期中复习 3 重积分
- 格式:ppt
- 大小:1.03 MB
- 文档页数:37
三重积分计算三重积分是多重积分的一种,用于计算三维空间中的体积、质心、重心、转动惯量等问题。
在高等数学中,三重积分也是非常重要的一部分,本文将详细介绍三重积分的概念、性质、计算方法以及一些应用。
一、三重积分的概念三重积分是对具有三个变量的函数在三维空间中一些区域的积分。
设f(x,y,z)是定义在区域Ω上的函数,其中Ω是三维空间中的一个封闭区域。
则三重积分的定义为:∭Ωf(x,y,z)dV其中,dV 表示一小块Ω中的体积元素,dV = dx dy dz。
可以看出,三重积分实际上是对Ω中个点对应的函数值与体积元素的乘积进行求和。
三重积分对应的结果是一个数值。
二、三重积分的性质1.线性性质:设f(x,y,z)和g(x,y,z)是定义在区域Ω上的函数,a和b是常数,则有:∭Ω (af(x, y, z) + bg(x, y, z)) dV = a∭Ω f(x, y, z) dV +b∭Ω g(x, y, z) dV2.保号性质:如果在Ω上有f(x,y,z)≥0,则有:∭Ωf(x,y,z)dV≥03.次序可交换性:如果函数f(x,y,z)在区域Ω上连续,那么对于Ω中的任意小闭区域D,有:∬D f(x, y, z) dx dy = ∬D f(x, y, z) dy dx这说明在计算三重积分时,可以先对其中两个变量积分,再对剩余的变量积分。
三、三重积分的计算方法计算三重积分的方法有很多种,下面介绍常用的两种方法:直角坐标系下的直接计算和柱面坐标系的变量代换法。
1.直角坐标系下的直接计算:假设要计算Ω上的三重积分∭Ωf(x,y,z)dV,Ω的边界可以分解为有限个可求面积的曲面。
先取一个边界曲面上的点P,以该点为上顶点的立体体积为ΔV,然后作适当的划分,将ΔV划分为若干个小的体积ΔV_i。
然后取这些小体积ΔV_i中其中一点(x_i,y_i,z_i),并计算f(x_i,y_i,z_i)与ΔV_i的乘积f(x_i,y_i,z_i)ΔV_i。
三重积分的各种计算方法三重积分是微积分中的一种重要工具,用于计算三维空间中的体积、质量、质心等问题。
在实际应用中,我们经常需要计算三维物体的体积、密度、质心位置等信息,而三重积分提供了一种有效的方法来解决这些问题。
在本文中,我们将介绍三重积分的各种计算方法,包括直角坐标系下的直接计算方法、柱坐标系和球坐标系下的变量变换方法等。
一、直角坐标系下的直接计算方法直角坐标系是我们最常见的坐标系,三重积分在直角坐标系下的计算方法较为直观。
我们以计算三维实体体积为例来介绍直角坐标系下的直接计算方法。
假设我们要计算一个由函数z=f(x, y)所定义的三维曲面与xy平面围成的体积V。
为了计算这个体积,我们将其划分成n个小立方体,每个小立方体的体积可以近似看作dV=Δx×Δy×Δz。
那么整个体积V可以通过对每个小立方体的体积进行求和得到,即V = ∫∫∫dV = ∫∫∫f(x,y)dxdydz,其中∫∫∫表示对整个三维空间的积分。
我们可以先对z方向进行积分,然后对y方向进行积分,最后对x方向进行积分。
这个积分过程可以通过数值积分的方法进行近似计算。
二、柱坐标系下的变量变换方法直角坐标系下的直接计算方法在计算一些特殊形状的物体时可能不太方便,这时可以采用柱坐标系下的变量变换方法。
柱坐标系与直角坐标系的关系可以表示为x=r*cosθ,y=r*sinθ,z=z,其中r表示点到z轴的距离,θ表示点在xy平面的极角。
在柱坐标系下,三重积分的计算公式为V = ∫∫∫f(r*cosθ,r*sinθ,z)r dz dr dθ,其中r的取值范围为[0,∞),θ的取值范围为[0,2π]。
在进行柱坐标系下的三重积分计算时,我们需要进行相关的变量替换和坐标范围的调整。
具体方法如下:1.将直角坐标系中的函数f(x,y,z)进行变量替换,将x、y、z用r、θ、z表示,并计算出新的函数F(r,θ,z)。
2.确定新的坐标范围,即r的取值范围、θ的取值范围和z的取值范围。
