基于MATLAB的模糊控制系统设计
- 格式:doc
- 大小:481.00 KB
- 文档页数:13
利用Matlab进行模糊逻辑和模糊控制的基本原理Matlab是一种强大的数学计算软件,广泛应用于各个领域的工程和科学研究。
在现实生活中,我们经常会遇到一些模糊不清、不确定的情况,而模糊逻辑和模糊控制正是用来处理这些模糊问题的有效工具。
本文将介绍利用Matlab进行模糊逻辑和模糊控制的基本原理,并通过一些具体案例来说明其在实际应用中的价值。
首先,我们需要了解模糊逻辑和模糊控制的基本概念和原理。
模糊逻辑是Lotfi Zadeh教授于1965年提出的一种处理模糊信息的形式化逻辑系统。
与传统的布尔逻辑只有两个取值(真和假)不同,模糊逻辑引入了模糊概念,可以处理多个取值范围内的逻辑判断。
其基本原理是将模糊的语言描述转化为数学上的模糊集合,然后通过模糊运算进行推理和决策。
在Matlab中,可以使用Fuzzy Logic Toolbox工具箱来进行模糊逻辑的建模和模拟。
该工具箱提供了一系列的函数和工具,可以帮助我们创建模糊逻辑系统、定义模糊集合和模糊规则,并进行输入输出的模糊化和去模糊化运算。
一个典型的模糊逻辑系统包括三个主要组成部分:模糊集合、模糊规则和模糊推理。
模糊集合用于描述模糊化的输入和输出变量,可以是三角形、梯形、高斯等形状。
模糊规则定义了模糊逻辑系统的推理过程,通常由一系列的if-then规则组成,如“如果温度较低,则输出加热”,其中“温度较低”和“加热”为模糊集合的标签。
模糊推理根据输入变量的模糊值和模糊规则,计算出输出变量的模糊值。
为了更好地理解模糊逻辑的原理和应用,我们以一个简单的案例来说明。
假设我们需要设计一个自动化灯光控制系统,使得灯光的亮度能够根据环境光线的强弱自动调节。
首先,我们需要收集一些实际的数据来建立模糊逻辑系统。
通过传感器测量到的环境光强度作为输入变量,设定的亮度值作为输出变量。
在Matlab中,可以使用Fuzzy Logic Designer来创建一个模糊逻辑系统。
首先,我们需要定义输入和输出变量,以及它们的模糊集合。
基于MATLAB的洗衣机模糊控制设计MATLAB是一种功能强大的数学软件,可以用于模糊控制设计。
在本文中,我们将介绍如何使用MATLAB来设计一个基于模糊控制的洗衣机控制系统。
首先,我们需要定义洗衣机模糊控制系统的输入和输出变量。
在一个简单的洗衣机系统中,输入变量可以是衣物的脏度和水位,而输出变量可以是洗衣机的清洗时间和水温。
接下来,我们需要建立一个模糊控制器模型。
模糊控制器是一个基于模糊逻辑的控制器,能够处理模糊输入和输出变量。
在MATLAB中,我们可以使用Fuzzy Logic Toolbox来建立一个模糊控制器模型。
我们首先需要定义模糊输入变量的隶属函数。
在这个例子中,我们可以定义脏度变量的隶属函数为"低","中"和"高",水位变量的隶属函数为"低","中"和"高"。
然后,我们需要定义模糊输出变量的隶属函数。
在这个例子中,我们可以定义清洗时间变量的隶属函数为"短","适中"和"长",水温变量的隶属函数为"低","中"和"高"。
接下来,我们需要定义输入和输出变量之间的模糊规则。
在这个例子中,我们可以定义以下规则:规则1:如果脏度是低和水位是低,那么清洗时间是短和水温是低。
规则2:如果脏度是低和水位是中,那么清洗时间是适中和水温是中。
规则3:如果脏度是低和水位是高,那么清洗时间是长和水温是中。
规则4:如果脏度是中和水位是低,那么清洗时间是适中和水温是中。
规则5:如果脏度是中和水位是中,那么清洗时间是适中和水温是中。
规则6:如果脏度是中和水位是高,那么清洗时间是长和水温是高。
规则7:如果脏度是高和水位是低,那么清洗时间是长和水温是中。
规则8:如果脏度是高和水位是中,那么清洗时间是长和水温是高。
基于MATLAB的模糊PID控制器的设计模糊PID控制器是一种常用的控制算法,可以解决传统PID控制器在非线性系统中效果不佳的问题。
在MATLAB中,可以使用fuzzylogic工具箱来设计模糊PID控制器。
模糊PID控制器的设计过程分为三个步骤:建立模糊系统、设计控制器和性能评估。
接下来,设计模糊PID控制器。
在MATLAB中,可以使用fuzzy工具箱提供的mamdani和sugeno两种模糊控制器类型。
其中,mamdani模糊控制器基于模糊规则的if-then逻辑,而sugeno模糊控制器使用模糊规则来计算模糊输出。
根据系统的具体需求,可以选择合适的模糊控制器类型,并设置相应的参数。
同时,可以使用模糊控制器设计工具来对模糊控制器进行优化和调整。
