空间向量之建立空间直角坐标系的方法及技巧
- 格式:docx
- 大小:135.59 KB
- 文档页数:5
建立空间直角坐标系的方法及技巧1.确定坐标轴方向:首先需要确定空间直角坐标系的坐标轴方向,通常选择三个相互垂直的轴,分别称为x轴、y轴和z轴。
可以选择其中一个轴为参考轴,然后使用右手定则来确定其他两个轴的方向。
在右手定则中,将右手的拇指、食指和中指分别与x、y和z轴对齐,那么食指和中指所形成的平面就是坐标系的平面,拇指的方向就是z轴的方向。
2.确定原点位置:确定好坐标轴方向后,需要确定坐标系的原点位置。
原点通常可以选择在三维空间中的一些特殊点上,例如物体的质心、交点或者其他方便计算的点。
原点的选择应根据具体问题和需求进行确定。
3.确定单位长度:建立坐标系后,需要确定单位长度,也就是每个坐标轴上的单位距离。
单位长度的选择应根据具体问题和需求进行确定,可以根据物体的大小和所需精度进行估计。
常用的单位长度包括米、厘米、毫米等。
4.标示坐标轴刻度:在建立坐标系后,需要在每个坐标轴上标示刻度,以便表示点的位置。
可以根据需求和所测量的物体大小来确定每个刻度的长度和数量。
通常可以使用尺子、直尺等工具来测量和标示刻度。
在标示刻度时,可以选择以原点为起点,沿着每个坐标轴正方向逐个标示刻度,或者以坐标轴的负方向为起点标示刻度。
5.标示点的坐标:建立好坐标轴和刻度后,就可以根据需要来标示空间中的点的坐标。
对于一个三维空间中的点,可以通过它到坐标轴的距离来确定它的坐标值。
通常可以使用直角坐标系中的(x,y,z)来表示一个点的坐标,其中x、y和z分别是点在x轴、y轴和z轴上的坐标值。
1.灵活选择参考轴:参考轴的选择应根据具体问题和需求进行确定。
在确定参考轴时,可以考虑使问题的描述尽量简洁和直观,同时方便计算和分析。
2.注意坐标轴的方向:在确定坐标轴的方向时,使用右手定则可以帮助确定其他两个轴的方向。
要确保坐标轴的方向满足右手定则中拇指、食指和中指的排列次序。
3.注意单位长度的选择:单位长度的选择应根据具体问题和需求进行确定。
建立空间直角坐标系的几种方法1.给定坐标轴方向及原点位置:最直接的方法是给定三个坐标轴的方向及原点位置。
通常,我们选择三个相互垂直的轴,并确定它们的正方向。
例如,我们可以选择X轴向右,Y轴向上,Z轴垂直于XOY平面向外,然后选择原点为坐标轴的交点。
通过这种方法,我们就可以建立一个三维直角坐标系。
2.使用原点和两个已知点:在给定两个已知点和原点的情况下,我们可以建立一个空间直角坐标系。
首先,我们将其中一个已知点作为坐标轴上的一个点,然后确定一个与此轴垂直的第二个轴。
接下来,我们确定第三个轴的方向,使其与前两个轴正交,并选择原点位置。
通过这种方法,我们可以构建一个三维直角坐标系。
3.使用平面和轴的交点:另一种建立空间直角坐标系的方法是确定两个平面及其在坐标轴上的交点。
首先,我们选择平面XY作为参考平面,并将其与X轴和Y轴在原点处的交点作为坐标轴上的两个点。
然后,选择两个非共线的轴分别与平面XZ和平面YZ正交,并确定它们的正方向。
通过这种方法,我们可以建立一个三维直角坐标系。
4.使用向量运算:通过向量运算的方法可以建立空间直角坐标系。
首先,选择一个已知向量为其中一个坐标轴的向量。
然后,选择另一个与已知向量相互垂直的向量,并进行正规化。
接下来,使用向量叉积运算确定第三个轴的方向,并对其进行正规化。
最后,选择原点位置。
通过这种方法,我们可以建立一个三维直角坐标系。
这些方法都是建立空间直角坐标系的常见方法,可以根据具体情况选择合适的方法进行建立。
空间向量之建立空间直角坐标系的方法及技巧、禾U用共顶点的互相垂直的三条棱构建直角坐标系例1已知直四棱柱ABC D A i B i CD中,AA= 2,底面ABCD是直角梯形,/ A为直角,AB//CD AB= 4, AD= 2,DC= 1,求异面直线BC与DC所成角的余弦值.解析:如图1, 以D为坐标原点,分别以DA DC DD所在直线为x、y、z轴建立空间直角1 , 2)、B(2, 4, 0), •- BC =(-2,3,2) , CD=(0, -1,0).坐标系,则C (0,设BC i与CD所成的角为vCD 3 '1717二、利用线面垂直关系构建直角坐标系例2 如图2,在三棱柱ABC- ABC中,AB丄侧面BBCQ, E为棱CC上异于C C的一点,EAL EB.已知AB = J2 , BB = 2, BC= 1, / BCC=上.求二面角A- EB—A的平面角的正切值.3解析:如图2,以B为原点,分别以BB、BA所在直线为y轴、z轴,过B点垂直于平面AB 的直线为x轴建立空间直角坐标系.由于BC= 1, BB= 2, AB= -/2,/ BCG=—,3•••在三棱柱ABC- ABC 中,有(0, 0, 0)、(0, 0,C1 第3 /—,—,0 .I2 2丿輛〕〔3设E — , a, 0 且一丄<a<3,I2丿22由EAL EB,得EAEB =0,CDBA 丄EB ,故二面角 A- EB —A i 的平面角日的大小为向量 BA 与 EA 的夹角.訳=BA = (0,0八 2) , EA 二三、利用面面垂直关系构建直角坐标系例3 如图3,在四棱锥 V — ABCD 中,底面ABCD 是正方形,侧面 VAD 是正三角形,平面 VAD 丄底面ABCDAB 丄 VA又ABL AD 从而AB 与平面VAD 内两条相交直线 VA AD 都垂直,二 (2)设E 为DV 的中点,则J-1显1 I 22丿 即「2,一皿] X ,2—aJ< 2 丿+a (a —2)=a 2—2a+3=0,「. 'a —丄 |4 I 2丿3 4 即-2或a =| (舍去).故E 佇,,0 . ■ 3i3 去(3,0,_Q,时,2, -纠 辽 2丿 I 2 2丿,DV =(1,0, 3). 