三重积分中值定理1. 引言三重积分中值定理是微积分中的一个重要定理,它是二重积分中值定理的推广。
通过三重积分中值定理,我们可以得到在三维空间中某一点的函数值等于该点所在区域的平均值乘以该区域的体积。
在本文中,我们将介绍三重积分的基本概念,推导三重积分的中值定理,并通过例题来说明其应用。
2. 三重积分的基本概念2.1 三重积分的定义三重积分是对三维空间内某一区域中的函数进行积分运算的过程。
对于函数f(x,y,z)在某一区域D上的三重积分可以表示为:∭fD(x,y,z)dV其中dV表示空间微元体积。
2.2 三重积分的计算方法三重积分的计算可以通过分割区域D,将其分割成许多小的体积元素,然后对每个体积元素上的函数值进行积分,最后将所有小的体积元素的积分结果相加。
三重积分的计算方法有两种常用的方式:直角坐标系下的三重积分和柱面坐标系下的三重积分。
在直角坐标系下,三重积分可以表示为:∭fD (x,y,z)dV=∫∫∫fqpdcba(x,y,z)dzdydx其中D的投影在xy平面上的范围为[a,b]×[c,d],z的范围为[p,q]。
在柱面坐标系下,三重积分可以表示为:∭fD (x,y,z)dV=∫∫∫fz2(r,θ)z1(r,θ)r2(θ)r1(θ)βα(rcosθ,rsinθ,z)rdzdrdθ其中D的投影在xy平面上的范围为[α,β],r的范围为[r1(θ),r2(θ)],z的范围为[z1(r,θ),z2(r,θ)]。
2.3 三重积分的几何意义三重积分的几何意义可以理解为对函数在三维空间内的某一区域的体积进行加权求和。
每个小的体积元素的函数值乘以该体积元素的体积,再将所有小的体积元素的结果相加,就得到了三重积分的值。
3. 三重积分中值定理的推导3.1 二重积分中值定理的回顾在推导三重积分中值定理之前,我们先回顾一下二重积分中值定理的内容。
对于函数f(x,y)在闭区域D上的二重积分,存在一点(ξ,η),使得:∬f D (x,y)dσ=f(ξ,η)∬dDσ其中dσ表示面积元素。
三重积分的计算方法三重积分是微积分中的重要内容,它在物理学、工程学、经济学等领域都有着广泛的应用。
在实际问题中,我们常常需要对三维空间中的某些物理量进行积分运算,而三重积分就是用来描述这种三维空间中的积分运算的工具。
下面,我们将介绍三重积分的计算方法。
首先,我们来看三重积分的定义。
对于空间中的一个有界闭区域V,如果函数f(x, y, z)在V上有定义且在V上可积,那么三重积分∬∬∬_{V}f(x,y,z)dxdydz的计算方法如下:1. 将积分区域V投影到xy平面上,得到投影区域D。
2. 在D上选择一个合适的坐标系,通常选择直角坐标系或极坐标系。
3. 再在D上选择一个曲线坐标系,通常选择柱坐标系或球坐标系。
4. 根据选择的坐标系,写出积分的累次积分式。
5. 按照累次积分的顺序依次进行积分运算。
在实际计算中,我们通常会遇到一些复杂的积分问题,下面我们来看一些常见的计算方法。
首先是直角坐标系下的三重积分计算。
在直角坐标系下,积分区域V可以用不等式形式表示,利用三次积分的性质,可以将三重积分化为三个一重积分的累次积分。
这样就可以分别对x、y、z进行积分,从而简化计算。
其次是极坐标系下的三重积分计算。
在极坐标系下,积分区域V通常是某个平面区域在z轴上的投影区域,利用极坐标系的性质,可以将三重积分化为一个二重积分和一个一重积分的累次积分。
这样就可以利用极坐标系的简洁性,简化计算过程。
最后是球坐标系下的三重积分计算。
在球坐标系下,积分区域V通常是一个球体或球体的一部分,利用球坐标系的性质,可以将三重积分化为一个球面上的二重积分和一个一重积分的累次积分。
这样就可以利用球坐标系的简洁性,简化计算过程。
总之,三重积分的计算方法是多样的,我们可以根据具体的问题选择合适的坐标系和积分顺序,从而简化计算过程。
在实际问题中,我们需要灵活运用不同的计算方法,以便高效地解决问题。
希望本文对读者有所帮助,谢谢阅读!。
