(高二数学空间直角坐标系教学教材
- 格式:doc
- 大小:214.50 KB
- 文档页数:3
4.3.1 空间直角坐标系(1)教材分析:解析几何是用代数方法研究解决几何问题的一门数学学科,空间直角坐标系的建立是为以后的《空间向量及其运算》打基础的.同时,在第二章《空间中点、直线、平面的位置关系》第一节《异面直线》学习时,有些求异面直线所成角的大小,借助于空间向量来解答,要容易得多,所以,本节课为沟通高中各部分内容知识,完善学生的认知结构起到很重要的作用.教学要求:使学生能通过用类比的数学思想方法得出空间直角坐标系的定义、建立方法、以及空间的点的坐标确定方法.教学重点:在空间直角坐标系中,确定点的坐标教学难点:通过建立适当的直角坐标系,确定空间点的坐标教学过程:一.提出问题:问题1.在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示? 问题2.在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些?平面直角坐标系上的点怎样表示?如何借助平面直角坐标系表示学生的座位?能用直角坐标系表示教室里灯泡的位置吗?问题3.在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?(板书课题)二、讲授新课:1.空间直角坐标系:如图4.3-1(课本), ,,,,OBCD D A B C -是单位正方体.以O 为原点,分别以射线OA,OC,O 'D 的方向为正方向,以线段OA,OC,O 'D 的长为单位长,建立三条数轴:x 轴,y 轴,z 轴.这时我们说建立了一个空间直角坐标系Oxyz.其中点O叫做坐标原点,x 轴,y 轴,z 轴叫做坐标轴. 通过每两个坐标轴的平面叫做坐标面,分别称为xOy平面、yOz平面、zOx平面.将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成135°,而z 轴垂直于y 轴,,y 轴和z 轴的长度单位相同,x 轴上的单位长度为y 轴(或z 轴)的长度的一半,这样三条轴上的单位长度在直观上大体相等.2. 右手直角坐标系:在空间直角坐标系中,让右手大拇指、食指和中指相互垂直时,大拇指指向x 轴正方向,食指指向y 轴正方向,中指指向z 轴正方向,则称这个坐标系为右手坐标系,如无特别说明,以后建立的坐标系都是右手坐标系.3.空间直角坐标系中的点与有序数组之间的关系:1)已知M 为空间一点,过点M 作三个平面分别垂直于x 轴、y 轴和z 轴,它们与x 轴、y 轴和z 轴的交点分别为P 、Q 、R ,这三点在x 轴、y 轴和z 轴上的坐标分别为x ,y ,z .这样空间的一点M 就唯一确定了一个有序数组x ,y ,z .这组数x ,y ,z 就叫做点M 的坐标,并依次称x ,y ,z 为点M 的横坐标、纵坐标和竖坐标.坐标为x ,y ,z 的点M 通常记为M (x ,y ,z ).2)反过来,一个有序数组x ,y ,z ,我们在x 轴上取坐标为x 的点P 在y 轴上取坐标为y 的点Q ,在z 轴上取坐标为z 的点R ,然后通过P 、Q 、R 分别作x 轴,y 轴,z 轴的垂直平面.这三个平面的交点M 即为有序数组x ,y ,z 为坐标的点.数x ,y ,z 就叫做点M 的坐标,并依次称x ,y ,z 为点M 的横坐标、纵坐标和竖坐标.3)坐标为x ,y ,z 的点M 通常记为M (x ,y ,z ).我们通过这样的方法在空间直角坐标系内建立了空间的点M 和有序数组x ,y ,z 之间的一一对应关系4.例题1(课本例1):在长方体,,,,OBCD D A B C -中,,3,4, 2.OA oC OD ===写出,,,,,,D C A B 四点坐标.(建立空间直角坐标系→写出原点坐标→各点坐标)讨论: 若以C 点为原点,以射线BC 、CO 、C 'C 方向分别为ox 、oy 、oz 轴的正半轴,建立空间直角坐标系,那么,各顶点的坐标又是怎样的呢?(得出结论:不同的坐标系的建立方法,所得的同一点的坐标也不同.)问题4。
