模糊控制系统设计教程
- 格式:ppt
- 大小:291.50 KB
- 文档页数:37
模糊PID控制器的设计与仿真设计模糊PID控制器时,首先要将精确量转换为模糊量,并且要把转换后的模糊量映射到模糊控制论域当中,这个过程就是精确量模糊化的过程。
模糊化的主要功能就是将输入量精确值转换成为一个模糊变量的值,最终形成一个模糊集合。
本次设计系统的精确量包括以下变量:变化量e ,变化量的变化速率ec 还有参数整定过程中的输出量ΔKP ,ΔKD,ΔKI,在设计模糊PID 的过程中,需要将这些精确量转换成为模糊论域上的模糊值。
本系统的误差与误差变化率的模糊论域与基本论域为:E=[-6,-4,-2,0,2,4,6];Ec=[-6,-4,-2,0,2,4,6]。
模糊PID控制器的设计选用二维模糊控制器。
以给定值的偏差e和偏差变化ec为输入;ΔKP ,ΔKD,ΔKI为输出的自适应模糊PID控制器,见图1。
图1模糊PID控制器(1)模糊变量选取输入变量E和EC的模糊化将一定范围(基本论域)的输入变量映射到离散区间(论域)需要先验知识来确定输入变量的范围。
就本系统而言,设置语言变量取七个,分别为 NB,NM,NS,ZO,PS,PM,PB。
(2)语言变量及隶属函数根据控制要求,对各个输入,输出变量作如下划定:e,ec论域:{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}ΔKP ,ΔKD,ΔKI论域:{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}应用模糊合成推理PID参数的整定算法。
第k个采样时间的整定为).()(,)()(,)()(kKKkKkKKkKkKKkKDDDIIIPPP∆+=∆+=∆+=式中,,DIPKKK为经典PID控制器的初始参数。
设置输入变量隶属度函数如图2所示,输出变量隶属度函数如图3所示。
图2 输入变量隶属度函图3 输出变量隶属度函(3)编辑模糊规则库根据以上各输出参数的模糊规则表,可以归纳出49条控制逻辑规则,具体的控制规则如下所示:1.If (e is NB) and (ec is NB) then (kp is NB)(ki is PB)(kd is NS)(1)2.If (e is NB) and (ec is NM) then (kp is NB)(ki is PB)(kd is PS)(1)3.If (e is NB) and (ec is NS) then (kp is NM)(ki is PM)(kd is PB)(1)4.If (e is NB) and (ec is ZO) then (kp is NM)(ki is PM)(kd is PB)(1)5.If (e is NB) and (ec is PS) then (kp is NS)(ki is PS)(kd is PB)(1)6.If (e is NB) and (ec is PM) then (kp is ZO)(ki is ZO)(kd is PM)(1)7.If (e is NB) and (ec is PB) then (kp is ZO)(ki is ZO)(kd is NS)(1)8.If (e is NM) and (ec is NB) then (kp is NB)(ki is PB)(kd is NS)(1)9.If (e is NM) and (ec is NM) then (kp is NB)(ki is PB)(kd is PS)(1)10.If (e is NM) and (ec is NS) then (kp is NM)(ki is PM)(kd is PB)(1)11.If (e is NM) and (ec is ZO) then (kp is NS)(ki is PS)(kd is PM)(1)12.If (e is NM) and (ec is PS) then (kp is NS)(ki is PS)(kd is PM)(1)13.If (e is NM) and (ec is PM) then (kp is ZO)(ki is ZO)(kd is PS)(1)14.If (e is NM) and (ec is PB) then (kp is PS)(ki is ZO)(kd is ZO)(1)15.If (e is NS) and (ec is NB) then (kp