的是________.A .∑∞=-+-12123n n n n B. nn n n∑∞=+1)1(C . ∑∞=⎥⎦⎤⎢⎣⎡-1)32(1n n n D. ∑∞=1!n n nn .三、(计算题请写出主要步骤及结果,每小题6分,共18分.) 1. ⎰dx e x x 2 2. ⎰+41)1(x x dx 3.请给出第七章(定积分)的知识小结.四、(请写出主要计算步骤及结果,6分.) 已知方程z x e z xy +=+ 确定函数),(y x z z = 求dz . 五、(请写出主要计算步骤及结果,8分.)求⎰⎰++Dd y x σ)1ln(22,其中D 为圆周122=+y x 围成的区域.六、(请写出主要计算步骤及结果,8分.) 求初值问题的解⎩⎨⎧=+==0)2(0x y dx y x dy 七、(请写出主要计算步骤及结果,8分.) 求幂级数∑∞=-0)1(n nnnx 的收敛半径,收敛区间.并求∑∞=03n nn的和. 八、(请写出主要计算步骤及结果,8分.)求由2x y =与2y x =所围成的平面图形的面积,并求此平面图形分别绕x 轴,y 轴旋转所成的体积.九、经济应用题(请写出主要计算步骤及结果,8分.)某厂生产某种产品的生产函数为y x Q 2005.0=,若甲、乙两种原料的单价分别为1万元和5万元,现用150万元购原料,求两种原料各购多少时,能使生产量最大?最大生产量为多少? 十、证明题(请写出推理步骤及结果,6分.)设)(x f 在],[b a 上连续,在),(b a 内可导,且有M x f ≤'(及0)(=a f ,试证:⎰-≥b adx x f b a M )()(22微积分Ⅱ期末考试试卷1答案一、1.c x g +-)(cos 2.1 3.)(csc )tan()cot()(sec 22t s t s t s t s ++-++4.2-e5.x c x c y 2sin 2cos 21+= 二、1.B 2.C 3.D 4.D 5.D三、1. ce xe e x dxe xe e x xde e x dx xe e x de x dx ex xxxx x x x x x x x x++-=+-=-=-==⎰⎰⎰⎰⎰2222222222222. x t =2t x =⎰⎰⎰=-=+=+-=+=+41212121234ln 221ln 232ln 21ln 2)111(2)1(2)1(t t dt t t t t tdt x x dx四、z x e z xy z y x F +-+=),,(z x x e y F +-= x F y = z x z e F +-=111-+--=---=-=∂∂++z xy zxy y e e y F F x z zx z x Z x 11-+=--=-=∂∂+z xy xe x F F y z z x Z y dy z xy xdx z xy z xy y dy y z dx x z dz 11-++-+--=∂∂+∂∂=五、⎰⎰⎰⎰+=++Drdr r d d y x 122022)1ln()1ln(πθσ⎥⎦⎤⎢⎣⎡+-+=+=⎰⎰⎰1022210221022201)1ln()1ln(21dr r r r r dr r d πθπ 1021021022)1ln(2ln )111ln(2ln r r dr r ++-=⎥⎦⎤⎢⎣⎡+--=⎰ππππ )12ln 2(2ln 22ln 2ln -=-=+-=ππππππ六、x y y 2=-'⎥⎦⎤⎢⎣⎡+⎰=⎰---c dx xe e y dx dxf )1()1(2[]c dx xe exx +=⎰-2[][]⎰⎰++-=+-=---c dx e xee c xde e x xxxx222x ce x +--=22因为00==x y 所以c =2 所求特解为)1(2--=x e y x七、111=+==+n na a R n n 当1±=x 时∑±nn )1(发散 收敛区间为)1,1(- 设∑∑∞=-∞===10)(n n n nnx x nxx S设∑∞=-=1)(n n nxx T则xx xdx nxdx x T n n x n n x n n x-====∑∑⎰∑⎰∞=∞=∞=-11)(012)1(1)(x x T -=所以2)1()()(x xx xT x S -==31=x 时 439431)311(31)31(320==-==∑∞=S n n n 八、31)(102=-=⎰dx x x S()dx x x V x ⎰⎥⎦⎤⎢⎣⎡-=10222)(ππ103=()ππ103)(10222=⎥⎦⎤⎢⎣⎡-=⎰dy y yV y九、解 )1502(005.0),,(2-++=y x y x y x F λλ 0001.0=+=λxy F x02005.02=+=λx F y ⎩⎨⎧==⇒25100y x01502=-+=y x F λ ==25*100*005.02Q 十、b a a x f a f x f x f <<-'=-=ξξ))(()()()(M x f ≤')()()(a x M x f -≤22)(212)()()(a b M a x M dx a x M dx x f baba b a-=-⋅=-≤⎰⎰dx x f dx x f b ab a⎰⎰≥)()(2)(2)(a b Mdx x f b a-≤⎰dx x f b a M b a⎰-≥)()(22微积分Ⅱ期末考试试卷 2一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1.