最后,对设计的模糊PID控制器进行性能评估。
在MATLAB中,可以使用模拟仿真工具对模糊PID控制器进行测试和评估。
具体方法是将模糊PID控制器与待控制的系统进行耦合,观察系统的响应和控制效果,并评估其性能和稳定性。
可以通过调整模糊PID控制器的参数和模糊规则来改善控制效果。
总之,基于MATLAB的模糊PID控制器设计包括建立模糊系统、设计控制器和性能评估三个步骤。
通过合理设置模糊输入、模糊输出和模糊规则,可以有效地解决非线性系统的控制问题。
同时,利用MATLAB提供的模糊控制器设计工具和性能评估工具,可以对模糊PID控制器进行优化和改进,以达到更好的控制效果和稳定性。
基于MATLAB的模糊控制器的设计与仿真摘要:本文对模糊控制器进行了主要介绍。
提出了一种模糊控制器的设计与仿真的实现方法,该方法利用MA TLB模糊控制工具箱中模糊控制器的控制规则和隶属度函数,建立模型,并进行模糊控制器设计与仿真。
关键词:模糊控制,隶属度函数,仿真,MA TLAB1 引言模糊控制是一种特别适用于模拟专家对数学模型未知的较复杂系统的控制,是一种对模型要求不高但又有良好控制效果的控制新策略。
与经典控制和现代控制相比,模糊控制器的主要优点是它不需要建立精确的数学模型。
因此,对一些无法建立数学模型或难以建立精确数学模型的被控对象,采用模糊控制方法,往往能获得较满意的控制效果。
模糊控制器的设计比一般的经典控制器如PID控制器要复杂,但如果借助MATLAB则系统动态特性良好并有较高的稳态控制精度,可提高模糊控制器的设计效率。
本文在MATLAB环境下针对某个控制环节对模糊控制系统进行了设计与仿真。
2 模糊控制器简介模糊控制器是一种以模糊集合论,模糊语言变量以及模糊推理为数学基础的新型计算机控制方法。
显然,模糊控制的基础是模糊数学,模糊控制的实现手段是计算机。
本章着重介绍模糊控制的基本思想,模糊控制的基本原理,模糊控制器的基本设计原理和模糊控制系统的性能分析。
随着科学技术的飞速发展,在那些复杂的,多因素影响的严重非线性、不确定性、多变性的大系统中,传统的控制理论和控制方法越来越显示出局限性。
长期以来,人们期望以人类思维的控制方案为基础,创造出一种能反映人类经验的控制过程知识,并可以达到控制目的,能够利用某种形式表现出来。
而且这种形式既能够取代那种精密、反复、有错误倾向的模型建造过程,又能避免精密的估计模型方程中各种方程的过程。
同时还很容易被实现的,简单而灵活的控制方式。
于是模糊控制理论极其技术应运而生。
3 模糊控制的特点模糊控制是以模仿人类人工控制特点而提出的,虽然带有一定的模糊性和主观性,但往往是简单易行,而且是行之有效的。
基于MATLAB的温度模糊控制系统的设计MATLAB是一种强大的数学计算软件,用于科学与工程领域的数据处理、分析和可视化等应用。
在温度控制系统设计中,模糊控制是一种常用的控制方法。
本文将介绍基于MATLAB的温度模糊控制系统的设计。
温度模糊控制系统的设计包括四个主要步骤:建立模糊控制器,设计模糊推理规则,模糊化与去模糊化以及系统仿真。
首先,建立模糊控制器。
在MATLAB中,可以使用Fuzzy Logic Toolbox工具箱来创建和管理模糊逻辑系统。
可以使用命令fuzzy,创建一个模糊逻辑系统对象。
在创建模糊控制器对象后,需要定义输入和输出变量。
输入变量可以是温度偏差,输出变量可以是控制信号。
然后,可以使用addInput和addOutput命令来添加输入和输出变量。
接下来,设计模糊推理规则。
在模糊推理中,需要定义一组规则来描述输入变量和输出变量之间的关系。
可以使用addRule命令来添加规则。
规则的数量和形式可以根据实际需求进行调整。
然后,进行模糊化与去模糊化。
模糊化是将模糊输入变量转换为模糊集,而去模糊化是将模糊输出变量转换为具体的控制信号。
可以使用evalfis命令进行模糊化和去模糊化。
模糊化使用模糊逻辑系统对象对输入变量进行处理,而去模糊化使用模糊逻辑系统对象对输出变量进行处理。
最后,进行系统仿真。
可以使用Simulink工具箱来进行系统仿真。
在仿真过程中,将温度控制系统与模糊控制器进行连接,然后通过给定的输入条件观察系统的响应。
可以利用Simulink中的Scope来显示温度的变化,并且可以通过模糊控制器来调整温度。
在设计温度模糊控制系统时,还需要考虑参数调节和性能评估等问题。
可以使用MATLAB中的优化工具箱对模糊控制器的参数进行调节,以获得更好的控制性能。
还可以使用MATLAB中的性能评估工具来评估系统的性能,例如稳定性、精度和鲁棒性等。