1.3.1 空间直角坐标系一、教学目标1、了解掌握空间直角坐标系;2、通过类比的方式快速掌握空间直角坐标系及其应用.二、教学重点、难点重点:空间直角坐标系的理解与掌握. 难点:空间直角坐标系的熟练应用.三、学法与教学用具1、学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标.2、教学用具:多媒体设备等四、教学过程(一)创设情景,揭示课题平面向量与平面直角坐标系的关系OA xi y j =+向量a 的坐标表示为(,)a x y =已知1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--布置学生阅读课本1617P P -,思考空间向量与平面向量的类比关系,观察两种向量的关联与区别.(二)阅读精要,研讨新知【类比转化】通过空间向量与平面向量的类比,快速掌握空间向量在空间直角坐标系中空间向量与空间直角坐标系空间直角坐标系Oxyz ,其中{,,}i j k 为单位正交基底,O 为原点,坐标轴为x 轴、y 轴、z 轴,坐 标平面为Oxy 平面,Oyz 平面,Ozx 平面,且把空间分成八个部分.本书建立的皆为右手直角坐标系.OA xi y j zk =++点(,,)A x y z 中的x 叫做横坐标,y 叫做纵坐标,z 叫做竖坐标.a xi y j zk =++向量a 的坐标表示为(,,)a x y z =【例题研讨】阅读领悟课本18例1(用时约为1分钟,教师作出准确的评析.) 例1如图 1.3-6, 在长方体OABC D A B C ''''-中,3,4,2OA OC OD '=== 以111{,,}342i j k 为单位正交基底,建立如图所示的空间直角坐标系Oxyz . (1)写出,,,D C A B '''四点的坐标;(2)写出向量,,,A B B B A C AC ''''''的坐标.解:(1)因为002OD i j k '=++,所以(0,0,2)D ', 因为040OC i j k =++,所以(0,4,0)C ,点A '在x 轴,y 轴,z 轴上的射影分别为,,A O D ' 且在坐标轴上的坐标分别为3,0,2 所以(3,0,2)A '点B '在x 轴,y 轴,z 轴上的射影分别为,,A C D ' 且在坐标轴上的坐标分别为3,4,2 所以(3,4,2)B '.(2)040(0,4,0)A B OC i j k ''==++=,002(0,0,2)B B OD i j k '=-=+-=-340(3,4,0)A C A D D C i j k ''''''=+=-++=-342(3,4,2)AC AO OC CC i j k ''=++=-++=-. 【小组互动】完成课本18P 练习1、2、3、4,同桌交换检查,老师答疑.【练习答案】(三)探索与发现、思考与感悟1.在空间直角坐标系中,点(2,1,4)P -关于点()2,1,4M --的对称点的坐标是( ) A .(0,0,0) B .214()--,, C .6312()--,, D .2312()-,, 解:设所求对称点为,(),P x y z ',则点M 为线段PP '的中点, 类比直角坐标系中的中点坐标公式可得222112442x yz-+⎧=⎪⎪+⎪=-⎨⎪+⎪=-⎪⎩,解得6,3,12x y z ==-=-,故选C2.已知棱长为3的正四面体A BCD -,O 为A 在底面BCD 上的射影,建立如图所示的空间直角坐标系,点B 的坐标是_________.解:由已知BCD ∆为边长为3的正三角形,则BC 33所以01333233360332B B y x =-==-=-, 所以点B 的坐标为33(0)2-,. 