由已知有EA _ EB i , 故 COS V =灵晁^,即ta —子EA'B 1A 1(1)证明 AE 丄平面VAD(2)求面 VAD 与面VDB^成的二面角的余弦值.解析:(1) 取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.设 AD= 2,则 A (1,0,0)、D (— 1,0,0)、B ( 1,2,0)、V (0,0,爲),二 AB =(0, 2, 0) , VA =( 1,0, — V 3 ).由 ABVA = (0,2,0壯1,0, - . 3) = 0,得AB 丄平面VAD故所求二面角的余弦值为 —217四、禾U 用正棱锥的中心与高所在直线构建直角坐标系已知正四棱锥 V-ABCD 中, E 为VC 中点,正四棱锥底面边长为 2a ,高为h .即 cos Z DEB =「6a 2 h :; 10a 1 2 +h 2(2)因为E 是VC 的中点,又BE! VCc 2 , 23 2 a h a 0 ,• h -、2a . 2 2 21 1,即 cos Z DEB 二-一• EB[DV 」i,o,J 3)=o ,••• E 吐 DV又 EAL DV 因此/ AEB 是所求二面角的平面角.(1) 求/ DEB 的余弦值;(2) 若BE! VC 求/ DEB 的余弦值.解析: (1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系, 其中O x / BC O y // AB,则由 AB^ 2a , OV= h ,有 B (a ,a , 0)、C (- a , a ,0)、D( - a , -a,0)、V (0, 0, h)、*222'丿•晁…3a ,I 2a h 2 2) 丨h a,_ •- cos :. BE ,DEBE DE 2 2 ? 10a h =o ,即 _3a,-a h I 22,2 心,a ,-h )“ , 这时 cos ;: BE ,DE -6a 2 h 2 10a 2 h 2E 八EB .'21 …cosEB _ 7图4所以五、利用图形中的对称关系建立坐标系图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等) 自身对称性可建立空间直角坐标系.例5已知两个正四棱锥 P — ABCDfQ-ABCD 勺高都为 2, AB= 4.(1) 证明:PQL 平面ABCD(2) 求异面直线 AQ 与 PB 所成的角;(3) 求点P 到平面QAD 勺距离.(2)由题设知,ABCDI 正方形,且ACL BD 由( 1),PQL 平面ABCD 故可分别以直线 CA, DB , QP 点评:禾U 用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得 出•第(3)问也可用“等体积法”求距离. 3 3 ,利用 为x , y , z 轴建立空间直角坐标系(如图 1),易得 A5 =(—2J2Q ,- 2),PB =(0,2、2- 2), cos :: AQ ,PB =AQ PB1 arccos —. 3(3)由(2)知,点 D(0,— 2矩0) AD =(—2逅,—2J2,0)PQ所求异面直线所成的角是 = (0,0, 4).设n = (x , y , z )是平面QAD 的一个法向量,则 0[nLAD = 0,得、,2x • z = 0,取 1,得 x y =0, n = (1, -1, - .2) •点P 到平面QAD 勺距离d -PQL nn| =2】2 .。
一、空间一、空间直角直角坐标系的建立的常见方法坐标系的建立的常见方法运用“坐标法”解答空间运用“坐标法”解答空间几何体几何体问题时,往往需要建立空间直角坐标系.依据空间几何体的结构特征,充分利用图形中的垂直关系或构造垂直关系建立空间直角坐标系,是解决问题的基础和关键.一、利用共一、利用共顶点顶点的互相垂直的三条棱建系的互相垂直的三条棱建系 例1、在正方体ABCD -A ′B ′C ′D ′中,′中,点M 是棱AA ′的′的中点中点, 点O 是对角线BD ′的中点′的中点. .(Ⅰ)求证:OM 为异面直线AA ′和BD ′的公′的公垂线垂线; (Ⅱ)求二面角M -BC ′-B ′的大小;例2、如图,在直、如图,在直三棱柱三棱柱111ABC A B C -中,中, AB =1,13AC AA ==,∠ABC=600. (Ⅰ)证明:1AB A C ^;(Ⅱ)求二面角A —1A C —B 的大小。
二、利用线面垂直关系建系二、利用线面垂直关系建系例3、已知三棱锥P -ABC 中,PA ⊥面ABC ,AB ⊥AC , PA=AC=12AB ,N 为AB 上一点,AB=4AN, M,S 分别为PB,BC 的中点. (Ⅰ)证明:CM ⊥SN ;(Ⅱ)求SN 与平面CMN 所成角的大小. ·D ¢A BCDM OA ¢B ¢C ¢·C B A C 1B 1A 1.已知2AB =,BB 1=2,BC =1,∠BCC1ACBPz xy例4、如图,、如图,正方形正方形ABCD 和四边形ACEF 所在的所在的 平面互相平面互相垂直垂直,C E ⊥AC,EF AC,EF∥∥AC,AB=2,CE=EF=1. (Ⅰ)求证:AF ∥平面BDE ; (Ⅱ)求证:CF ⊥平面BDE ; (Ⅲ)求(Ⅲ)求二面角二面角A-BE-D 的大小。
的大小。