已知cos()z xy =,而()y x ϕ=可导,则dzdx=________. 2.若2()1f x xdx c x x =++⎰,则()f x =________.3.p ________时,广义积分22111(1)p dx x --⎰发散.4.若20cos (1),(,)(2)!nnn x x x n ∞==-∈-∞+∞∑,则函数2sin x 的麦克劳林级数等于________. 5.微分方程0y ay y '''+-=的通解为12x x y c e c e -=+,则a =________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.)1.设xy z xe =,则'x z =________.A.xy xyeB.xy e x 2C.xy eD.xy e xy )1(+ . 2.=________.A.x c + B. arcsinc +C.c +3x c +.3.下列结论正确的个数是________.(1)11230x dx x dx <⎰⎰ (2)22211x e e dx e ---<<⎰(3)cos 0x xdx ππ-=⎰(4)2221[sin ]2sin x t dt x x '=⎰A.0B.1C.2D.3. 4.1200(cos ,sin )d f r r rdr πθθθ=⎰⎰ ________.A. 110(,)dy f x y dx ⎰⎰ B. 10(,)dx f x y dy ⎰⎰C. 110(,)dx f x y dy ⎰⎰ D. 1(,)dy f x y dx ⎰⎰.5.微分方程1y y '-=的通解是________. A .x y ce = B. 1x y ce =+ C .1x y ce =- D. (1)x y c e =+.三、(请写出主要计算步骤及结果,每小题8分,共16分.) 1. arctan x xdx ⎰ 2. 41⎰.四、(请写出主要计算步骤及结果,8分.)已知方程sin xy x z yz += 确定函数(,)z f x y = ,求dz . 五、(请写出主要计算步骤及结果,8分.)求2()Dx y d σ-⎰⎰,其中D 是由直线2y =,y x =及2y x =围成的区域.六、(请写出主要计算步骤及结果,8分.)求由y =与3y x =所围成的平面图形的面积,并求此平面图形绕x 轴旋转所形成的立体的体积.七、(请写出主要计算步骤及结果,8分.)判断级数n ∞=的敛散性.八、(请写出主要计算步骤及结果,8分.)求幂级数1(1)nn n e x n∞=-∑的收敛半径,收敛区间.九、经济应用题(请写出主要计算步骤及结果,8分.)某工厂生产A 、B 两种产品,单位成本分别为2元和14元,需求量分别为1Q 件和2Q 件,价格分别为1P 元和2P 元,且满足关系式1214()Q P P =-,2128048Q P P =+-,试求A 、B 两种产品的价格1P ,2P ,使该厂总利润最大(要求利用极值的充分条件). 十、证明题(请写出推理步骤及结果,6分.) 设)(x f 为连续函数,试证:()()(())x x tf t x t dt f u du dt -=⎰⎰⎰.微积分Ⅱ期末考试试卷2答案一、填空题(每小题3分,共15分)1.sin[()][()()]x x x x x ϕϕϕ'-+2. 21x x ⎛⎫ ⎪+⎝⎭ 3.1p ≥4.()()1212121,(2)!n n n n x x n --∞=-∈-∞+∞∑ 5.0二、单项选择题(每小题3分,共15分) 1.D 2.C 3.B 4.B 5.C三、(请写出主要计算步骤及结果,每小题8分,共16分.)1.2222222221arctan arctan (1211arctan (32211111arctan (5221111arctan arctan 22211(1)arctan (822x xdx xdx x x x dx x x x x dx x x x x x c x x x c ==-++-=-+=-++=+-+⎰⎰⎰⎰分)分)分)分)2.44114141(2(42ln(1(632ln(82===+=⎰⎰⎰分)分)分)分).四、(请写出主要计算步骤及结果,8分.)sin (1sin cos (4sin (5cos (6cos sin (8cos cos x y z x z y z F xy x z yz F y z F x z F x z y F z y z x F x z yF z x z y F x z y y z x zdz dx dyx z y x z y=+-'''=+=-=-'∂+=-='∂-'∂-=-='∂-+-=+--分),,分)分)分)分)五、(请写出主要计算步骤及结果,8分.)图(1分)22222220222303420()()(31()(5231()(68211()(7881(8yy Dy y x y d dy x y dx x xy dyy y dy y y σ-=-=-=-=-=-⎰⎰⎰⎰⎰⎰分)分)分)分)分)六、(请写出主要计算步骤及结果,8分.)图(1分)130341201260)(321()(4345(512](75(814x S x dxx x V x dx ππ=-=-==-=⎰⎰分)分)分)分)分)七、(请写出主要计算步骤及结果,8分.)1(4n =分)由比较判别法的极限形式知级数3121,n n n∞∞==∑敛散性相同,因为3121,n n∞=∑所以0n ∞=收敛。
浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷一 、填空题(每小题5分.共25分.把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a =,3b =,3a b ⋅=,则a b += . 3.设(,)f u v 可微.(,)yxz f x y =,则dz = .4.设()f x 在[0.1]上连续.且()f x >0, a 与b 为常数.()}{,01,01D x y x y =≤≤≤≤,则()()()()Daf x bf y d f x f y σ++⎰⎰= .5.设(,)f x y 为连续函数.交换二次积分次序2220(,)x x dx f x y dy -=⎰⎰.二 、选择题(每小题5分.共20分.在每小题给出的四个选项中只有一个是符合题 目要求的.把所选字母填入题后的括号内)6.直线l 1:155121x y z --+==-与直线l 2:623x y y z -=⎧⎨+=⎩的夹角为 (A )2π . (B )3π . (C )4π . (D )6π. [ ] 7.设(,)f x y 为连续函数.极坐标系中的二次积分cos 2d (cos ,sin )d f r r r r πθθθθ⎰⎰可以写成直角坐标中的二次积分为(A)100(,)dy f x y dx ⎰⎰ (B)100(,)dy f x y dx ⎰⎰(C)10(,)dx f x y dy ⎰⎰(D)10(,)dx f x y dy ⎰⎰[ ]8.设1, 02()122, 12x x f x x x ⎧≤≤⎪⎪=⎨⎪-≤⎪⎩ ()S x 为()f x 的以2为周期的余弦级数.则5()2S -=(A )12. (B )12-. (C )34. (D )34-. [ ] <9.设,)(0,0),(,)0, (,)(0,0),x y f x y x y ≠==⎩则(,)f x y 在点O (0,0)处(A )偏导数存在.函数不连续 (B )偏导数不存在.函数连续(C )偏导数存在.函数连续 (D )偏导数不存在.函数不连续 [ ] 三、解答题10.(本题满分10分)求曲线L :2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在其上点M (1.-1.2)处的切线方程与法平面方程.11.(本题满分10分)设F 可微.z 是由F (x y -,,)0y z z x --=确定的可微函数.并设23F F ''≠.求z zx y∂∂+∂∂. 12.(本题满分10分)设D 是由曲线3y x =与直线y x =围成的两块有界闭区域的并集.求2[e sin()]d xDx y σ++⎰⎰. 13.(本题满分10分)求空间曲线L :222920335x y z x y z ⎧+-=⎨++=⎩上的点到xOy 平面的距离最大值与最小值.14.(本题满分10分)设平面区域D ={}(,)01,01x y x y ≤≤≤≤.计算二重积分22 1 d Dx y σ+-⎰⎰.15.(本题满分5分)设当y >0时(,)u x y 可微.且已知222222(,)()(2)y x du x y xy dx x y y dy x y x y=++-++++. 求(,)u x y .浙江大学2007-2008学年春季学期《微积分II 》课程期末考试试卷答案一、填空题(每小题5分.共25分) 1.231421=-++=d .2.22()()2496a b a b a b a b a b +=+⋅+=++⋅=++=3.()()dy xy f x x f dx y y f yx f dz x y x y 121211ln ln --'+⋅'+'+⋅'=4.()()()()()()()()⎰⎰⎰⎰++=++=D Dd x f y f x bf y af d y f x f y bf x af I σσ. ()()⎰⎰+=+=+=∴Db a I b a d b a I 21,2σ.5.()()2220111,,x x dx f x y dy dy f x y dx --=⎰⎰⎰⎰或 ()0111,dy f x y dx -⎰⎰或 ()1101,dy f x y dx -⎰⎰.二、选择题(每小题5分.共20分) 6.选(B ).l 1的方向向量{}1,2,1-.l 2的方向向量{}2,1,1--.{}{}3,2163662,1,11,2,1cos πθθ===--⋅-=.7.选(D ). 积分区域(){}0,,22≥≤+=y x y x y x D .化成直角坐标后故知选(D ).8.选(C ). 511111113()()()((0)(0))(1)222222224S S S f f -=-==-++=+=.9.选(A ). ()()0000,0lim0,0,00x y x f f x→-''===.偏导数存在. 取kx y =.()4411lim,lim kk kk kx x f x x +=+=→→随k 而异.所以不连续.三、解答题(10~14每题10分.15题5分.共55分) 10.由L .视x 为自变量.