答案:33(0)2--, 3.(多选)在空间直角坐标系中,已知点(,,)P x y z ,那么下列说法正确的是( ) A .点P 关于x 轴对称的点的坐标是1(,,)P x y z -;B .点P 关于yOz 平面对称的点的坐标是2,(,)P x y z --;C .点P 关于xOy 平面对称点的坐标是3(,,)P x y z -;D .点P 关于原点对称点的坐标是4(,,)P x y z ---.解:对于A ,(,,)P x y z 关于x 轴对称的点的坐标是()1,,P x y z --,故A 错误; 对于B ,(,,)P x y z 关于yOz 平面对称的点的坐标是()2,,P x y z -,故B 错误; 对于C ,(,,)P x y z 关于xOy 平面对称的点的坐标是()3,,P x y z -,故C 正确; 对于D ,(,,)P x y z 关于原点对称点的坐标是()4,,P x y z ---,故D 正确. 故选CD(四)归纳小结,回顾重点空间向量与空间直角坐标系空间直角坐标系Oxyz,其中{,,}i j k 为单位正交基底,O 为原点,坐标轴为x 轴、y 轴、z 轴,坐 标平面为Oxy 平面,Oyz 平面,Ozx 平面,且把空间分成八个部分.本书建立的皆为右手直角坐标系.OA xi y j zk =++点(,,)A x y z 中的x 叫做横坐标,y 叫做纵坐标,z 叫做竖坐标.a xi y j zk =++向量a 的坐标表示为(,,)a x y z =(五)作业布置,精炼双基1.完成课本22P 习题1.3 1、2、32.预习1.4 空间向量的应用五、教学反思:(课后补充,教学相长)。
【课题】4.3.1空间直角坐标系【教材】人教A版普通高中数学必修二第134页至136页.【课时安排】1个课时.【教学对象】高二〔上〕学生.【授课教师】***一.教材分析:本节内容主要引入空间直角坐标系的根本概念,是在学生已学过的二维平面直角坐标系的根底上进展推广,为以后学习用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题、研究空间几何对象等内容打下良好的根底。
空间直角坐标系的知识是空间解析几何的根底,与平面解析几何的内容共同表达了"用代数方法解决几何问题〞的解析几何思想;通过空间直角坐标系内任一点与有序数组的对应关系,实现了形向数的转化,将数与形严密结合,提供一个度量几何对象的方法。
其对于沟通高中各局部知识,完善学生的认知构造,起到了很重要的作用。
二.教学目标:✧知识与技能(1)能说出空间直角坐标系的构成与特征;(2)掌握空间点的坐标确实定方法和过程;(3)能初步建立空间直角坐标系。
✧过程与方法(1)结合具体问题引入,诱导学生自主探究;. z.(2)类比学习,循序渐进。
情感态度价值观(1)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,进而拓展自己的思维空间。
(2)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系,并加深领会研究事物从低维到高维的方法与过程。
(3)通过对空间坐标系的接触学习,进一步培养学生的空间想象能力。
三.教学重点与难点:教学重点:空间直角坐标系相关概念的理解;空间中点的坐标表示。
教学难点:右手直角坐标系的理解,空间中点与坐标的一一对应。
四.教学方法:启发式教学、引导探究五.教学根本流程:↓. z.六.教学情境设计:. z.〔二〕引导探究,动手实践约6分钟思考:借助于平面直角坐标系,我们就可以用坐标来表示平面上任意一点的位置,则能不能仿照直角坐标系的方式来表示空间上任意一点的位置呢?不妨动手试一试……思路点拨:通过在地面上建立直角坐标系*Oy,则地面上任一点的位置可以用一对有序实数对〔*,y〕确定。
高二数学教案空间直角坐标系一、教材分析:本节课为高中一年级第二章第三节第一课时的内容。