例5、如图,在三、如图,在三棱锥棱锥P ABC -中,2AC BC ==,90ACB Ð=,AP BP AB ==,PC AC ^.(Ⅰ)求证:PC AB ^;(Ⅱ)求二面角B AP C --的大小;的大小; (Ⅲ)求点C 到平面APB 的距离.的距离.例6、 如图2,在,在三棱柱三棱柱ABC -A 1B 1C 1中,中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,的一点, EA ⊥EB 1=3p.求二面角A -EB 1-A 1的平面角的的平面角的正切正切值.值.BC=22,SA SA==SBDBCASOyxz三、利用面面三、利用面面垂直垂直关系建系关系建系例7、如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,是正方形, 侧面VAD 是正三角形,是正三角形,平面平面VAD ⊥底面ABCD . (1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的所成的二面角的余弦余弦值.值.例8、在直、在直三棱柱三棱柱111ABC A B C -中,中, AB =BC ,D 、E 分别为11BB AC ,的中点. (1)证明:ED 为异面直线1BB 与1AC 的公的公垂线垂线; (2)设12AA AC AB ==,求二面角11A AD C --的大小.的大小.例9、四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC SBC⊥底面⊥底面ABCD ABCD。
建立空间直角坐标系的几种方法方法一:直角坐标系基于物体的参考点和参考线。
首先,选择一个点作为原点,然后选择一个方向作为x轴的正方向,并将参考直线从原点开始延伸。
然后,选择与x轴垂直的方向作为y轴的正方向,并延伸直线。
最后,选择与xy平面垂直的方向作为z轴的正方向,并延伸直线。
这样,就完成了一个空间直角坐标系的建立。
方法二:直角坐标系基于坐标系的旋转和平移。
在二维平面中,我们可以通过将一个坐标系进行旋转和平移来建立另一个坐标系。
同样,在三维空间中,我们可以通过对一个已有的坐标系进行旋转和平移来建立一个新的坐标系。
通过旋转和平移的组合,我们可以得到一个新的坐标系,其中的坐标轴可以与原坐标系的坐标轴成直角。
方法三:直角坐标系基于物体的方向和参考面。
在航空航天等领域,直角坐标系通常是根据物体的方向和参考面来建立的。
例如,在航空航天器中,航天员在太空中的朝向通常是以地球为参考面建立的直角坐标系。
方法四:直角坐标系可以通过测量和计算得到。
在地理测量和地质勘探等领域,可以通过测量物体的位置和方向来确定一个直角坐标系。
测量可以通过使用全站仪或其他测量设备进行精确的三维测量来完成。
方法五:直角坐标系可以基于地图坐标系建立。
在地理信息系统(GIS)中,地图坐标系是一种基于平面坐标系的直角坐标系。
通过将地图上的点与已知的地理坐标进行对应,并利用平面坐标系的投影方法,可以建立地图坐标系。
以上是建立空间直角坐标系的几种常见方法。
这些方法在各种领域中得到广泛应用,可以帮助我们更好地理解和描述物体在空间中的位置和方向。
1 空间直角坐标系构建三策略利用空间向量的方法解决立体几何问题,关键是依托图形建立空间直角坐标系,将其它向量用坐标表示,通过向量运算,判定或证明空间元素的位置关系,以及空间角、空间距离问题的探求.所以如何建立空间直角坐标系显得非常重要,下面简述空间建系的三种方法,希望同学们面对空间几何问题能做到有的放矢,化解自如.1.利用共顶点的互相垂直的三条棱例1 已知直四棱柱中,AA 1=2,底面ABCD 是直角梯形,∠DAB 为直角,AB ∥CD ,AB =4,AD =2,DC =1,试求异面直线BC 1与DC 所成角的余弦值.解 如图以D 为坐标原点,分别以DA ,DC ,DD 1所在的直线为x 轴,y轴,z 轴,建立空间直角坐标系,则D (0,0,0),C 1(0,1,2),B (2,4,0),C (0,1,0),所以BC 1→=(-2,-3,2),CD →=(0,-1,0).所以cos 〈BC 1→,CD →〉=BC 1→·CD →|BC 1→||CD →|=31717. 故异面直线BC 1与DC 所成角的余弦值为31717. 点评 本例以直四棱柱为背景,求异面直线所成角.求解关键是从直四棱柱图形中的共点的三条棱互相垂直关系处着眼,建立空间直角坐标系,写出有关点的坐标和相关向量的坐标,再求两异面直线的方向向量的夹角即可.2.利用线面垂直关系例2 如图,在三棱柱ABC -A 1B 1C 1中,AB ⊥面BB 1C 1C ,E 为棱C 1C 的中点,已知AB =2,BB 1=2,BC =1,∠BCC 1=π3.试建立合适的空间直角坐标系,求出图中所有点的坐标.解 过B 点作BP 垂直BB 1交C 1C 于P 点,因为AB ⊥面BB 1C 1C ,所以BP ⊥面ABB 1A 1,以B 为原点,分别以BP ,BB 1,BA 所在的直线为x ,y ,z 轴,建立空间直角坐标系.因为AB =2,BB 1=2,BC =1,∠BCC 1=π3, 所以CP =12,C 1P =32,BP =32,则各点坐标分别为B (0,0,0),A (0,0,2),B 1(0,2,0),C (32,-12,0),C 1(32,32,0),E (32,12,0),A 1(0,2,2).点评 空间直角坐标系的建立,要尽量地使尽可能多的点落在坐标轴上,这样建成的坐标系,既能迅速写出各点的坐标,又由于坐标轴上的点的坐标含有0,也为后续的运算带来了方便.本题已知条件中的垂直关系“AB ⊥面BB 1C 1C ”,可作为建系的突破口.3.利用面面垂直关系例3 如图1,等腰梯形ABCD 中,AD ∥BC ,AB =AD =2,∠ABC =60°,E 是BC 的中点.将△ABE 沿AE 折起,使平面BAE ⊥平面AEC (如图2),连接BC ,BD .求平面ABE 与平面BCD 所成的锐角的大小.解 取AE 中点M ,连接BM ,DM .因为在等腰梯形ABCD 中,AD ∥BC ,AB =AD ,∠ABC =60°,E 是BC 的中点, 所以△ABE 与△ADE 都是等边三角形,所以BM ⊥AE ,DM ⊥AE .又平面BAE ⊥平面AEC ,所以BM ⊥MD .