is NM)(ki is PB)(kd is ZO)(1)16.If (e is NS) and (ec is NM) then (kp is NM)(ki is PM)(kd is PS)(1)17.If (e is NS) and (ec is NS) then (kp is NM)(ki is PS)(kd is PM)(1)18.If (e is NS) and (ec is ZO) then (kp is NS)(ki is PS)(kd is PM)(1)19.If (e is NS) and (ec is PS) then (kp is ZO)(ki is ZO)(kd is PS)(1)20.If (e is NS) and (ec is PM) then (kp is PS)(ki is NS)(kd is PS)(1)21.If (e is NS) and (ec is PB) then (kp is PS)(ki is NS)(kd is ZO)(1)22.If (e is ZO) and (ec is NB) then (kp is NM)(ki is PM)(kd is ZO)(1)23.If (e is ZO) and (ec is NM) then (kp is NM)(ki is PM)(kd is PS)(1)24.If (e is ZO) and (ec is NS) then (kp is NS)(ki is PS)(kd is PS)(1)25.If (e is ZO) and (ec is ZO) then (kp is ZO)(ki is ZO)(kd is PS)(1)26.If (e is ZO) and (ec is PS) then (kp is PS)(ki is NS)(kd is PS)(1)27.If (e is ZO) and (ec is PM) then (kp is PM)(ki is NM)(kd is PS)(1)28.If (e is ZO) and (ec is PB) then (kp is PM)(ki is NM)(kd is ZO)(1)29.If (e is PS) and (ec is NB) then (kp is NS)(ki is PM)(kd is ZO)(1)30.If (e is PS) and (ec is NM) then (kp is NS)(ki is PS)(kd is ZO)(1)31.If (e is PS) and (ec is NS) then (kp is ZO)(ki is ZO)(kd is ZO)(1)32.If (e is PS) and (ec is ZO) then (kp is PS)(ki is NS)(kd is ZO)(1)33.If (e is PS) and (ec is PS) then (kp is PS)(ki is NS)(kd is ZO)(1)34.If (e is PS) and (ec is PM) then (kp is PM)(ki is NM)(kd is ZO)(1)35.If (e is PS) and (ec is PB) then (kp is PM)(ki is NB)(kd is ZO)(1)36.If (e is PM) and (ec is NB) then (kp is NS)(ki is ZO)(kd is NB)(1)37.If (e is PM) and (ec is NM) then (kp is ZO)(ki is ZO)(kd is PS)(1)38.If (e is PM) and (ec is NS) then (kp is PS)(ki is NS)(kd is NS)(1)39.If (e is PM) and (ec is ZO) then (kp is PM)(ki is NS)(kd is NS)(1)40.If (e is PM) and (ec is PS) then (kp is PM)(ki is NM)(kd is NS)(1)41.If (e is PM) and (ec is PM) then (kp is PM)(ki is NB)(kd is NS)(1)42.If (e is PM) and (ec is PB) then (kp is PB)(ki is NB)(kd is NB)(1)43.If (e is PB) and (ec is NB) then (kp is ZO)(ki is ZO)(kd is NB)(1)44.If (e is PB) and (ec is NM) then (kp is ZO)(ki is ZO)(kd is NM)(1)45.If (e is PB) and (ec is NS) then (kp is PM)(ki is NS)(kd is NM)(1)46.If (e is PB) and (ec is ZO) then (kp is PM)(ki is NM)(kd is NM)(1)47.If (e is PB) and (ec is PS) then (kp is PM)(ki is NM)(kd is NS)(1)48.If (e is PB) and (ec is PM) then (kp is PB)(ki is NB)(kd is NS)(1)49.If (e is PB) and (ec is PB) then (kp is PB)(ki is NB)(kd is NB)(1) 把这49条控制逻辑规则,键入到模糊规则库中,如图4。
模糊PID控制原理与设计步骤1.模糊化输入:将输入量通过模糊化过程,将其转化为隶属度函数形式,用来描述输入数量的各个级别或水平。
2.模糊化输出:同样地,将输出量也通过模糊化过程,转化为隶属度函数形式。
3.模糊化规则库:根据经验和专家知识,建立一组模糊规则,用来描述输入与输出之间的关系。
4.基于规则库的推理:根据输入的隶属度函数和规则库,通过隶属度的逻辑运算进行推理,得到输出的隶属度函数。
5.解模糊化:将输出的隶属度函数转化为具体的输出量,可以采用常用的解模糊化方法,如最大隶属度法、面积法等。
1.系统建模:首先需要对被控对象进行建模,得到其输入-输出关系。
可以基于部分局部建模或物理建模进行分析和确定。
2.设计模糊控制器的输入和输出:根据系统的特性和要求,确定模糊控制器的输入和输出。
- 输入通常包括误差(error)和误差的变化率(change in error)等。
-输出通常为控制量,可为模糊量或一阶量。
3.确定输入和输出的隶属度函数:确定输入和输出的隶属度函数形式,并根据实际情况进行参数调整。
通常可以选择三角形、梯形或高斯型函数等。
4. 设计模糊规则库:根据经验和专家知识,建立模糊规则库。
规则库的设计需要包括合理的覆盖边界和均匀的分布。
可以使用专家系统、模糊C-Means聚类等方法进行规则库的构建。
5.制定模糊推理机制:确定模糊推理的方法,常用的有最小最大法、剪切平均法等。
根据输入的隶属度函数和规则库,进行隶属度的逻辑运算和推理,得到输出的隶属度函数。
6.解模糊化:根据规则库,将模糊输出转化为具体的控制量。
可以采用最大隶属度法、面积法等方法进行解模糊化。
7.验证和调整:将设计好的模糊PID控制器应用到实际系统中,进行运行和调整。
根据实际反馈信号,对模糊规则库进行优化和调整,以提高控制系统的性能和稳定性。
总结:模糊PID控制是一种基于模糊逻辑和PID控制相结合的控制方法,能够更好地应对非线性、时变和模糊的控制系统。
3.1 模糊PID 控制原理与设计步骤模糊PID 控制器以误差e 和误差变化率e c 作为控制器的输入量,输入量经模糊化与模糊推理之后得出模糊控制器的输出值,PID 控制器根据模糊控制的输出值对自身参数进行调节。
本文所用模糊PID 控制器的原理图如图3.1所示图3.1 自适应模糊PID 控制结构图Fig.3.1 The structure of adaptive fuzzyPID control system3.1.1 PID 控制器性能分析在PID 控制环节,离散PID 控制算法为10()()kdp k i jk k j K u k K e K Te e e T(3.1)为便于控制模型的搭建,由式(3.1)进行z 变换得PID 控制环节的传递函数为(1)()1i d pK Tz K z G z K z Tz(3.2)其中,K p 、K i 、K d 分别为比例、积分与微分系数,T 为系统采样时间。
PID 控制器参数K p ,K i ,K d 共同作用于被控系统,它们各自对系统的响应速度、超调量、稳定性及稳态精度等性能的影响分别为:比例系数K p :使控制系统快速动作,减小系统误差。
K p 较大时,系统能快速响应,但K p 过大时会产生超调,甚至破坏系统的稳定性;K p 过小时,会减弱控制器动作幅度,调节时间增长,使系统响应变得不理想。