是在学生已经学过的二维的平面直角坐标系的基础上的推广。
空间直角坐标系是工具,用来解决立体几何中一些用常规方法难以解决的问题。
并且为机械电子专业的学习打下基础,也为学生将来的后续学习作好准备。
1、知识目标:(1)、使学生能通过用比较的数学思想方法得出空间直角坐标系的定义、建立方法、以及空间的点的坐标确定方法。
(2)、从求空间点的坐标的过程进一步培养学生的空间思维的能力2、能力目标:培养学生的探究性思维能力。
3、教学重点和难点:(1)、教学重点:在空间直角坐标系中,确定点的坐标。
(2)、教学难点:通过建立适当的直角坐标系,确定空间点的坐标。
相关应用。
二、学生分析:学生已经对立体几何以及平面直角坐标系的相关知识有了较为全面的认识,学习《空间直角坐标系》有了一定的基础。
这对于本节内容的学习是很有帮助的`。
部分同学仍然会在空间思维与数形结合方面存在困惑。
三、教法分析:(1)本节课的内容是非常抽象的,试图通过教师的讲解而让学生听懂、记住、会用是徒劳的,必须突出学生的主体地位,通过学生的自主学习与和同学的合作探究,让学生亲手实践,这样学生才能获得感性认识,从而为后续的学习并上升到理性认识奠定基础(2)采用启发式教学方法,通过激发学生学习的求知欲望,使学生主动参与教学实践活动。
(3)创设学习情境,营造氛围,精心设计问题,让学生在整个学习过程中经常有自我展示的机会,并有经常性的成功体验,增强学生的学习信心,四、学法分析:从学生已有的知识和生活经验出发,让学生经历知识的形成过程。
通过阅读教材,并结合空间坐标系模型,模仿例题,解决实际问题。
五、教学过程:(一)、引入新课:1、回顾旧知识:平面直角坐标系的建立方法,点的坐标的确定过程、表示方法,平面内的点与坐标之间的一一对应关系,2、提出问题,引入新课。
(二)、新授:1、空间直角坐标系的建立。
湘教版高中高二数学必修三《空间直角坐标系》教案及教学反思教学目标1.知道什么是空间直角坐标系,掌握空间直角坐标系的表示方法。
2.熟练掌握求两点间距离和中点坐标的方法。
3.掌握用空间直角坐标系表示直线和平面的方法。
4.能够利用空间直角坐标系求直线间的夹角和平面间的角度。
5.了解和掌握空间直角坐标系的几何意义。
教学过程第一节:空间直角坐标系教学目标•知道什么是空间直角坐标系,掌握空间直角坐标系的表示方法。
教学重点•熟练掌握空间直角坐标系的表示方法。
教学难点•空间直角坐标系的几何意义。
教学方法•讲授、举例。
教学时间•1个课时(45分钟)。
1.引入“空间直角坐标系”。
2.讲解空间直角坐标系的三条坐标轴和表示方法。
3.利用例题巩固学生对空间直角坐标系的掌握。
第二节:点和距离教学目标•熟练掌握求两点间距离和中点坐标的方法。
教学重点•熟练掌握求两点间距离和中点坐标的方法。
教学难点•互相垂直的两条直线间的距离的计算。
教学方法•讲授、举例。
教学时间•1个课时(45分钟)。
教学步骤1.引入“点和距离”。
2.讲解“两点间距离”的计算方法和“中点坐标”的求解方法。
3.利用例题巩固学生对点和距离的掌握。
第三节:直线和平面教学目标•掌握用空间直角坐标系表示直线和平面的方法。
教学重点•掌握用空间直角坐标系表示直线和平面的方法。
•立体图形在平面上的投影。
教学方法•讲授、演示。
教学时间•1个课时(45分钟)。
教学步骤1.引入“直线和平面”。
2.讲解用空间直角坐标系表示直线的方法和平面的表示方法。
3.利用立体图形在平面上的投影说明用空间直角坐标系表示直线和平面的方法。
第四节:角度教学目标•能够利用空间直角坐标系求直线间的夹角和平面间的角度。
教学重点•能够利用空间直角坐标系求直线间的夹角和平面间的角度。
教学难点•平面角和空间角的概念和计算。
教学方法•讲授、例题。
教学时间•1个课时(45分钟)。
1.引入“角度”。
2.讲解直线间的夹角的计算方法和平面间的角度的求解方法。