以M 为原点,分别以ME ,MD ,MB 所在的直线为x ,y ,z 轴,建立空间直角坐标系Mxyz ,如图,则E (1,0,0),B (0,0,3),C (2,3,0),D (0,3,0),所以DC →=(2,0,0),BD →=(0,3,-3),设平面BCD 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧m ·DC →=2x =0,m ·BD →=3y -3z =0.取y =1,得m =(0,1,1), 又因平面ABE 的一个法向量MD →=(0,3,0),所以cos 〈m ,MD →〉=m ·MD →|m ||MD →|=22, 所以平面ABE 与平面BCD 所成的锐角为45°.点评 本题求解关键是利用面面垂直关系,先证在两平面内共点的三线垂直,再构建空间直角坐标系,然后分别求出两个平面的法向量,求出两法向量夹角的余弦值,即可得所求的两平面所成的锐角的大小.用法向量的夹角求二面角时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度就不同,所以最后还应该根据这个二面角的实际形态确定其大小.2 用向量法研究“动态”立体几何问题“动态”立体几何问题是在静态几何问题中渗透了一些“动态”的点、线、面等元素,同时由于“动态”的存在,使得问题的处理趋于灵活.本文介绍巧解“动态”立体几何问题的法宝——向量法,教你如何以静制动.1.求解、证明问题例1 在棱长为a 的正方体OABC —O 1A 1B 1C 1中,E 、F 分别是AB 、BC 上的动点,且AE =BF ,求证:A 1F ⊥C 1E .证明 以O 为坐标原点建立如图所示的空间直角坐标系,则A 1(a,0,a ),C 1(0,a ,a ).设AE =BF =x ,∴E (a ,x,0),F (a -x ,a,0).∴A 1F →=(-x ,a ,-a ),C 1E →=(a ,x -a ,-a ).∵A 1F →·C 1E →=(-x ,a ,-a )·(a ,x -a ,-a )=-ax +ax -a 2+a 2=0,∴A 1F →⊥C 1E →,即A 1F ⊥C 1E .2.定位问题例2 如图,已知四边形ABCD ,CDGF ,ADGE 均为正方形,且边长为1,在DG 上是否存在点M ,使得直线MB 与平面BEF 的夹角为45°?若存在,求出点M 的位置;若不存在,请说明理由.解题提示 假设存在点M ,设平面BEF 的法向量为n ,设BM 与平面BEF所成的角为θ,利用sin θ=|BM →·n ||BM →||n |解出t ,若t 满足条件则存在. 解 因为四边形CDGF ,ADGE 均为正方形,所以GD ⊥DA ,GD ⊥DC .又DA ∩DC =D ,所以GD ⊥平面ABCD .又DA ⊥DC ,所以DA ,DG ,DC 两两互相垂直,如图,以D 为原点建立空间直角坐标系,则B (1,1,0),E (1,0,1),F (0,1,1).因为点M 在DG 上,假设存在点M (0,0,t ) (0≤t ≤1)使得直线BM 与平面BEF 的夹角为45°.设平面BEF 的法向量为n =(x ,y ,z ).因为BE →=(0,-1,1),BF →=(-1,0,1),则⎩⎪⎨⎪⎧ n ·BE →=0,n ·BF →=0,即⎩⎪⎨⎪⎧-y +z =0,-x +z =0,令z =1,得x =y =1, 所以n =(1,1,1)为平面BEF 的一个法向量.又BM →=(-1,-1,t ),直线BM 与平面BEF 所成的角为45°,所以sin 45°=|BM →·n ||BM →||n |=|-2+t |t 2+2×3=22, 解得t =-4±3 2.又0≤t ≤1,所以t =32-4.故在DG 上存在点M (0,0,32-4),且DM =32-4时,直线MB 与平面BEF 所成的角为45°.点评 由于立体几何题中“动态”性的存在,使有些问题的结果变得不确定,这时我们要以不变应万变,抓住问题的实质,引入参量,利用空间垂直关系及数量积将几何问题代数化,达到以静制动的效果.3 向量与立体几何中的数学思想1.数形结合思想向量方法是解决问题的一种重要方法,坐标是研究向量问题的有效工具,利用空间向量的坐标表示可以把向量问题转化为代数运算,从而沟通了几何与代数的联系,体现了数形结合的重要思想.向量具有数形兼备的特点,因此,它能将几何中的“形”和代数中的“数”有机地结合在一起.例1 如图,在四棱柱ABCD -A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,∠BAD =90°,AD ∥BC ,且A 1A =AB =AD =2BC =2,点E 在棱AB 上,平面A 1EC 与棱C 1D 1相交于点F .(1)证明:A 1F ∥平面B 1CE ;(2)若E 是棱AB 的中点,求二面角A 1-EC -D 的余弦值;(3)求三棱锥B 1-A 1EF 的体积的最大值.(1)证明 因为ABCD -A 1B 1C 1D 1是棱柱,所以平面ABCD ∥平面A 1B 1C 1D 1.又因为平面ABCD ∩平面A 1ECF =EC ,平面A 1B 1C 1D 1∩平面A 1ECF =AF ,所以A 1F ∥EC .又因为A 1F ⊄平面B 1CE ,EC ⊂平面B 1CE ,所以A 1F ∥平面B 1CE .(2)解 因为AA 1⊥底面ABCD ,⊥BAD =90°,所以AA 1,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,AA 1分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系.则A 1(0,0,2),E (1,0,0),C (2,1,0),所以A 1E →=(1,0,-2),A 1C →=(2,1,-2).