有⎪⎩⎪⎨⎧=-+=++.0226,0264dx dz z dx dy y x dx dz z dx dy y x 以()()2,1,1,,-=z y x 代入并解出dxdzdx dy ,.得 87,45==dx dz dx dy . 所以切线方程为87245111-=+=-z y x .法平面方程为()()()57112048x y z -+++-=.即0127108=-++z y x .11.133212232332,,1y x z z F F F F F F F F z z z z x F F F y F F F x y F F ''''''''--+∂∂∂∂=-=-=-=-+==''''''''∂-+∂-+∂∂-.12.D 在第一象限中的一块记为D 1.D 在第三象限中的一块记为D 2.()()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++++=++2122122sin sin sin D D DD x D x x d y x d y x d e d e d y x eσσσσσ.32222312101xx x x x xxxD D e d e d dx e dy dx e dy σσ-+=+⎰⎰⎰⎰⎰⎰⎰⎰ ()()()()222210103333011x x x x x x e dx xx e dx x x e dx xx e dx -=-+-=-+-⎰⎰⎰⎰()2111130021()112x u u u u x x e dx e du ue du e ue e e e =-=-=---=--=-⎰⎰⎰()()()()3312101sin sin sin sin x x xxD D x y d x y d dx x y dy dx x y dy σσ-+++=+++⎰⎰⎰⎰⎰⎰⎰⎰()()()()103301cos cos cos cos x x x x dx x x x x dx -⎡⎤⎡⎤=-+-+-+-+⎣⎦⎣⎦⎰⎰ ()()()()13301cos cos cos cos 0x x x x dx x x x x dx ⎡⎤⎡⎤=-+-+++-+=⎣⎦⎣⎦⎰⎰ 所以.原式2-=e .13.L 上的点到平面xoy 的距离为z .它的最大值点.最小值点与2z 的一致.用拉格朗日乘数法.设()()()53329,,,,2222-+++-++=z y x zy x z z y x F μλμλ.求偏导数.并令其为零有:20F x x λμ∂=+=∂.1830F y x λμ∂=+=∂. 2430F z z z λμ∂=-+=∂.22920Fx y z x∂=+-=∂ . 3350Fx y z μ∂=++-=∂ . 解之得两组解()()1215,,(1,,1);,,(5,,5)33x y z x y z ==--. 所以当31,1==y x 时.1=z 最小;当35,5-=-=y x 时.5=z 最大.14.将分成如图的两块.41的圆记为D 1.另一块记为D 2()⎰⎰⎰⎰--=-+DD d y x d y x 1222211σσ+()⎰⎰-+2122D d y x σ ()()()σσσd y x d y x d y xD DD ⎰⎰⎰⎰⎰⎰-+--++--=11111222222()()()()1222211122220211211211()43343D Dx y d x y d d r rdr dy xy dx πσσθππ=--++-=-++-=+-+=-⎰⎰⎰⎰⎰⎰⎰⎰15.由()222222,()(2)y x du x y xy dx x y y dy x y x y =++-++++.有222xy y x y x u ++=∂∂.从而知()()y y x y x y x u ϕ++=2221arctan,.又由y y x yx x y u 2222+++-=∂∂.推知 ()22222221()xx y x y y x y y x x y y ϕ-'++=-++++. ()()22,y y y y C ϕϕ'==+所以.()2221,arctan2x u x y x y y C y =+++. 注:若用凑的办法亦可:222222()(2)y x xy dx x y y dy x y x y++-++++()()22222211221()ydx xdy ydx xdy xy ydx xdy ydy d xy dy x x y y y--=+++=++++ ()221(arctan)2x d xy y y =++ 所以.()C y y x y x y x u +++=22221arctan,. ()()u f u F ='.浙江大学2006–2007学年春季学期 《 微积分Ⅱ 》课程期末考试试卷开课学院: 理学院 考试形式:闭卷 考试时间: 年 月 日 所需时间:120 分钟 考生姓名: _____学号: 专业: ________一、 填空题(每小题5分.满分30分) 1. 直线63321-==+z y x 在平面0522=--+z y x 上的投影直线方程为.2. 数量场2),,(zye z y x g x +=在)0,3,1(P 点的梯度为 .=u函数)ln(),,(22z y x z y x f ++=在P 点沿u的方向导数为 .3. 设ϕϕ,),2,3(),,(f y x x u u x f z+== 具有二阶连续偏导数.则=∂∂∂yx z 2.4. 