综上所述,基于MATLAB的温度模糊控制系统的设计包括建立模糊控制器、设计模糊推理规则、模糊化与去模糊化以及系统仿真等步骤。
模糊控制在matlab中的实例模糊控制是一种应用广泛的控制方法,它可以处理那些难以精确建立数学模型的系统。
在Matlab中,使用Fuzzy Logic Toolbox工具箱可以方便地实现模糊控制系统。
以下是一个简单的模糊控制器示例,控制一个小车的速度和方向,使得其能够沿着预设的轨迹行驶。
1. 首先,定义输入和输出变量。
这里我们需要控制小车的速度和转向角度。
代码如下:```speed = newfis("speed");speed = addvar(speed,"input","distance",[0 10]);speed = addmf(speed,"input",1,"slow","trimf",[0 0 5]);speed = addmf(speed,"input",1,"fast","trimf",[5 10 10]); speed = addvar(speed,"output","velocity",[-10 10]);speed = addmf(speed,"output",1,"reverse","trimf",[-10-10 -2]);speed = addmf(speed,"output",1,"stop","trimf",[-3 0 3]); speed = addmf(speed,"output",1,"forward","trimf",[2 10 10]);angle = newfis("angle");angle = addvar(angle,"input","position",[-1 1]);angle = addmf(angle,"input",1,"left","trimf",[-1 -1 0]);angle = addmf(angle,"input",1,"right","trimf",[0 1 1]); angle = addvar(angle,"output","steering",[-1 1]);angle = addmf(angle,"output",1,"hard_left","trimf",[-1 -1 -0.5]);angle = addmf(angle,"output",1,"soft_left","trimf",[-1 -0.5 0]);angle = addmf(angle,"output",1,"straight","trimf",[-0.5 0.5 0.5]);angle = addmf(angle,"output",1,"soft_right","trimf",[0 0.5 1]);angle = addmf(angle,"output",1,"hard_right","trimf",[0.5 1 1]);```2. 然后,定义模糊规则。
模糊控制在matlab中的实例模糊控制是一种基于经验知识的控制方法,与传统的精确控制方法不同,它允许对系统的行为进行模糊描述,并通过一套模糊规则来对系统进行控制。
在实际应用中,模糊控制常常用于处理非线性、复杂和不确定的系统,例如温度控制、汽车制动系统等。
在MATLAB中,可以通过使用Fuzzy Logic Toolbox工具箱来实现模糊控制。
下面以一个简单的温度控制系统为例,来介绍如何在MATLAB中进行模糊控制的实现。
首先,需要定义模糊控制器的输入和输出变量,以及它们的模糊集合。
在温度控制系统中,可以定义温度作为输入变量,定义加热功率作为输出变量。
可以将温度的模糊集合划分为"冷"、"适中"和"热"三个模糊集合,将加热功率的模糊集合划分为"低"、"中"和"高"三个模糊集合。
```temperature = readfis('temperature.fis');temp_input = [-10, 40];temp_output = [0, 100];temperature_inputs = ["冷", "适中", "热"];temperature_outputs = ["低", "中", "高"];```然后,需要定义模糊规则。
模糊规则用于根据输入变量的模糊集合和输出变量的模糊集合之间的关系来确定控制规则。
例如,当温度为"冷"时,加热功率应该为"高"。
可以根据经验知识定义一系列模糊规则。
```rules = ["冷", "高";"适中", "中";"热", "低";];```接下来,需要定义模糊控制器的输入和输出变量值。