三重积分的计算方法三重积分是数学中的重要概念,用于计算三维空间中的体积、质量、重心等物理量。
在本文中,我们将介绍三重积分的计算方法,并提供一些实例来帮助读者更好地理解。
一、直角坐标系下的三重积分在直角坐标系下,三重积分的计算方法可以通过迭代法实现。
首先,我们需要确定被积函数的积分区域。
假设被积函数为f(x, y, z),积分区域为V。
我们可以将V分割成若干个小立方体,每个小立方体的体积为ΔV。
将V分割成小立方体后,我们需要选择一个小立方体,并在其中选择一个点(x,y,z)作为积分点。
然后,我们将小立方体的体积ΔV乘以被积函数在积分点的值f(x,y,z),得到积分项f(x,y,z)ΔV。
最后,将所有积分项相加并取极限,即可求得三重积分的值。
这个计算过程可以表达为以下公式:∭V f(x,y,z) dV = lim ΔV→0 ∑ ∑ ∑ f(x,y,z)ΔV其中,ΔV表示小立方体的体积,Σ表示对整个区域V内的小立方体进行求和。
举例来说,如果我们要计算函数f(x,y,z) = x^2 + 2y^2 + 3z^2在立方体V: 0≤x≤1,0≤y≤2,0≤z≤3上的三重积分,那么我们可以将V分割成许多小立方体,并选择一个小立方体上的点(x,y,z)作为积分点。
然后,将小立方体体积ΔV乘以函数值f(x,y,z),并对所有小立方体进行求和,最后取极限即可得到结果。
二、柱坐标系和球坐标系下的三重积分在某些情况下,采用直角坐标系计算三重积分可能会比较复杂。
此时,我们可以选择转换到柱坐标系或球坐标系下进行计算,以简化问题。
在柱坐标系下,我们将积分区域V进行柱坐标变换,得到新的积分区域。
具体的变换公式可以参考相关数学教材。
然后,按照直角坐标系下的计算方法进行计算。
在球坐标系下的计算方法与柱坐标系类似,先进行球坐标变换,然后按照直角坐标系下的计算方法进行计算。
三、应用举例现在,让我们通过一个应用举例来更好地理解三重积分的计算方法。
三重积分知识点总结一、三重积分的基本概念1. 几何意义三重积分的几何意义是在三维空间中求某一区域内函数的平均值。
我们可以想象三维空间被分割成无数个小立方体,每个小立方体的体积趋于零。
然后将函数在每个小立方体上的值相加,并对整个区域进行求和,得到的就是三重积分的值。
2. 定义三重积分的定义是对平面上的二重积分的推广。
设函数f(x, y, z)在空间区域V上有定义,V的边界为S,那么三重积分可以表示为:∭V f(x, y, z) dV其中,dV表示体积元素,它等于dxdydz,即三个方向上的微小长度的乘积。
3. 坐标变换在进行三重积分的计算时,有时需要进行坐标变换,以便简化积分的计算。
常见的坐标变换包括球坐标、柱坐标和直角坐标之间的转化。
通过坐标变换,可以将原积分区域变换成更容易处理的形式,从而简化计算步骤。
二、三重积分的计算方法1. 直角坐标系下的三重积分直角坐标系下的三重积分是最基本的计算方法,它通常通过分割积分区域,并利用定积分的性质逐步进行计算。
对于简单的积分区域和函数,直角坐标系下的三重积分计算比较直观和容易理解。
2. 球坐标系下的三重积分在球坐标系下进行三重积分的计算,可以避免一些复杂的计算步骤。
球坐标系下的积分区域通常是球形或者球形的一部分,利用球坐标系的简洁性可以简化积分的计算过程。
3. 柱坐标系下的三重积分柱坐标系下进行三重积分的计算,适用于柱状或圆柱状的积分区域。
柱坐标系的简化性使得积分的计算更加方便和高效。
三、三重积分的应用1. 物理学中的应用在物理学中,三重积分被广泛应用于计算物体的质量、密度、电荷分布等问题。
例如,通过三重积分可以计算物体的质心、转动惯量等物理量,也可以计算电荷在空间中的分布情况。
2. 工程学中的应用在工程学中,三重积分被用于计算空间中的流体流动、物体的温度分布、材料的应力分布等问题。
通过三重积分可以得到流体的流速、压强分布等关键信息,也能够计算物体的热传导、热辐射等问题。
【精品】三重积分三重积分是微积分中的一种运算方式,用于解决三维空间某个区域内的函数值的平均、体积、质心等问题。
