ansys-热分析-瞬态-稳态
- 格式:ppt
- 大小:4.74 MB
- 文档页数:135
(完整)ANSYS热分析详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)ANSYS热分析详解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)ANSYS热分析详解的全部内容。
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式.此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位 W/m 2—℃ 二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:● 对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W -- 作功;∆U ——系统内能;∆KE ——系统动能;∆PE —-系统势能;●对于大多数工程传热问题:0==PE KE ∆∆; ●通常考虑没有做功:0=W , 则:U Q ∆=; ● 对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量;●对于瞬态热分析:dt dU q =,即流入或流出的热传递速率q 等于系统内能的变化。
ANSYS 工程应用教程_热与电磁学篇随着ANSYS 版本的不断更新,ANSYS 的应用领域也日益广泛。
作为融结构、热、流体、电磁、声学为一体的大型通用有限元分析软件,可广泛应用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电、等一般工业及科学研究领域。
热分析包括稳态热分析、瞬态热分析、热辐射、相变、热应力等,电磁场分析包括二维静态、谐性、瞬态磁场分析,三维静态、谐性、瞬态磁场分析,高频电磁场分析和电场分析等。
ANSYS 热分析简介:图形用户界面方式(GUI )或命令流方式进行计算。
ANSYS 如何进行热分析:实际上,其基本原理是先将所处理的对象划分成有限个单元(包含若干节点),然后根据能量守恒原理求解一定边界条件和初始条件下每一节点处的热平衡方程,由此计算出各节点温度,继而进一步求解出其他相关量。
耦合场分析:这类涉及两个和多个物理场相互作用的问题为耦合场分析。
主要方法有直接耦合和间接耦合。
直接耦合解法的耦合单元包含所有的自由度,仅仅通过一次求解就能得出耦合场分析结果。
这种方法实际上是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。
间接耦合法又称为序贯耦合法,通过把第一磁场分析的结果作为第二次场分析的载荷来实现良种场的耦合。
三种基本传热方式:传导:当物理内部存在温度差时,热量将从高温部分传递到低温部分;而且不同温度的物体相互接触时热量会从高温物体传递到低温物体。
傅立叶定律,又称导热基本定律hot cold A(T T )t dQ κ-=,Q 为时间t 内的传热量,κ为热传导率,T 为温度,A 为面积,d 为两平面之间的距离。
对流:温度不同的各部分流体之间发生相对运动所引起的热量传递方式。
流体被加热时:w f q h(t t )=-流体被冷却时:f w q h(t t )=-,w t 和f t 分别为壁面温度和流体温度,h 为对流热系数。
ansys稳态热力学分析的基本过程及注意要点1. ansys热力学分析的基本过程及注意要点1.1,对于稳态分析,一般只需要定义导热系数,它可以是恒定的,也可以是随温度变化的。
1.2,在分析过程中,不一定选择国际单位制,但是在建立几何模型及输入材料热性参数时,单位必须统一。
2. ansys中提供6种热载荷:温度(temperature),热流率(heat flow),对流(convection),热流密度(heat flux),生热率(heat generate),辐射率(radiation)。
2.1 温度载荷2.1.1 在单个或者多个节点上施加温度载荷main menu/solution/define loads/apply/thermal/temperature/on nodes2.1.2 在所有节点上施加均匀温度载荷main menu/solution/define loads/apply/thermal/temperature/uniform tempmain menu/solution/define loads/setting /uniform tempmain menu/solution/loading options/uniform temp2.1.3 在关键点上施加温度载荷main menu/solution/define loads/apply/thermal/ temperature/on keypoints 2.1.4 在线段上施加温度载荷main menu/solution/define loads/apply/thermal/temperature/on lines2.1.5 在面上施加温度载荷main menu /solution/define loads/apply /thermal/ temperature/ on areas 2.2 热流率载荷2.2.1 在节点上施加热流率载荷main menu/solution/define loads/apply/thermal/heat flow/on nodes2.2.2 在关键点上施加热流率载荷2.3 对流载荷(convection)2.3.1在节点上施加对流载荷main menu/solution/define loads /apply/thermal/ convection/ on nodes2.3.2 在单元上施加均匀对流载荷mani menu/solution/ define loads/ apply /thermal/ convection /on elements/ uniform2.3.3 在单元上施加非均匀对流载荷mani menu/solution/ define loads/ apply /thermal/ convection /on elements/ tapered2.3.4 在线段上施加对流载荷main menu/solution/ define loads/ apply/ thermal/ convection/on