实验一基于MATLAB的模糊控制系统设计1.1实验内容(1)基于MATLAB图形模糊推理系统设计,小费模糊推理系统;(2)飞机下降速度模糊推理系统设计;(3)水箱液位模糊控制系统设计及仿真运行。
1.2实验步骤1小费模糊推理系统设计(1)在MATLAB的命令窗口输入fuzzy命令,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Madmdani模糊推理系统。
(2)增加一个输入变量,将输入变量命名为service、food,输出变量为tip,这样建立了一个两输入单输出模糊推理系统框架。
(3)设计模糊化模块:双击变量图标打开Membership Fgunction Editor 窗口,分别将两个输入变量的论域均设为[0,10],输出论域为[0,30]。
通过增加隶属度函数来进行模糊空间划分。
输入变量service划分为三个模糊集:poor、good和excellent,隶属度函数均为高斯函数,参数分别为[1.5 0]、[1,5 5]和[1.5 10];输入变量food划分为两个模糊集:rancid和delicious,隶属度函数均为梯形函数,参数分别为[0 0 1 3]和[7 9 10 10];输出变量tip划分为三个模糊集:cheap、average和generous,隶属度函数均为三角形函数,参数分别为[0 5 10]、[10 15 20]和[20 25 30]。
(4)设置模糊规则:打开Rule Editor窗口,通过选择添加三条模糊规则:①if (service is poor) or (food is rancid) then (tip is cheap)②if (service is good) then (tip is average)③if (service is excellent) or (food is delicious) then (tip is generous)三条规则的权重均为 1.(5)模糊推理参数均使用默认值,通过曲面观察器(Surface Viewer)查看小费模糊推理的输入输出关系曲面。
通过规则观察器(Rule Viewer)查看对具体输入的模糊推理及输出情况,输入各种不同的数据,查看模糊推理情况及输出数据。
(6)增加规则,查看曲面的变化、推理输出的变化。
2.飞机下降速度模糊推理系统设计(1)打开模糊推理逻辑工具箱的图形用户界面,新建一个Sugeno模糊推理系统。
(2)将输入变量命名为height,输出变量为speed,这是一个SISO模糊推理系统。
(3)设计模糊化模块:分别将输入变量的论域设为[0,10],输出论域不用修改。
模糊空间划分:输入变量height分为五个模糊集:mf1(高斯函数[0.5 0])、mf2(π函数[0.754 2.58 3.32 4.64])、mf3(π函数[3.19 4.88 5.81 7.11])、mf4(π函数[6.362 7.9 8.56 9.54])和mf5(S函数[8.664 9.83 ]);输出变量speed分为五个与输入模糊空间对应的线性函数:mf1([0.8 0.2])、 mf2([4.6 -4.5]) 、mf3([10.3 -26])、 mf4 ([16 -64])和mf5([20 -100]).(4)设置模糊规则:打开Rule Editor窗口,通过选择添加五条模糊规则:① if(height is mf1) then (speed is mf1)② if(height is mf2) then (speed is mf2)③ if(height is mf3) then (speed is mf3)④ if(height is mf4) then (speed is mf4)⑤ if(height is mf5) then (speed is mf5)五条的权重均为1.模糊推理参数均使用默认值,通过曲面观察器(Surface Viewer)查看飞机降落速度模糊推理的输入输出关系曲面。
通过规则观察器(Rule Viewer)查看对具体输入的模糊推理及输出情况,输入各种不同的数据,查看模糊推理情况及输出数据。
(6)修改规则、隶属度函数参数,查看曲线的变化,修改参数使输入输出关系曲线拟合二次曲线更好。
3水箱液位模糊控制系统设计及仿真运行(1)打开模糊逻辑工具箱的图形用户界面窗口,新建一个Madmdani模糊推理系统。
(2)增加一个输入变量,将输入变量命名为level、rate,输出变量为valve,这样建立了一个两输入单输出模糊推理系统,保存为tank().fis。
(3)设计模糊化模块:将输入变量rate的论域设为[-0.1,0.1],另外两个变量采用论域[-1,1]。