三重积分在物理学、工程学、计算机科学等众多领域具有重要应用。
一、三重积分的定义三重积分表示对三维区域内的函数进行积分,即将三维区域分成许多小体积,每个小体积内函数值近似相等,然后对每个小体积进行积分,再将所有小体积的积分值相加,得到整个区域内函数的积分值。
三重积分的一般形式如下:$$\iiint_Df(x, y, z)dxdydz$$其中,$D$表示三维空间内的区域,$f(x, y, z)$表示被积函数,$dxdydz$表示小体积$dV=dxdydz$。
1.直角坐标系下的三重积分在直角坐标系下,三重积分的计算通常采用“分块法”或“交错积分法”。
以分块法为例,假设积分区域为$D$,它被$xOy$平面和某表面$z=z_1(x,y)$,$z=z_2(x,y)$,$z=z_3(x,y)$等分成了若干小块,这个区域的三重积分可表示为:$$\iiint_Df(x,y,z)dxdydz=\sum_{i=1}^n\int_{x_i}^{x_{i+1}}\int_{y_i}^{y_{i+1}}\ int_{z_i(x,y)}^{z_{i+1}(x,y)}f(x,y,z)dxdydz$$其中,$n$为把积分区域分成$n$个小块,$(x_i,y_i,z_i)$和$(x_{i+1},y_{i+1},z_{i+1})$为第$i$个小块的相邻两个顶点,每个小块内$f(x,y,z)$近似相等。
在柱坐标系下,三重积分的计算可以利用角度和半径的关系,将三重积分转化为二重积分的形式。
以球坐标系为例,它是一个三维坐标系,以球心为原点。
球坐标系中的三个坐标分别是:半径$r$,极角$\theta$,和方位角$\varphi$。
球坐标系下的三重积分可以表示为:$$\iiint_Gf(x,y,z)dxdydz=\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{R}f(r\sin\theta\cos\varphi,r\sin\theta\sin\varphi,r\cos\theta)r^2\sin\theta drd\thetad\varphi$$1.体积三重积分可以计算三维空间内任意形状的体积。
重积分考试要求:1. 理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。
2. 掌握二重积分的(直角坐标、极坐标)计算方法。
3. 掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。
8、会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。
复习重点:1、 二重积分的计算(直角坐标、极坐标);2、 三重积分的(直角坐标、柱面坐标、球面坐标)计算。
3、二、三重积分的几何应用及物理应用。
复习题:1. 计算σd xy D⎰⎰, 其中D 是由直线y =1、x =2及y =x 所围成的闭区域.解: 画出区域D .方法一. 可把D 看成是X --型区域: 1≤x ≤2, 1≤y ≤x . 于是⎰⎰⎰⎰=211][x D dx xydy d xy σ⎰⎰-=⋅=2132112)(21]2[dx x x dx y x x 89]24[212124=-=x x .注: 积分还可以写成⎰⎰⎰⎰⎰⎰==211211x x D ydy xdx xydy dx d xy σ.解法2. 也可把D 看成是Y --型区域: 1≤y ≤2, y ≤x ≤2 . 于是 ⎰⎰⎰⎰=212][y D dy xydx d xy σ⎰⎰-=⋅=2132122)22(]2[dy y y dy x y y 89]8[2142=-=y y .2. 计算σd y x yD ⎰⎰-+221, 其中D 是由直线y =1、x =-1及y =x 所围成的闭区域.3.计算σd xy D⎰⎰, 其中D 是由直线y =x -2及抛物线y 2=x 所围成的闭区域.