lines2.3.5 在面上施加对流载荷main menu/ solution/ define loads/ apply /thermal/ convection/on areas2.4 热流密度载荷(heat flux)2.4.1 在节点上施加热流密度载荷main menu/ solution/ define loads/apply/ thermal/ heat flux/ on nodes2.4.2 在单元上施加热流密度载荷main menu/ solution/deine loads/apply thermal/heat flux / on elements2.4.3 在线段上施加热流密度载荷main menu/ solution /define loads/ apply / thermal/ heat flux/ on lines2.4.4 在面上施加热流密度载荷main menu/solution/ define loads /apply/ thermal/ heat flux/ on areas2.5 生热率载荷(heat generate)2.5.1 在节点上施加生热密度载荷main menu/solution/define loads /apply/ thermal/ heat generate/ on nodes 2.5.2 在所有节点施加均匀生热流密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/ uniform heat generate2.5.3 在线段上施加生热密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/on lines 2.5.4 在面上施加生热密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/on areas 2.5.5 在体上施加生热密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/on volumes 2.6 辐射率载荷(radiation)2.6.1 在节点上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/ on Nodes2.6.2 在单元上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/ on elements 2.6.3 在线段上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/ on lines2.6.4 在面上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/on areas3 稳态求解选项设置在对一个稳态热分析问题时,需要设置time/frequence选项、非线性选项以及输出控制等载荷步选项3.1 time-time step该选项用于设置载荷步的时间main menu/solution/loads step opts/ time&frequence/time -time step3.2 time and substeps该选项用于确定每载荷步中子步的数量或者时间步大小main menu/ solution/ load step options/ time & frequence/ time and substeps 3.3 convergence criteria该选项可根据温度、热流率等指标设置热分析的收敛标准,检验热分析的收敛性。
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
A N S Y S热分析指南——A N S Y S稳态热分析ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED 五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位W/m 2—℃二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中:Q —— 热量; W —- 作功;∆U ——系统内能; ∆KE —-系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化. 三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:dxdT k q -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“—”表示热量流向温度降低的方向。
4.1瞬态传热的定义ANSYS/Multiphysics , ANSYS/Mechanical, ANSYS/FLOTRANANSYS/Professional 这些产品支持瞬态热分析。
瞬态热分析用于计算一个系统 的随时间变化的温度场及其它热参数。
在工程上一般用瞬态热分析计算温度场, 并将之作为热载荷进行应力分析。
许多传热应用一热处理问题,喷管,引擎堵塞, 管路系统,压力容器等,都包含瞬态热分析。
瞬态热分析的基本步骤与稳态热分析类似。
主要的区别是瞬态热分析中的载 荷是随时间变化的。
为了表达随时间变化的载荷,可使用提供的函数工具描述载 荷〜时间曲线并将该函数作为载荷施加(请参考《ANSYS Basic Porcedures Guide 》中的“施加函数边界条件载荷”),或将载荷〜时间曲线分为载荷步。
载荷〜时间曲线中的每一个拐点为一个载荷步,如下图所示:图4-1用荷载步定义时变荷载对于每一个载荷步,必须定义载荷值及时间值,同时还需定义其它载荷步选 项,如:载荷步为渐变或阶跃、自动时间步长等,定义完一个载荷步的所有信息 后,将其写为载荷步文件,最后利用载荷步文件统一求解。
本章对一个铸件的分 析的实例对此有进一步说明。
4.2瞬态热分析中使用的单元和命令瞬态热分析中使用的单元与稳态热分析相同,第三章对单元有简单的描述。
要了解每个单元的详细说明,请参阅《 ANSYS Eleme nt Refere nee 》。
要了解每 个命令的详细功能,请参阅《ANSYS Comma nds Refere nce 。