积分系数K i :系统进入稳态阶段时会消除系统误差。
K i 较大时,系统稳态误差会很快变小,但在系统初始响应阶段K i 较大时,会使控制器产生积分饱和,从而破坏系统的稳定性;K i 过小时,难以消除系统的稳态误差,不能确保较高的调节精度。
微分系数K d:提高系统的动态响应性能,会在系统响应过程中对偏差的变化进行提前预测,从而抑制偏差的变化。
K d过大时,会使系统响应作用减弱,从而使调节时间增长,而且会降低系统的抗干扰性能。
PID控制参数的调节必须考虑不同时刻它们各自对系统性能的影响及相互之间的互联关系。
自动控制系统中的模糊控制器设计技巧自动控制系统是现代工业生产的重要组成部分,而模糊控制器作为一种常用的控制策略,广泛应用于各种工业领域。
模糊控制器通过模糊逻辑和模糊推理来处理不确定性和非线性问题,具有灵活性和适应性高的特点。
在设计模糊控制器时,需要考虑多个因素,下面将介绍一些设计模糊控制器的技巧。
首先,选择适当的模糊逻辑和模糊推理方法是设计模糊控制器的基础。
模糊逻辑是将输入和输出之间的关系进行模糊化,以便用模糊推理方法进行推理和控制。
在选择模糊逻辑和模糊推理方法时,应考虑控制系统的具体需求和性能要求。
常见的模糊逻辑包括最小最大法、加法法和乘法法,而模糊推理方法包括模糊规则和模糊推理机制。
其次,建立合适的输入输出模糊化和去模糊化方法是设计模糊控制器的关键。
在输入模糊化阶段,需要将输入经过模糊化处理,将连续的输入值转换为模糊集合,以便后续的模糊推理。
常见的输入模糊化方法包括三角隶属函数、梯形隶属函数和高斯隶属函数。
在输出去模糊化阶段,需要将模糊控制器的输出转换为实际控制信号。
常见的输出去模糊化方法包括最大值法、平均值法和加权平均值法。
此外,对于模糊控制器中的模糊规则的设计,需要根据实际控制需求和系统特点进行合理的规则设置。
模糊规则是模糊控制器的核心部分,包含了控制输入和输出之间的模糊关系。
在设计模糊规则时,应对系统进行建模和分析,合理划分输入和输出的模糊集合,并利用专家经验和实验数据进行规则的设置。
常见的规则设置方法包括基于经验的设置和基于数据的设置。
此外,对于模糊控制器的参数调整,可以采用试探法、经验法和优化算法等不同的方法。
试探法是一种简单而直观的参数调整方法,通过不断试探和调整参数值来改善系统的控制性能。
经验法是基于专家经验和工程实践的参数调整方法,可以快速调整模糊控制器的参数以满足系统控制要求。
优化算法是一种系统化的参数调整方法,通过建立数学模型和优化目标函数,自动求解最优参数。
最后,模糊控制器的性能评价和系统的鲁棒性分析是设计模糊控制器的重要步骤。
模糊PID控制原理与设计步骤模糊PID控制(Fuzzy PID control)是在PID控制基础上引入了模糊逻辑的一种控制方法。
相比传统的PID控制,模糊PID控制能够更好地适应系统的非线性、时变和不确定性等特点,提高系统的性能和鲁棒性。
设计步骤:1.确定系统的模型和控制目标:首先需要对待控制的系统进行建模,确定系统的数学模型,包括系统的输入、输出和动态特性等。
同时,需要明确控制目标,即系统应达到的期望状态或性能指标。
2.设计模糊控制器的输入和输出变量:根据系统的特性和控制目标,确定模糊控制器的输入和输出变量。
输入变量通常为系统的误差、误差变化率和累积误差,输出变量为控制力。
3.确定模糊集和模糊规则:对于每个输入和输出变量,需要确定其模糊集和模糊规则。
模糊集用于将实际变量映射为模糊集合,如“大、中、小”等;模糊规则用于描述输入变量与输出变量之间的关系,通常采用IF-THEN形式,如“IF误差大AND误差变化率中THEN控制力小”。
4.编写模糊推理和模糊控制算法:根据确定的模糊集和模糊规则,编写模糊推理和模糊控制算法。
模糊推理算法用于根据输入变量和模糊规则进行推理,生成模糊的输出变量;模糊控制算法用于将模糊的输出变量转化为具体的控制力。
5.调试和优化:根据系统的实际情况,调试和优化模糊PID控制器的参数。
可以通过试错法或专家经验等方式对模糊集、模糊规则和模糊函数等进行调整,以达到较好的控制效果。
6.实施和验证:将调试完成的模糊PID控制器应用到实际系统中,并进行验证。
通过监控系统的实际输出和期望输出,对模糊PID控制器的性能进行评估和调整。
总结:模糊PID控制是一种将模糊逻辑引入PID控制的方法,能够有效地提高系统的性能和鲁棒性。