设}1,11|),{(3≤≤≤≤-=y x x y x D.则=+⎰⎰+Dy xy x e y x x d d )(222.5. 已知曲面1=z y x 与椭球面193222=++z y x 在第一卦限内相切.则切点坐标为 .公共切平面方程为.6. 设函数⎪⎩⎪⎨⎧<≤<≤=121,210,)(2x x x x x f .∑∞=+=10cos 2)(n n x n a a x S π.其中,2,1,0,d cos )(210==⎰n x x n x f a n π.则.)27(=S二、 (满分10分)求直线 ⎩⎨⎧=-++=-+-022012z y x z y x 绕x 轴旋转一周所得的旋转曲面方程.1002 22dd x yex y.三、(满分10分)计算⎰⎰-四、 (满分15分)已知),(y x z z =由方程013=++zxe z y 确定.试求1022==∂∂y x x z.五、 (满分15分)设平面),,(,1:z y x d y x =+π为曲线⎪⎩⎪⎨⎧=++=++014222z y x z y x 上的点),,(z y x 到平面π的距离.求),,(z y x d 的最大.最小值 .六、 (满分15分)如图是一块密度为ρ(常数)的薄板的平面图形(在一个半径为R 的半圆直 径上拼上一个矩形.矩形的另一边为h ),已知平面图形的形心位于原点(0, 0). 试求:1. 长度 h ;2.薄板绕x 轴旋转的转动惯量.七、 (满分5分) 求证:当0,1≥≥s t 时.成立不等式 s e t t t ts +-≤ln .参考解答:一.1.⎩⎨⎧=--+=+-0522043z y x z y x ; 2. 21},0,,3{e e ;3. )3(2))(3(2222122222122212ϕϕϕϕϕϕ''+''⋅'+'+'⋅'⋅''+'''f f f ; 4.;32 5. ;03313,3,1,31=-++⎪⎭⎫⎝⎛z y x 6. 83.二.直线:t z t y t x -=-==1,1,曲面上点→),,(z y x P 直线上点00000001,1),,,(x z x y z y x -=-=22222020220)1()1(,,x x z y z y z y x x -+-=+⇒+=+=则旋转曲面方程:222)1(2x z y -=+三.⎰⎰10222d d xy ex y -⎰⎰⎰-==--212212220142)d 41(d d y y e x e y 2y yy2120202020221d d d d 212212212212212------=-+=+=⎰⎰⎰⎰e y e ey y e e y y e yy y y y四.,1)1,0(-=z ,032=∂∂++∂∂⋅x z xe e x z z y z z ex z y x 3110-=∂∂∴== ,02632222222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂⋅+∂∂⋅x z xe x z xe x z e x z z y x z z y z z z 2102294ex zy x =∂∂∴== 五.|1|21),,(-+=y x z y x d )14()()1(2222-++++++-+=z y x z y x y x L μλ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++='=±===++='==+='-==⇒≠=++-+='=⇒==++-+='014,01302,002)1(20,002)1(22223231221z y x L z y x z y x L x z L xz x y y y x L x y x L z y xμλμλμμλλμμλ,无解最小距离:2236),,(323131-=-d .最大距离:2236),,(323131+=--d六.形心:01,0=⇒==⎰⎰⎰⎰DDxdxdy xdxdyx y σ即0d cos d d d 220=⋅+⎰⎰⎰⎰---ππθθRhRRr r r y x xR h R h R 320312)21(232=⇒=⋅+-⋅ ⎰⎰=Dxdxdy y I 2302202)832(d θsin d d d 22R R h r r r y y x RhRR πθππ+=⋅+=⎰⎰⎰⎰--- 七.设0)0,1(,ln ),(=-+-=F ts e t t t s t F s.ln ,0),(t s e t t e s t F s s s ==⇒=-=' 且对固定的1>t . 当,0),(,ln 0<'<<s t F t s s 当,0),(,ln >'>s t F t ss所以.t s ln =取得最小值且为0.则 0),(≤s t F .即s e t tt ts +-≤ln1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________. 6 知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( c ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( b ).(A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值 8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( a).