设平面A 1ECF 的法向量为m =(x ,y ,z ),由A 1E →·m =0,A 1C →·m =0,得⎩⎪⎨⎪⎧x -2z =0,2x +y -2z =0. 令z =1,得m =(2,-2,1).又因为平面DEC 的法向量为n =(0,0,1),所以cos 〈m ,n 〉=m ·n |m |·|n |=13, 由图可知,二面角AA 1-EC -D 的平面角为锐角,所以二面角A 1-EC -D 的余弦值为13. (3)解 过点F 作FM ⊥A 1B 1于点M ,因为平面A 1ABB 1⊥平面A 1B 1C 1D 1,FM ⊂平面A 1B 1C 1D 1,所以FM ⊥平面A 1ABB 1,所以VB 1-A 1EF =VF -B 1A 1E =13×S △A 1B 1E ×FM =13×2×22×FM =23FM . 因为当F 与点D 1重合时,FM 取到最大值2(此时点E 与点B 重合),所以当F 与点D 1重合时,三棱锥B 1-A 1EF 的体积的最大值为43. 2.转化与化归思想空间向量的坐标及运算为解决立体几何中的夹角、距离、垂直、平行等问题提供了工具,因此我们要善于把这些问题转化为向量的夹角、模、垂直、平行等问题,利用向量方法解决.将几何问题化归为向量问题,然后利用向量的性质进行运算和论证,再将结果转化为几何问题.这种“从几何到向量,再从向量到几何”的思想方法,在本章尤为重要.例2 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE .(1)证明:平面DFC ⊥平面D 1EC ;(2)求二面角A -DF -C 的平面角的余弦值.分析 求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.解 (1)以D 为原点,分别以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2).∵E 为AB 的中点,∴E 点坐标为E (1,1,0),∵D 1F =2FE ,∴D 1F →=23D 1E →=23(1,1,-2) =(23,23,-43), ∴DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43) =(23,23,23),设n =(x ,y ,z )是平面DFC 的法向量,则⎩⎪⎨⎪⎧ n ·DF →=0,n ·DC →=0, ∴⎩⎪⎨⎪⎧ 23x +23y +23z =0,2y =0.取x =1得平面FDC 的一个法向量为n =(1,0,-1).设p =(x ,y ,z )是平面ED 1C 的法向量,则⎩⎪⎨⎪⎧p ·D 1F →=0,p ·D 1C →=0,∴⎩⎪⎨⎪⎧ 23x +23y -43z =0,2y -2z =0,取y =1得平面D 1EC 的一个法向量p =(1,1,1), ∵n ·p =(1,0,-1)·(1,1,1)=0,∴平面DFC ⊥平面D 1EC .(3)设q =(x ,y ,z )是平面ADF 的法向量,则⎩⎪⎨⎪⎧ q ·DF →=0,q ·DA →=0, ∴⎩⎪⎨⎪⎧23x +23y +23z =0,x =0,取y =1得平面ADF 的一个法向量q =(0,1,-1),设二面角A -DF -C 的平面角为θ,由题中条件可知θ∈(π2,π),则cos θ=|n ·q |n |·|q ||=-0+0+12×2=-12, ∴二面角A -DF -C 的平面角的余弦值为12. 3.函数思想例3 已知关于x 的方程x 2-(t -2)x +t 2+3t +5=0有两个实根,且c =a +t b ,a =(-1,1,3),b =(1,0,-2).问|c |能否取得最大值?若能,求出实数t 的值及对应的向量b 与c 夹角的余弦值;若不能,说明理由.分析 写出|c |关于t 的函数关系式,再利用函数观点求解.解 由题意知Δ≥0,得-4≤t ≤-43, 又c =(-1,1,3)+t (1,0,-2)=(-1+t,1,3-2t ),∴|c |=(-1+t )2+(3-2t )2+1 =5⎝⎛⎭⎫t -752+65. 当t ∈⎣⎡⎦⎤-4,-43时,f (t )=5⎝⎛⎭⎫t -752+65是单调递减函数,∴y max =f (-4),即|c |的最大值存在, 此时c =(-5,1,11).b·c =-27,|c |=7 3.而|b |=5,∴cos 〈b ,c 〉=b·c |b||c |=-275×73=-91535. 点评 凡涉及向量中的最值问题,若可用向量坐标形式,一般可考虑写出函数关系式,利用函数思想求解.4.分类讨论思想例4 如图,矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD (点P 位于平面ABCD 上方),问BC 边上是否存在点Q ,使PQ →⊥QD →?分析 由PQ →⊥QD →,得PQ ⊥QD ,所以平面ABCD 内,点Q 在以边AD为直径的圆上,若此圆与边BC 相切或相交,则BC 边上存在点Q ,否则不存在.解 假设存在点Q (Q 点在边BC 上),使PQ →⊥QD →,即PQ ⊥QD ,连接AQ .∵P A ⊥平面ABCD ,∴P A ⊥QD .又PQ →=P A →+AQ →且PQ →⊥QD →,∴PQ →·QD →=0,即P A →·QD →+AQ →·QD →=0.又由P A →·QD →=0,∴AQ →·QD →=0,∴AQ →⊥QD →.即点Q 在以边AD 为直径的圆上,圆的半径为a 2. 又∵AB =1,由题图知,当a 2=1,即a =2时,该圆与边BC 相切,存在1个点Q 满足题意; 当a 2>1,即a >2时,该圆与边BC 相交,存在2个点Q 满足题意; 当a 2<1,即a <2时,该圆与边BC 相离,不存在点Q 满足题意. 综上所述,当a ≥2时,存在点Q ;当0<a <2时,不存在点。
常见建立空间直角坐标系的方法在数学中,直角坐标系是一种常见的坐标系统,用于描述平面上的点的位置。