解 积分区域可以表示为D =D 1+D 2, 其中x y x x D ≤≤-≤≤ ,10 :1; x y x D ≤≤≤≤2 ,41 :2. 于是⎰⎰⎰⎰⎰⎰--+=41210x x x x D xydy dx xydy dx d xy σ. 积分区域也可以表示为D : -1≤y ≤2, y 2≤x ≤y +2. 于是 ⎰⎰⎰⎰-+=2122y y D xydx dy d xy σ⎰-+=21222]2[dy y x y y ⎰--+=2152])2([21dy y y y 855]62344[21216234=-++=-y y y y . 讨论积分次序的选择.4. 计算⎰⎰--D y xdxdy e 22, 其中D 是由中心在原点、半径为a 的圆周所围成的闭区域.解 在极坐标系中, 闭区域D 可表示为0≤ρ≤a , 0≤θ ≤2π .于是 ⎰⎰⎰⎰---=D D y x d d e dxdy eθρρρ222θθρρπρπρd e d d e a a 020200]21[ ][22⎰⎰⎰---== )1()1(212220a a e d e ---=-=⎰πθπ. 5.求球体x 2+y 2+z 2≤4a 2被圆柱面x 2+y 2=2ax 所截得的(含在圆柱面内的部分)立体的体积. 解 由对称性, 立体体积为第一卦限部分的四倍.⎰⎰--=D dxdy y x a V 22244,其中D 为半圆周22x ax y -=及x 轴所围成的闭区域.在极坐标系中D 可表示为0≤ρ≤2a cos θ , 2 0πθ≤≤. 于是 ⎰⎰⎰⎰-=-=20cos 2022224444πθρρρθθρρρa D d a d d d a V )322(332)sin 1(33222032-=-=⎰πθθπa d a . 6.计算⎰⎰+D d y x σ22sin 其中D 为22224ππ≤+≤y x解 在极坐标系中, 闭区域D 可表示为π≤ρ ≤ 2π, 0≤θ ≤2π . 于是⎰⎰+D d y x σ22sin =22206sin πρρρθπππ-=⋅⎰⎰d d 7.计算三重积分dxdydz x ⎰⎰⎰Ω, 其中Ω为三个坐标面及平面x +2y +z =1所围成的闭区域.解 作图, 区域Ω可表示为:0≤z ≤1-x -2y , )1(210x y -≤≤, 0≤x ≤1.于是 ⎰⎰⎰⎰⎰⎰---Ω=10210210 x y x xdz dy dx dxdydz x ⎰⎰---=10210)21(x dy y x xdx⎰=+-=1032481)2(41dx x x x . 8.求由122=+y x ,z =0,z =x (x>0)所围立体的体积V 。
三重积分的计算方法例题摘要:一、三重积分的概念及应用场景二、三重积分的计算方法1.重积分的计算2.重积分的换元法3.重积分的性质4.重积分的几何意义三、实例解析四、总结与拓展正文:一、三重积分的概念及应用场景三重积分是一种多元函数的积分形式,通常表示为对空间中一个几何体内部的属性进行积分。
它在物理学、工程学、经济学等领域具有广泛的应用。
三重积分的计算方法有多种,包括重积分、换元法等。
二、三重积分的计算方法1.重积分的计算重积分是指对一个空间函数在某个区域内的值进行积分。
求解重积分的过程通常包括以下步骤:确定被积函数、确定积分区域、选择积分顺序、进行积分计算。
2.重积分的换元法重积分的换元法是一种求解重积分的高效方法。
通过引入一个新的变量,将复杂的重积分问题转化为简单的一重积分问题。
换元法的关键在于选择合适的换元函数,使得积分过程变得简洁。
3.重积分的性质重积分具有线性、可交换、满足乘法公式等性质。
这些性质使得重积分在实际计算中具有很好的灵活性,可以简化计算过程。
4.重积分的几何意义重积分在几何上的意义是对一个立体图形的质量进行求解。
具体来说,重积分可以表示为空间曲线长度、曲面面积或体积的函数。
这为求解空间几何问题提供了理论依据。
三、实例解析以一个球体的体积为例,介绍三重积分的计算过程。
设球体的半径为R,球体的密度为ρ。