(A)123I I I >> (B)213I I I >> (C)123I I I << (D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( d ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+=10、设∑∞=12n na收敛.则∑∞=-1)1(n nna ( d ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 2、、)32,31(-. 4、1. 5、"6'0y y y -+=. 11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x =的函数为23,0x y y =>。
《微积分II 》练习题一、 填空题1.函数()y x z +=ln 1的定义域是_______________ 。
2.函数(,)f x y =,则定义域为 。
3. 。
4.设(,)(1)arcsin f x y xy y =+-(,1)x f x = _______ 。
5.设222lny x e z x +=,则=)1,1(dz 。
6.函数yx z =在(2,1)点处的全微分为_______________。
7.22()Dxyf x y dxdy +=⎰⎰。
(其中D :由曲线221y x y ==与所围成)。
8. 改变积分次序210(,)xx dx f x y dy ⎰⎰= _________ 。
9.微分方程'sin cos x y y x e -+=的通解是 。
10.微分方程0=+'y y 满足初始条件10==x y的特解 。
11.计算_________________sin 21231=⎰⎰-dy y dx x12.微分方程02'"=+-y y 的通解是 。
13.差分方程02312=+-++t t t y y y 的通解是 。
14.计算极限.______________________)sin(42lim 00=+-→→xy xy y x二、选择题),(,),( 22=-=-y x f y x yxy x f 则1.极限).(2lim22)0,0(),(=+→yx xyy x(A );0 (B );1 (C );2 (D )不存在。
2.二元函数z=f(x,y)在点),(00y x 处各偏导数存在是全微分存在的( ) (A )充分条件 (B )必要条件 (C )无关条件 (D )充要条件 3.设 f(x,y) 在点(a,b )处的偏导数存在,则=--+→xb x a f b x a f x ),(),(lim 0( )(A) 0 (B) ),2(b a f x ' (C) ),(b a f x ' (D) ),(2b a f x ' 4.若)y , (x f z =在点P (x ,y )处x z ∂∂,yz ∂∂都存在,则下列结论正确的是( )。
微积分II 期末模拟试卷1(满分:100分;测试时间:100分钟) 一、填空题(3X5=15)1、幂级数∑∞=-112n n n n x 的收敛区间为__________2、由曲线23x y -=及直线x y 2=所围成平面区域的面积是____________ 3、改变⎰⎰--21222x x xfdy dx 的积分次序_______________________4、微分方程02=-'+''y y y 的通解=y5、设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于____________ 二、选择题(3X5=15) 6、定积分()dx ex x x⎰-+22的值是( )。
(A ) 0 ; (B ) 2 ; (C ) 2e 2+2; (D ) 26e7、一曲线在其上任意一点),(y x 处的切线斜率等于yx2-,这曲线是( ) (A)直线; (B)抛物线; (C)圆; (D)椭圆 8、设函数()xy f xyz =,其中f 可微,则=∂∂+∂∂y z x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 9、设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点.()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点10、设级数10nn na∞==∑,且()11n n n n a a ∞-=-∑收敛,则级数1n n a ∞=∑( )(A )收敛 (B ) 发散 (C )不定 (D ) 与n a 有关 三、计算题(5X10=50)11、计算下列定积分 (1)⎰-2234dx x x ;(2)求抛物线342-+-=x x y 及其在)3,0(-和)0,3(处的切线所围成图形的面积。