然而,当我们需要描述三维空间中的点的位置时,就需要使用空间直角坐标系。
空间直角坐标系由三个相互垂直的坐标轴组成,通常分别记作x、y和z轴。
建立空间直角坐标系的方法有很多种,下面将介绍一些常见的方法:1. 建立三个相互垂直的平面:这是最常见的方法之一、我们可以选择一个水平的平面作为xy平面,再选择一个与之垂直的平面作为xz平面,最后选择与之都垂直的平面作为yz平面。
通过这三个平面的交线,我们就可以建立一个空间直角坐标系。
2.直角投影:这是另一种常见的方法。
它通过将三个相互垂直的轴投影到一个平面上来建立坐标系。
首先,选择一个水平平面作为基准面,通常选择地面或水平桌面。
然后,沿着垂直于基准面的方向,线性地延长三个轴线段,直到它们相交于一个点P。
此时,基准平面上的四个交点将构成一个四边形,可以将其看作一个平行于基准平面的投影区域。
通过将这个投影区域等分成正方形或长方形,我们可以建立一个坐标系。
3.三面角投影法:这种方法的基本思想是选择三个不共面的平面,用它们的交线来建立坐标系。
三个平面可以是任意的,只要它们不共面即可。
通过选择适当的角度和距离,我们可以确保三个平面的交线相互垂直,并与坐标轴一一对应。
4.旋转和平移:这是一种几何变换法,通过对平面或轴进行旋转和平移来建立坐标系。
首先,我们可以选择一个水平平面作为基准平面。
然后,通过旋转和平移一个或多个轴,使其与基准平面垂直。
通过这种方式,我们可以建立一个与基准平面相垂直的坐标系。
通过以上方法可以建立一个空间直角坐标系,然后就可以用来描述三维空间中的点的位置。
在这个坐标系中,每个点都可以由一个有序的三元组(x,y,z)来表示,其中x,y和z分别表示该点在x、y和z轴上的投影坐标。
总结起来,建立空间直角坐标系的方法包括建立相互垂直的平面、直角投影、三面角投影法以及旋转和平移等方法。
空间向量的建系方法空间向量的建系方法主要包括以下步骤:1.确定原点:●在三维空间中,首先选择一个点作为坐标系的原点O。
2.建立坐标轴:●选取互相垂直的三条直线作为坐标轴。
通常按照右手定则来建立直角坐标系(右手坐标系):伸出右手,大拇指、食指和中指分别指向x轴、y轴和z轴的方向,且三个手指在同一直线上时,它们之间的角度均为90度。
这样可以保证正方向的一致性。
3.定义单位向量:●对于每个坐标轴,定义相应的单位向量。
对于x轴,单位向量为(1, 0,0);对于y轴,单位向量为(0, 1, 0);对于z轴,单位向量为(0, 0, 1)。
4.标注正方向与长度:●明确各坐标轴的正方向,并规定所有坐标轴具有相同的单位长度。
5.表示空间向量:●任何空间向量A都可以用这个坐标系下的坐标来表示,设其端点坐标为(Ax, Ay, Az),那么该向量可以写作:A=Ax i+Ay j+Az k其中,i、j、k分别是x、y、z轴对应的单位向量。
6.应用到具体问题中:●在实际应用过程中,根据问题的具体情况,可能还需要处理向量在不同坐标系之间的转换,或者通过计算向量的投影等方式将物理现象转化为数学表达。
7.向量的方向角:●在确定了坐标系后,一个空间向量还可以通过与坐标轴之间的夹角来表示其方向。
对于单位向量,其方向可以由两个角度(通常取从正x 轴开始顺时针方向的角度)θ和φ描述,即极坐标形式:(r, θ, φ),其中r为向量的模长。
8.向量的线性运算:●在建立了空间直角坐标系后,可以方便地对向量进行加减、数乘和点乘等线性运算。
例如,两个向量A和B相加就是将它们对应的每个分量相加得到新向量C:[ \mathbf{C} = \mathbf{A} + \mathbf{B} = (Ax + Bx, Ay + By, Az + Bz) ]9.向量的叉乘(向量积):●在三维空间中,两个非零向量A和B可以进行叉乘运算,得到一个新的垂直于A和B的向量N,并且它的大小等于A和B所构成平行四边形的面积,方向遵循右手螺旋法则。
空间向量之建立空间直角坐标系的方法及技巧建立空间直角坐标系是解决空间向量问题的基础。
下面将介绍建立空间直角坐标系的方法及技巧。
一、确定坐标轴的方向和位置1.确定原点:选择一个固定点作为原点,通常选择一个与问题相关的点,如物体的质心或一个已知的点。
2.确定x轴的方向和位置:选择一个与原点不共线的点作为x轴上的一个点,通常选择一个与问题相关的点,如力的方向或一个已知的点。
然后确定一个与x轴垂直的直线作为x轴,并确定x轴的正方向。
3.确定y轴的方向和位置:选择一个与原点和x轴不共面的点作为y轴上的一个点,通常选择一个与问题相关的点,如力的方向或一个已知的点。
然后确定一个与x轴和y轴都垂直的直线作为y轴,并确定y轴的正方向。
4.确定z轴的方向和位置:选择一个与原点、x轴和y轴不共线的点作为z轴上的一个点,通常选择一个与问题相关的点,如力的方向或一个已知的点。
然后确定一个与x轴、y轴和z轴都垂直的直线作为z轴,并确定z轴的正方向。
二、确定坐标轴的刻度和单位1.确定刻度:确定每个坐标轴上的刻度间隔,刻度的选择应根据问题而定,可以根据已知数据、问题要求或实际情况选择。
2.确定单位:确定每个坐标轴上的单位,单位的选择应根据问题而定,可以选择国际单位制(如米、千克)或其他适当的单位。
三、确定坐标系的右手定则建立空间直角坐标系时,要符合右手定则,即将右手放在坐标轴上,大拇指指向x轴的正方向,食指指向y轴的正方向,则中指指向的方向即为z轴的正方向。
四、根据空间向量的位置确定其坐标根据已知空间向量的位置,确定其在空间直角坐标系中的坐标。
首先确定向量所在直线与坐标轴的交点,然后根据交点的坐标确定向量的坐标。
五、利用正交性简化向量运算空间直角坐标系有一个重要的特点,即坐标轴两两正交。
利用这一性质,可以简化向量的运算。
例如,两个向量的数量积可以分别计算各个坐标上的乘积,然后相加,而不必进行向量的点积运算。