通过增加隶属度函数来进行模糊空间划分。
输入变量level划分为三个模糊集:high、okay和low,隶属度函数均为高斯函数,参数分别为[0.3 -1]、[0.3 0]和[0.3 1];输入变量rate划分为三个模糊集:negative、none和delicious,隶属度函数均为高斯函数,参数分别为[0.03 -0.1]、[0.03 0]和[0.03 0.1];输出变量valve划分为五个模糊集:close_fast、close_slow、no_change、open_slow和open_fast,隶属度函数均为三角形函数,参数分别为[-1 -0.9 -0.8]、[-0.6 -0.5 -0.4]、 [-0.1 0 0.1]、[0.2 0.3 0.4]和[0.8 0.9 1]。
(4)设置模糊规则:打开Rule Editor窗口,通过选择添加三条模糊规则:①if (level is okay) then (valve is no_change)②if (level is low) then (valve is open_fast)③if (level is high) then (valve is close_fast)④if (level is okay) and (rate is positive) then (valve is close_slow)⑤if (level is okay) and (rate is negative) then (valve is poen_slow)五条的权重均为1。
(5)修改部分模糊推理参数:And采用乘(pord)、Or采用概率或(probor)、Implication采用乘(pord),其余均由默认值,通过曲面观察器(Surface Viewer)查看水箱液位模糊推理的输入输出关系曲面。
通过规则观察器(Rule Viewer)查看对具体输入的模糊推理及输出情况,输入各种不同的数据,查看模糊推理情况及输出数据。
实验三基于MATLAB的神经网络设计3.1实验内容(1)利用MATLAB的神经网络工具箱设计感知器实现线性两分类;(2)利用MATLAB的神经网络工具箱编程设计前馈神经网络逼近平方函数。
3.2实验步骤1.感知器实现线性分类设计(1)问题描述:已知二维平面上的六个样本点(0,0)、(1,1)、(1,3)、(3,1)、(3,3)、(5,5)。
它们的标签(目标值)为:t=[ 0 0 0 1 1 1 ]编程设计感知器,实现样本点的分类。
(2)在MATLAB中新建M文件编程:建立变量保存六个样本的二维输入值、目标值变量保存样本的目标值。
(3)利用newp建立一个两输入单输出的感知器。
(4)利用六个训练样本训练感知器。
(5)显示建立的感知器分类面,用测试样本进行分类测试。
参考程序如下:p=[0 1 1 3 3 5; 0 1 3 1 3 5];t=[0 0 0 1 1 1 ];ptest=[0 1 3 4;3 2 2 1];net=newp(minmax(p),1);[net rt]=train(net,p,t);iw1=net.IW{1}b1=net.b{1}epoch1=tr.epochperf1=tr.perfpause;plotpv(p,t);plotpc(net.iw{1},net.b{1});pause;t2=sim(net,ptest);lotpv(ptest,t2);plotpc(iw1,b1);2设计前馈神经网络逼近平方函数(1)问题描述:设计前馈神经网络在x∈[0,10]区间上逼近函数y=x²(2)在MATLAB中新建M文件编程:产生100个随机训练样本及函数值。
(3)利用newff建立一个两输入单输出两层前馈网络,隐藏五个神经元。
(4)设计训练参数,训练神经网络。
(5)对神经网络进行仿真测试,显示输出曲线。
(6)观察过拟合现象:如果采用50个隐层神经元,测试性能如何?参考程序如下:rand('state',sum(100*clock));p=10*rand(1,100);t=p.^2;Testp=0:0.1:10;net=newff([0 10],[5 1],{'tansig' 'purelin'},'trainlm');net.trainParam.epochs=50;net.trainParam.goal=0.0001;net.trainParam.show=1;net=train(net,p,t);y2=sim(net,p);plot(p,t,'r+',p,y2,'.');pause;y3=sim(net,Testp);plot(TTestp,y3,'k.');。