我们需要求解球体内部某一区域内质量的分布。
1.确定被积函数:球体内部的密度函数,即ρ(x, y, z)。
2.确定积分区域:球体内部,用球坐标系表示为x^2 + y^2 + z^2 <R^2。
3.选择积分顺序:先对z积分,再对y积分,最后对x积分。
4.进行积分计算:利用重积分公式,计算出球体内部的质量分布。
四、总结与拓展本文详细介绍了三重积分的计算方法,包括重积分、换元法等。
通过实际应用场景和实例解析,加深了对三重积分的理解。
在实际问题中,三重积分有着广泛的应用,掌握其计算方法有助于解决诸多实际问题。
三重积分的概念三重积分的性质三重积分的计算直角柱面球面回顾:讨论密度分布不均匀的物体的质量:(1) 一根细棒:ab 密度为i ξ=M ()b a x dx ρ=⎰()i ρξi x ∆∑=ni 10lim →λ(2)平面薄片:),(i i ηξ=M (,)i i ρξη∑=n i 10lim →λiσ∆(,)Dx y dxdy ρ=⎰⎰密度为y x D(3)设在空间有限闭区域Ω内分布着某种不均匀的物质,(,,),x y z C ρ∈求分布在Ω内的物质的质量M .密度函数为Ω(,,)k k k ξηζk v ∆(,,)x y z ρ➢分割:12,,,,,i n v v v v ∆∆∆∆把Ω分为➢取近似:(,,)k k k k kM v ρξηζ∆≈∆➢求和:1(,,)n k k k kk M v ρξηζ=≈∆∑➢取极限:01lim (,,)n k k k k k M v λρξηζ→==∆∑设f (x , y , z )是空间有界闭区域Ω上的有界函数,1、将闭区域Ω任意分成n 个小闭区域∆v 1, ∆v 2, ⋅⋅⋅, ∆v n , 其中∆v i 表示第i 个小闭区域, 也表示它的体积,2、在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξi , ηi , ζi )∆v i ,3、求和∑=ni i i i i v f 1),,(∆ζηξ4、如果当各小闭区域的直径中的最大值λ趋近于零时, 该和式的极限存在, 则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 并记为d (,,)Ωf x y z v⎰⎰⎰三重积分的定义⚫注:(2)三重积分的物理意义:不均匀物体的质量(1)其中dv 称为体积元素, 其它术语与二重积分相同.(3)同样有: 有界闭区域上的连续函数一定可积.d 01.(,,)lim (,,)ni i i ii f x y z v f v λξηζ→=Ω=∆∑⎰⎰⎰将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数, 就得到三重积分的定义.三重积分的概念三重积分的性质三重积分的计算直角柱面球面➢线性性质[]d d d (,,)(,,)(,,)(,,)f x y z g x y z v f x y z v g x y z v αβαβΩΩΩ+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰➢可加性d d d 12(,,)(,,)(,,)f x y z v f x y z v f x y z v ΩΩΩ=+⎰⎰⎰⎰⎰⎰⎰⎰⎰➢几何意义d v V Ω=⎰⎰⎰V 为Ω的体积➢不等式(,,)f g x y z ≤∈Ωd d (,,)(,,)f x y z v g x y z vΩΩ≤⎰⎰⎰⎰⎰⎰d d (,,)(,,)f x y z v f x y z vΩΩ≤⎰⎰⎰⎰⎰⎰(),Df x y d σ=⎰⎰曲顶柱体的体积➢估值定理(,,)m f M x y z ≤≤∈Ωd (,,)mV f x y z v MVΩ≤≤⎰⎰⎰➢中值定理(,,)f x y z 在Ω上连续,则存在(,,),ξηζ∈Ω使得d (,,)(,,)f x y z v f V ξηζΩ=⎰⎰⎰三重积分的概念三重积分的性质三重积分的计算直角柱面球面在直角坐标系中, 如果我们用三族(平行于坐标面的)平面x = 常数, y = 常数, z = 常数, 对空间区域进行分割那末每个规则小区域都是长方体. 