总结:建立空间直角坐标系的方法及技巧主要包括确定坐标轴的方向和位置、确定坐标轴的刻度和单位、确定坐标系的右手定则、根据空间向量的位置确定其坐标和利用正交性简化向量运算。
空间向量之 建立空间直角坐标系的方法及技巧 .一、利用共顶点的互相垂直的三条棱构建直角坐标系例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值.解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0),∴1(232)BC =--,,,(010)CD =-,,. 设1BC 与CD 所成的角为θ,则11317cos 17BC CDBC CD θ==. 二、利用线面垂直关系构建直角坐标系例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC1上异于C 、C 1的一点,EA ⊥EB 1.已知AB =BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系.由于BC =1,BB 1=2,AB BCC 1=3π, ∴在三棱柱ABC -A 1B 1C1中,有B (0,0,0)、A (0,、B 1(0,2,0)、1022c ⎛⎫- ⎪ ⎪⎝⎭,、1302C ⎫⎪⎪⎝⎭,,. 设0E a ⎫⎪⎪⎝⎭,且1322a -<<,由EA ⊥EB 1,得10EA EB =,即320a a ⎛⎛⎫--- ⎪ ⎪⎝⎝⎭,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭, 即12a =或32a =(舍去).故102E ⎫⎪⎪⎝⎭,,. 由已知有1EA EB ⊥,111B A EB⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA的夹角.因11(00B A BA ==,12EA ⎛=- ⎝ 故11112cos 3EA B A EA B A θ==,即tan 2θ= 三、利用面面垂直关系构建直角坐标系例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .(1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的余弦值.解析:(1)取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.设AD =2,则A (1,0,0)、D (-1,0,0)、B (1,2,0)、V ,∴AB =(0,2,0),VA =(1).由(020)(103)0AB VA =-=,,,,,得 AB ⊥VA .又AB ⊥AD ,从而AB 与平面VAD 内两条相交直线VA 、AD 都垂直,∴ AB ⊥平面VAD ;(2)设E 为DV的中点,则102E ⎛- ⎝⎭∴302EA ⎛= ⎝⎭,,,322EB ⎛= ⎝⎭,,,(10DV =.∴332(103)02EB DV ⎛⎫=-= ⎪ ⎪⎝⎭,,,,, ∴EB ⊥DV .又EA ⊥DV ,因此∠AEB 是所求二面角的平面角.∴21cos 7EA EBEA EB EA EB ==,.故所求二面角的余弦值为7. 四、利用正棱锥的中心与高所在直线构建直角坐标系例4 已知正四棱锥V -ABCD 中,E 为VC 中点,正四棱锥底面边长为2a ,高为h .(1)求∠DEB 的余弦值;(2)若BE ⊥VC ,求∠DEB 的余弦值.解析:(1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系,其中O x ∥BC ,O y ∥AB ,则由AB =2a ,OV =h ,有B (a ,a ,0)、C (-a ,a ,0)、D (-a ,-a ,0)、V (0,0,h )、222a a h E ⎛⎫- ⎪⎝⎭,, ∴3222a h BE a ⎛⎫=-- ⎪⎝⎭,,,3222a h DE a ⎛⎫= ⎪⎝⎭,,. ∴22226cos 10BE DEa h BE DE a h BE DE -+==+,, 即22226cos 10a h DEB a h -+=+∠; (2)因为E 是VC 的中点,又BE ⊥VC ,所以0BE VC =,即3()0222a h a a a h ⎛⎫----= ⎪⎝⎭,,,,,∴22230222a h a --=,∴h =. 这时222261cos 103a h BE DE a h -+==-+,,即1cos 3DEB =-∠.五、利用图形中的对称关系建立坐标系图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.例5已知两个正四棱锥P -ABCD 与 Q -ABCD 的高都为2,AB =4.(1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角;(3)求点P 到平面QAD 的距离.(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(022)AQ PB =--=-,,,,,1cos 3AQ PBAQ PB AQ PB <>==,.所求异面直线所成的角是1arccos 3. (3)由(2)知,点(0(22220)(004)D AD PQ -=--=-,,,,,,. 设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得00z x y +=+=⎪⎩,,取x =1,得(11-,,n =.点P 到平面QAD 的距离22PQ d ==nn .点评:利用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得出.第(3)问也可用“等体积法”求距离.。
空间向量之 建立空间直角坐标系的方法及技巧
.