4.3瞬态热分析的过程瞬态热分析的过程为:建模施加荷载并求解ANSYS 热分析指南(第四章) 第四章瞬态热分析Load▲ Stepped (KBCJ) ■SteppedSteady<state analysis在后处理中查看结果以下的内容将讲述瞬态分析的基本步骤,由于并不是每个瞬态分析的过程都一致,因此本书先对整个过程进行了一般的讲解,再进行实例的分析。
ANSYS稳态和瞬态热模拟基本步骤基于ANSYS 9。
0一、稳态分析从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。
其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:(3-1)=0+-q q q流入生成流出在稳态分析中,任一节点的温度不随时间变化.基本步骤:(为简单起见,按照软件的菜单逐级介绍)1、选择分析类型点击Preferences菜单,出现对话框1。
对话框1我们主要针对的是热分析的模拟,所以选择Thermal.这样做的目的是为了使后面的菜单中只有热分析相关的选项.2、定义单元类型GUI:Preprocessor>Element Type〉Add/Edit/Delete 出现对话框2对话框2点击Add,出现对话框3对话框3在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。
对于三维模型,多选择SLOID87:六节点四面体单元。
3、选择温度单位默认一般都是国际单位制,温度为开尔文(K).如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units选择需要的温度单位。
4、定义材料属性对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。
GUI: Preprocessor〉Material Props> Material Models 出现对话框4对话框4一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5.对话框5若要设定材料的热导率随温度变化,主要针对半导体材料。
则需要点击对话框5中的Add Temperature选项,设置不同温度点对应的热导率,当然温度点越多,模拟结果越准确.设置完毕后,可以点击Graph按钮,软件会生成热导率随温度变化的曲线。
对话框5中,Material菜单,New Model选项,添加多种材料的热参数。
4.1瞬态传热的定义ANSYS/Multiphysics , ANSYS/Mechanical, ANSYS/FLOTRANANSYS/Professional 这些产品支持瞬态热分析。
瞬态热分析用于计算一个系统 的随时间变化的温度场及其它热参数。
在工程上一般用瞬态热分析计算温度场, 并将之作为热载荷进行应力分析。
许多传热应用一热处理问题,喷管,引擎堵塞, 管路系统,压力容器等,都包含瞬态热分析。
瞬态热分析的基本步骤与稳态热分析类似。
主要的区别是瞬态热分析中的载 荷是随时间变化的。
为了表达随时间变化的载荷,可使用提供的函数工具描述载 荷〜时间曲线并将该函数作为载荷施加(请参考《ANSYS Basic Porcedures Guide 》中的“施加函数边界条件载荷”),或将载荷〜时间曲线分为载荷步。
载荷〜时间曲线中的每一个拐点为一个载荷步,如下图所示 :图4-1用荷载步定义时变荷载对于每一个载荷步,必须定义载荷值及时间值,同时还需定义其它载荷步选 项,如:载荷步为渐变或阶跃、自动时间步长等,定义完一个载荷步的所有信息 后,将其写为载荷步文件,最后利用载荷步文件统一求解。
本章对一个铸件的分 析的实例对此有进一步说明。
4.2瞬态热分析中使用的单元和命令 瞬态热分析中使用的单元与稳态热分析相同,第三章对单元有简单的描述。
要了解每个单元的详细说明,请参阅《 ANSYS Eleme nt Refere nee 》。
要了解每 个命令的详细功能,请参阅《ANSYS Comma nds Refere nce 。
4.3瞬态热分析的过程瞬态热分析的过程为:建模ANSYS 热分析指南(第四章)第四章瞬态热分析Load ▲ Stepped (KBCJ)■SteppedSteady<state analysis施加荷载并求解在后处理中查看结果以下的内容将讲述瞬态分析的基本步骤,由于并不是每个瞬态分析的过程都一致,因此本书先对整个过程进行了一般的讲解,再进行实例的分析。
Ansys作业——瞬态热分析Ansys作业—瞬态热分析问题描述瞬态热分析实例1⏹长方形的板,几何参数及其边界条件如图3-6 所示。
板的宽度为5cm,其中间有一个半径为1cm 的圆孔。
板的初始温度为20℃,将其右侧突然置于温度为20℃且对流换热系数为100W/M2℃的流体中,左端置于温度为500℃的温度场,试计算:⏹(1)第1s 和第50s板内的温度分布情况。
⏹(2)整个板在前50s内的温度变化过程。
⏹(3)圆孔边缘A点处温度随时间变化曲线。
1.建立有限元模型首先建立瞬态传热分析所需的有限元模型,选择单元。
(1) 选择热分析单元,操作如下:GUI:Main Menu > Preprocessor > Element Type > Add/Edit/Delete在弹出的对话框中,单击Add。
在单元类型库对话框中选择Plane55单元。
单击OK。
命令:ET,1,PLANE55(2) 定义材料属性首先进入Define Material Model Behavior 对话框,操作如下:GUI:Main Menu > Preprocessor > Material Props下面定义瞬态热分析所需的材料参数,如热传导率、比热容及材料密度:定义热传导GUI:Main Menu > Preprocessor > Material Props > Thermal > Conductivity > Isotropic 在弹出的定义材料热传导率对话框中的KXX 栏键入“5”。
命令:MPDATA,KXX,1,,5定义比热容GUI:Main Menu > Preprocessor > Material Props > Thermal > Specific Heat在弹出的定义比热容对话框中的C栏键入“200”。
命令:MPDATA,C,1,,200定义密度GUI:Main Menu > Preprocessor > Material Props > Thermal > Density在弹出密度定义对话框中的DENS栏键入“5000”。