其体积元素为:dv =dxdydz三重积分可写成:三重积分在直角坐标系中的计算法与二重积分类似, 三重积分可化成三次积分进行计算.具体可分为先单后重和先重后单两种类型.d (,,)f x y z v Ω=⎰⎰⎰(),,f x y z dxdydzΩ⎰⎰⎰(一)先单后重(先一后二)法假设:1(,,)f x y z Ω在有界闭区域上连续;2º过Ω内任一点M 且平行于某坐标轴的直线与Ω的边界曲面S 至多有两个交点.以下以z 轴的情形为例.),(2y x zz =),(1y x z z =),(2y x z z =),(1y x z z =xyzoΩD xy 1z 2z 2S 1S ),(1y x z z =),(2y x z z =ab),(y x ),,(:),,(:2211y x z z S y x z z S ==(,),xy x y D ∈过点作直线穿出.穿入,从从21z z Ω在xOy 面上的投影区域为D xy ,以D xy 的边界为准线作母线平行z 轴的柱面.这柱面与Ω的边界曲面S相交,并将S 分成上、下两部分:则Ω可以表示为12{(,,)(,)(,),(,)}.xy x y z z x y z z x y x y D Ω=≤≤∈()()12,(,,),,,x y f x y z z z x y z x y z ⎡⎤⎣⎦先将看作定值,将只看作的函数,在区间上对积分21(,)(,)(,,)(,)[(,,)].xyxyD z x y z x y D f x y z dv F x y d f x y z dz d σσΩ==⎰⎰⎰⎰⎰⎰⎰⎰从而原三重积分可表示为21(,)(,)(,,)xyz x y z x y D d f x y z dzσ=⎰⎰⎰这就化为一个定积分和一个二重积分的运算21(,)(,)(,,)z x y z x y f x y z dz⎰(,)xy F x y D 再计算在闭区间上的二重积分(,)F x y ==⎰⎰⎰Ωdvz y x f ),,(12:()(),,xy D y x y y x a x b ≤≤≤≤若得2()y y x =abD1()y y x =Dba2()y y x =1()y y x =先对z ,再对y ,最后对x 的三次积分dx ⎰dy ⎰(),,.f x y z dz ⎰()1,z x y ()2,z x y ()1y x ()2y x ab注:若将积分域Ω投影到yOz 或xOz 面上,则可把三重积分化为按其它顺序的三次积分.x y zyoz →→Ω积分次序为将投影到面21(,)(,)(,,)(,,)yzx y z x y z D f x y z dv d f x y z dxσΩ=⎰⎰⎰⎰⎰⎰21(,)(,)(,,)(,,)xzy x z y x z D f x y z dv d f x y z dyσΩ=⎰⎰⎰⎰⎰⎰y x z xoz →→Ω积分次序为将投影到面Ω:平面x =0, y = 0, z = 0,x+2y+ z =1所围成的区域x = 0, y = 0, x+2y =1 围成例1.计算三重积分x + 2y + z =1yx121()112y x =−D xyzy x x I d d d ⎰⎰⎰Ω=1、画出(观察)积分区域2、确定积分次序先z 再y 后x,4、将Ω向xoy 平面做投影得区域xyD 3、确定z 的积分上下限分析:1xyz121解:d d d x x y zΩ⎰⎰⎰121(1)00d (12)d x x x x y y−=−−⎰⎰120d x y z−−⎰12301(2)d 4x x x x =−+⎰148=练习:将积分次序改为:先y 再z 后x将积分次序改为:先x 再z 后y1xyz121x + 2y + z =1()012101201z x yy x x ≤≤−−⎧⎪⎪Ω≤≤−⎨⎪≤≤⎪⎩:例2 化三重积分 ⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中 积分区域 Ω为由曲面22y x z +=,2x y =,1=y , 0=z 所围成的空间闭区域.2y x=1y =oxy-11xyD 11、画出(观察)积分区域分析:2、确定积分次序先z 再y 后x,3、确定z 的积分上下限4、将Ω向xoy 平面做投影得区域xyD ⎰⎰⎰−+=1101222),,(yx x dz z y x f dy dx I .