微积分2习题答案⼀、填空题 1.2. 设P(x)是x 的多项式,且lim 凡门⼆6 '—= 2, lim — = 3 ,则P(x) = 0 X7Tlim (arcsin(vx 2+x ⼀ x))= .YT4-X 6A 3 + 2x 2 + 3x t3. lim 1 ⼀ — .V —4. x )设lim ⼀ "" ⼀ * + 4= A ,则有"=5. 6. 7. 8. 9. j X — 1 .? “ \ ? 2 sinx 设 / (A ) = xsm — d -----X X ? 3.1L +sin x-sin — lim ------------ ------ - = t 3*函数v = ⼀上]⼀的间断点是(x-l)(x + 2)为使函数/(x) = - ? tanx 在点x = 0处连续,应补充左义/(0)= x 3设函数y = ^-x )xK则 lim f (x)=X->X%⼯°在兀=0处连续,则参数K =x = 0 x + ae x +\⼆、单项选择题 1 ?设x n >Q,且lim x 存在,则 lim x HTX n->x @>0 ② no ③=0 2?极限 lim e 7^ = XT I ①8 ②1 10.函数f(x)= < x < 0 在点x = 0处连续,则“=x>0④<03. 4. ③不存在 lim(1 + x) x + lim xsiii —= -V — ②": Jx 3 4, -2③ €+1: ④』+ly =-——-——-的连续区间是_ (x + lXx + 2)①(-s,-2)u (- 2,-l)U (- 1,T ③(-oo,-2)U (-2,400) ②[3,T④ co ⼚i)u(_l,+oo)函数『⼆⼆2X-l .Y+1 ①2个②3个 6.下列函数中,?当XT0时,与⽆穷⼩量x 相⽐是髙阶⽆穷⼩咼的是. 价⽆穷⼩量的是 ______________ ① l-cosxx + X 25. ④4个以上④ sin 2x__ ■⽦有①,②=24.7. 8. 9. 当x->0-时,sin 仮与Ixl 相⽐是_ ①髙阶⽆穷⼩咼③同阶但不等价的⽆穷⼩量当XT O 时,l —cos2x 与/相⽐是①髙阶⽆穷⼩量③低阶⽆穷⼩量(sin 3x 设 f(x) = ] x x = 0 ②⼀3 ②低阶⽆穷⼩量④等价⽆穷⼩量②同阶但不等价的⽆穷⼩量④等价⽆穷⼩量为连续函数,则k = ①1 10?函数/(x)在点勺处有⽴义是f(x)当x ->⼼时极限存在的. ①充分但⾮必要条件③充分必要条件 11?当JVT 0时,① x + sinx12.当XT0时, ?x + sin — x 13?当XT 8时,①x + sin 丄 x ②必要但⾮充分条件④既⾮充分⼜⾮必要条件下列函数中⽐x 髙阶的⽆穷⼩量是 ________ ② x-siiix ③ ln(l + x)下列函数中为⽆穷⼩量的是 ________②x ?sin 丄③丄+ sinx X X 下列函数中为⽆穷⼩量的是 _____ _ ② x-sin — ③—+ sinxX X14. 15. 16. ②④ hi(l-x)②④—?sin x x ③④—-siiix x 设在某个极限过程中函数/(X )与g(x)均是⽆穷⼤量,则下列函数中哪⼀个也必是⽆穷⼤量___________ ③④爲设/(x (J = c lim f(x) = b t lim f(x) = c ,则函数/(x)在点⼈)处连续的充分必要 .v —>.rj XfY :① /(Q+g(x) ② /(x)-g(x) ③/(Q ?g ⑴②a = c v 2 -1 4------ C E X-l 0 ④a=b=c②跳跃间断点①连续点三、求下列极限 lim (Jx 2 +1 - x) = lim ________ ⼀⼀⼛? + 1lim (Jx 2 +1 - x) = +xlini (J+ 2x + 2 - J③可去间断点④⽆穷间断点1.2. 3. =lim ,( ?— = = lim ⼀ y/x 2+2x + 2 + J ,—2x + 2 —1 lim arctanx-arcsin — =0 x)L r (x + l)2 +(2x + l)2 +(3x + l)2 + …+ (10x + l)2 z 7、 5. lim -- ----------- ------------- ---------------------------- -- (=—) — (10x-l)(lLv-l) 2 n n 、tr +n [解]记⽿=G+t+…+⽃ ir +1 ir +2 n +ne .. n n n n n n 因为——+ —— + …+ —n +n ir +n n +n n ir即—< x /2 < 1,由于lim — = 1,所以由夹逼定理,得lim 兀=1 n +1〃―30n +1“a7?设辄⼚2叽求〃由于极限存在,故a = {3 — \°—=2006p = —, a : P 2006四、分析题1 .讨论极限lim " "[解]因为lim 1!巴丄1 = 1, Um ⼔巴⼝ = ⼀1,故原极限不存在。
大一高等数学微积分期末试卷 选择题(6×2)1~6 DDBDBD一、填空题 1 In 1x + ; 2 322y x x =-; 3 2log ,(0,1),1xy R x =-; 4(0,0)5解:原式=11(1)()1mlim lim 2(1)(3)3477,6x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、判断题1、 无穷多个无穷小的和是无穷小( )2、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )3、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT三、计算题1用洛必达法则求极限2120lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞-2 若34()(10),''(0)f x x f =+求解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 3 240lim(cos )x x x →求极限4 (3y x =-求5 3tan xdx ⎰6arctan x xdx ⎰求四、证明题。