一、利用共顶点的互相垂直的三条棱构建直角坐标系
例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值.
解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--,,,(010)CD =-,
,. 设1BC 与CD 所成的角为θ,
则11317cos 17
BC CD
BC CD θ==. 二、利用线面垂直关系构建直角坐标系
例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =
,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值.
解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系.
由于BC =1,BB 1=2,AB =2,∠BCC 1=3
π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1
(0,2,0)、3102c ⎛⎫- ⎪ ⎪⎝⎭,,、13302C ⎛⎫ ⎪ ⎪⎝⎭
,,.
设302E a ⎛⎫ ⎪ ⎪⎝⎭,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =,
即3322022a a ⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪⎝⎝⎭
,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝
⎭, 即12a =或32a =(舍去).故3102E ⎛⎫ ⎪ ⎪⎝⎭
,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.
因11(002)B A BA ==,,,31222EA ⎛
⎫=-- ⎪ ⎪⎝,, 故11112cos 3
EA B A EA B A θ=
=,即2tan 2θ= 三、利用面面垂直关系构建直角坐标系
例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .
(1)证明AB ⊥平面VAD ;
(2)求面VAD 与面VDB 所成的二面角的余弦值.
解析:(1)取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.
设AD =2,则A (1,0,0)、D (-1,0,0)、B (1,2,0)、
V (0,0,3),∴AB =(0,2,0),VA =(1,0,-3).
由(020)(103)0AB VA =-=,
,,,,得
AB ⊥VA . 又AB ⊥AD ,从而AB 与平面VAD 内两条相交直线VA 、AD 都垂直,∴ AB ⊥平面VAD ;
(2)设E 为DV 的中点,则1
3022E ⎛⎫- ⎪ ⎪⎝⎭
,, ∴3302EA ⎛⎫=- ⎪ ⎪⎝⎭,,,3322EB ⎛⎫=- ⎪ ⎪⎝⎭
,,,(103)DV =,,. ∴3
32(103)02EB DV ⎛⎫=-= ⎪ ⎪⎝⎭
,,,,, ∴EB ⊥DV .
又EA ⊥DV ,因此∠AEB 是所求二面角的平面角.
∴21cos 7
EA EB
EA EB EA EB ==,. 故所求二面角的余弦值为217
. 四、利用正棱锥的中心与高所在直线构建直角坐标系
例4 已知正四棱锥V -ABCD 中,E 为VC 中点,正四棱锥底面边长为2a ,高为h .
(1)求∠DEB 的余弦值;
(2)若BE ⊥VC ,求∠DEB 的余弦值.
解析:(1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系,其中O x ∥BC ,O y ∥AB ,则由AB =2a ,OV =h ,有B (a ,a ,0)、C (-a ,a ,0)、D (-a ,-a ,0)、V (0,0,h )、222a a h E ⎛⎫
- ⎪⎝⎭
,, ∴3222a h BE a ⎛⎫=-- ⎪⎝⎭,,,3222a h DE a ⎛⎫= ⎪⎝⎭
,,. ∴22
226cos 10BE DE
a h BE DE a h BE DE -+==+,,
即22226cos 10a h DEB a h
-+=+∠; (2)因为E 是VC 的中点,又BE ⊥VC ,
所以0BE VC =,即3()0222a h a a a h ⎛⎫----= ⎪⎝⎭
,,,,, ∴22
230222
a h a --=,∴2h a =. 这时222261cos 103a h BE DE a h -+==-+,,即1cos 3
DEB =-∠.
五、利用图形中的对称关系建立坐标系
图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用
自身对称性可建立空间直角坐标系.
例5已知两个正四棱锥P -ABCD 与
Q -ABCD 的高都为2,AB =4.
(1)证明:PQ ⊥平面ABCD ;
(2)求异面直线AQ 与PB 所成的角;
(3)求点P 到平面QAD 的距离.
(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得
(2202)(022)AQ PB =--=
-,,,,,1cos 3AQ PB AQ PB AQ PB <>==,. 所求异面直线所成的角是1arccos 3
. (3)由(2)知,点(0(22220)(00
4)D AD PQ -=--=-,
,,,,,. 设n =(x ,y
,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得00z x y +=+=⎪
⎩,,取x =1,得
(11-,,n =.点P 到平面QAD 的距离22PQ d ==n
n .
点评:利用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得出.第(3)问也可用“等体积法”求距离.。