例3 化三重积分 ⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中积分区域Ω为由曲面 222y x z +=及22x z −=所围成的闭区域.1、画出(观察)积分区域分析:2、确定积分次序先z , 再y 后x ,3、确定z 的积分上下限222z x=−下曲面21((0,0)2(0,0)0)z z =>=2212z x y=+上曲面=22222(,,)xyxx yD I d f x y z dz σ−+∴⎰⎰⎰xyD Oxy–1122222112112(,,).x x xx ydx dy f x y z dz −−−−−+=⎰⎰⎰22222x y z x⎧⎪Ω⎨⎪+≤≤−⎩:2211x y x −−≤≤−11x −≤≤由⎩⎨⎧−=+=22222xz y x z ,221,x y +≤:xyz xoy D Ω消去得在面上的投影区域4、将Ω向xoy 平面做投影得区域xyD 解:xy xoy D xoy Ω思考:在面上的投影区域是一个圆域,那么在平面进行的二重积分,可不可以利用极坐标系计算?需要注意些什么?2222,4x z dv y x z y Ω+Ω=+=⎰⎰⎰例4计算其中是由曲面与平面所围成xyzo2z y x =−2z y x =−−分析:1、画出(观察)积分区域2、确定积分次序先z 再y 后x,4、将Ω向xoy 平面做投影得区域xyD 3、确定z 的积分上下限yxo4y =2y x ==222222xyy x y x D x z dv d x z dzσ−−−Ω++⎰⎰⎰⎰⎰⎰-=22224222y x xy xdx dy x z dz−−−+⎰⎰⎰分析:1、画出(观察)积分区域2、确定积分次序先y 再z 后x,4、将Ω向xoz 平面做投影得区域xzD 3、确定y 的积分上下限=2242222xzx z D x z dv d x z dyσ+Ω++⎰⎰⎰⎰⎰⎰22224,4x z dv y x z y Ω+Ω=+=⎰⎰⎰例计算其中是由曲面与平面所围成xyzΩ22y x z =+4y =xz2−2224x z +==2222422xzx zD x z dvd x z dyσΩ+++⎰⎰⎰⎰⎰⎰()=22222244x y xzx z d σ+≤−−+⎰⎰xz2−2224x z +=2r =()()=222224041282415d rr rdrr r dr πθππ−⋅=−=⎰⎰⎰解:1、确定了积分次序后,内层积分上下限至多包含两个变量,中层积分上下限至多包含一个变量,外层积分上下限必须是常数2、对于先单后重的次序,重积分部分可以根据积分区域的特点采用极坐标系计算(1)把积分区域Ω向某轴(例如 z 轴)投影,得投影区间],[21c c ;(3) 计算二重积分⎰⎰zD dxdy z y x f ),,(其结果为z 的函数)(z F ;(4)最后计算单积分⎰21)(c c dz z F 即得三重积分值.z(二)先重后单(先二后一)法先重后单, 就是先求关于某两个变量的二重积分再求关于另一个变量的定积分122,zz c c z xoy D ∈Ω⎡⎤⎣⎦()对用过轴且平行平面的平面去截,得截面21()zc cD g z dzdxdy=⎰⎰⎰V d z y x f ⎰⎰⎰Ω),,(即,若f (x, y, z )= g (z )21(,,).zc c D dz f x y z dxdy =⎰⎰⎰易见, 若内层的二重积分容易计算时,这个方法更显出优越性。