1、 证明方程310x x +-=有且仅有一正实根。
证明:设3()1f x x x =+-2、arcsin arccos 1x 12x x π+=-≤≤证明() 五、应用题1、 描绘下列函数的图形3.4.补充点7179(2,).(,).(1,2).(2,)2222---50lim (),()0x f x f x x →=∞∴=有铅直渐近线 6如图所示:2.讨论函数22()f x x Inx =-的单调区间并求极值 由上表可知f(x)的单调递减区间为(,1)(0,1)-∞-和单调递增区间为(1,0)1-+∞和(,)且f(x)的极小值为f(-1)=f(1)=1。
1、2、3、A.必要分条件; B•充分条件; C•充分必要条件; D•无关条件。
设/(兀y)=戶(无+ 2y +尸),A•在(1-1)取极大值;C.在(一1)取极大值;幕级数工罕的收敛区间是(n=\3A. (—3,3);则其B.D.在(1-1)取极小值;在(丄1)取极小值。
B.3 3C.(-巧,希);D.A. /(x) = 0 ;B. f (x) = e x;C. /(x) =ce xD. /(无)="+C oA.(X + c)COSB. xcosx + cC. xcos(x + c):D. xcosx o微积分II期末复习题(6)答案一、填空题(将答案直接填在横线上,每小题3分,共5小题)1、过z轴,且过点(-3,1-2)的平面方程是x + 3y = 0。
2、设z = e2x In4- y2 ,则dz(〔门=(— + 21n2)/力+ —。
2 23 交换积分次加畑 y)dy = £ dy^L f(x, y)dx+[ dyj爲,f{x, y)dx。
OO4、一//=1 J25、微分方程(x2 + y2)dx-xydy = 0的通解是丄〒=In兀+ c。
2x二、选择题(每小题3分,共5小题)函数z = f(x.y)在点(兀y)处可微是其在该点偏导存在的(B )4、已知/(劝是连续函数,且/(%)= £,则/(兀)为:(5、方程—+ ytanx = cosx的通解是(dxdz代xzj 兀 2 + y2 + z2 +ydy 一 F (10-1).0,-0yx^2 + / + z 2+z 所以叽)dy = dx- 41dy(10-1)解:计算积分的值,其中D 是由xy n yZy = \^x\x = 2所围成的区域。
血『沪T 叫叫TJ+i 2 -f (1 一 777 - +血=~i+arctan W8.■ ^-^ + arctan28 4三、求解下列各题(每小题5分,共8小题)1、求由xyz + Jx 2 + / + z 2 =42所确定的隐函数z = z(x,y)在(1,0,-1)出的全微 分。
微积分II真题含答案微积分II真题含答案一、填空题(每题3分,共30分)1、函数的定义域是____________.2、设,则________________.3、广义积分的敛散性为_____________.4、____________.5、若.6、微分方程的通解是____.7、级数的敛散性为.8、已知边际收益R/(某)=3某2+1000,R(0)=0,则总收益函数R(某)=____________.9、交换的积分次序=.10、微分方程的阶数为_____阶.二、单选题(每题3分,共15分)1、下列级数收敛的是()A,B,C,D,2、,微分方程的通解为()A,B,C,D,3、设D为:,二重积分=()A,B,C,D,04、若A,B,C,D,5、=()A,0B,1C,2D,三、计算下列各题(本题共4小题,每小题8分,共32分)1.已知2.求,其中D是由,某=1和某轴围成的区域。
3.已知z=f(某,y)由方程确定,求4.判定级数的敛散性.四、应用题(本题共2小题,每小题9分,共18分): 1.求由和某轴围成的图形的面积及该图形绕某轴旋转所得旋转体的体积。
2.已知某表示劳动力,y表示资本,某生产商的生产函数为,劳动力的单位成本为200元,,每单位资本的成本为400元,总预算为100000元,问生产商应如何确定某和y,使产量达到最大?。
五、证明题(5分)一、填空题(每小题3分,共30分)1,2,3,发散4,05,6,y=c某7,收敛8,R(某)=某3+1000某9,10,2二、单选题(每小题3分,共15分)1,B2,B3,C4,C5,D三、计算题(每小题8分,共32分)1、解:令2、3、整理方程得:4、先用比值判别法判别的敛散性,(2分)收敛,所以绝对收敛。
(交错法不行就用比较法)(8分)四、应用题(每小题9分,共18分)1、解:2、解:约束条件为200某+400y-100000=0(2分)构造拉格朗日函数,(4分),求一阶偏导数,(6分)得唯一解为:,(8分)根据实际意义,唯一的驻点就是最大值点,该厂获得最大产量时的某为40,y为230.(9分)五、证明题(5分)证明:设对等式两边积分,得:(2分)(4分)解得:题设结论得证。