设计模糊PID控制器的步骤主要包括确定系统模型和控制目标、设计模糊控制器的输入输出变量、确定模糊集和模糊规则、编写模糊推理和模糊控制算法、调试和优化以及实施和验证。
通过这些步骤,可以设计出较为优化的模糊PID控制器来实现系统的控制。
模糊控制摘要:模糊控制是一种针对非线性系统的控制方法,通过使用模糊集合和模糊逻辑对系统进行建模和控制。
本文将介绍模糊控制的基本原理、应用领域以及设计步骤。
通过深入了解模糊控制,读者可以更好地理解和应用这一控制方法。
1. 导言在传统的控制理论中,线性系统是最常见和最容易处理的一类系统。
然而,许多实际系统都是非线性的,对于这些系统,传统的控制方法往往无法取得良好的效果。
模糊控制方法由于其对于非线性系统的适应性,广泛用于工业控制、机器人控制、汽车控制等领域。
2. 模糊控制的基本原理模糊控制的基本原理是建立模糊集合和模糊逻辑,通过模糊化输入和输出,进行模糊推理和解模糊处理,完成对非线性系统的控制。
模糊集合是实数域上的一种扩展,它允许元素具有模糊隶属度,即一个元素可以属于多个集合。
模糊逻辑则描述了这些模糊集合之间的关系,通过模糊逻辑运算,可以从模糊输入推导出模糊输出。
3. 模糊控制的应用领域模糊控制方法在许多领域中都有着广泛的应用。
其中最常见的应用领域之一是工业控制。
由于工业系统往往具有非线性和复杂性,传统的控制方法往往无法满足要求,而模糊控制方法能够灵活地处理这些问题,提高系统的控制性能。
另外,模糊控制方法还广泛应用于机器人控制、汽车控制、航空控制等领域。
4. 模糊控制的设计步骤模糊控制的设计步骤一般包括五个阶段:模糊化、建立模糊规则、进行模糊推理、解模糊处理和性能评估。
首先,需要将输入和输出模糊化,即将实际的输入输出转换成模糊集合。
然后,根据经验和知识,建立模糊规则库,描述输入与输出之间的关系。
接下来,进行模糊推理,根据输入和模糊规则,通过模糊逻辑运算得到模糊的输出。
然后,对模糊输出进行解模糊处理,得到实际的控制量。
最后,需要对控制系统的性能进行评估,以便进行调整和优化。
5. 模糊控制的优缺点模糊控制方法具有一定的优点和缺点。
其优点包括:对于非线性、时变和不确定系统具有较好的适应性;模糊规则的建立比较直观和简单,无需精确的数学模型;能够考虑因素的模糊性和不确定性。
模糊控制系统的设计:分析模糊控制系统的设计原则、方法和应用引言在现代控制系统中,模糊控制是一种常用的方法,它能够有效地应对复杂、不确定、非线性的系统。
模糊控制系统的设计原则、方法和应用十分重要,对于提高系统的性能和鲁棒性具有重要意义。
模糊控制系统的基本原理模糊控制系统的设计是基于模糊逻辑的,而模糊逻辑是一种能够处理模糊信息的逻辑。
模糊逻辑通过建立“模糊集合”和“模糊规则”来描述系统的行为。
模糊集合是指在某个范围内具有模糊边界的集合,例如“大”和“小”。
而模糊规则是一种以模糊集合为输入和输出的规则,例如“如果输入是大,则输出是小”。
模糊控制系统通过将输入信号模糊化,然后根据模糊规则进行推理,最后将输出信号去模糊化,从而实现对系统的控制。
模糊控制系统的设计原则原则一:定义合适的输入与输出在设计模糊控制系统时,首先需要明确输入和输出的变量及其范围。
输入变量是指模糊控制系统的输入信号,例如温度、压力等。
输出变量是指模糊控制系统的输出信号,例如阀门开度、电机转速等。
合适的输入与输出定义能够提高系统的可靠性和鲁棒性,从而有效地控制系统。
原则二:选择适当的隶属函数隶属函数是用来描述模糊集合的函数,它决定了模糊集合的形状和分布。
在选择隶属函数时,需要考虑系统的非线性特性和响应速度。
常用的隶属函数有三角形、梯形等。
选择适当的隶属函数能够提高系统的性能和鲁棒性。
原则三:建立有效的模糊规则模糊规则是模糊控制系统的核心,它决定了输入和输出之间的关系。
在建立模糊规则时,需要考虑系统的特性和控制目标。
模糊规则可以通过专家经验、试错法和数据分析等方式获取。
建立有效的模糊规则能够提高系统的控制能力。
模糊控制系统的设计方法方法一:典型模糊控制系统的设计方法典型模糊控制系统的设计方法包括以下几个步骤:1.确定控制目标和要求,明确输入和输出的定义;2.确定隶属函数的形状和分布,选择适当的隶属函数;3.根据系统的特性和控制目标,建立模糊规则;4.设计模糊推理机制,实现对输入和输出的模糊化和去模糊化;5.建立模糊控制系统的仿真模型,进行系统性能和鲁棒性分析;6.根据仿真结果进行参数调整和系统优化;7.实际应用中进行系统测试和调整。