晶面和体心立方晶体
- 格式:ppt
- 大小:2.18 MB
- 文档页数:15
七大晶系详细图解已知晶体的形态已经超过了四万种,可是万物都会有规律,晶体自然也是有的。
它们都是按七种结晶方式模式发育的,即七大晶系。
晶体即是一种以三维方向发育的的几何体,为了表示三维空间,别离用三、四跟人为添加的轴来表示晶体的长宽高和中心。
三条轴别离用X、Y、Z(U)(Z轴也可叫做“主轴”)来表示,而为了更好表示轴之间的度数,咱们用α、β、γ来表示轴角。
就如此显现了七种不同的晶系模式:立方晶系(也称等轴晶系)、四方晶系、三方晶系、六方晶系、正交晶系(也称斜方晶系)、单斜晶系、三斜晶系。
其中又依照对称程度又分为高级晶族、中级晶族、低级晶族。
高级晶族中只有一个立方晶系;中级晶族有六方、四方、三方三个晶系;低级晶族有正交、单斜、三斜三个晶系。
一、立方晶系立方晶系的三个轴的长度是一样的,即X=Y=Z,且相互垂直,即α=β=γ=90°,对称性最强。
具有4个立方体对角线方向三重轴特点对称元素的晶体归属立方晶系。
属于立方晶系的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。
那个晶系的晶体并非是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的晶体都属于立方晶系。
它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。
最典型立方晶系的晶体为:氯化钠。
常见立方晶系晶体模型图:晶体实物图:二、四方晶系四方晶系四方晶系的三条晶轴相互垂直,即α=β=γ=90°。
其中两个水平轴(X轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。
横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。
所有主晶面交角都是90。
特点对称元素为四重轴。
若是Z轴发育,它确实是长柱状乃至针状;若是两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的确实是磷酸二氢钠和硫酸镍β了。
三种晶体结构的最密排晶面和最密排晶向1.引言1.1 概述晶体是具有长程有序排列的原子、离子或分子的固体物质。
晶体的结构是由最密排列的晶面和晶向构成的。
最密排晶面是指在晶体结构中,原子、离子或分子最紧密地靠近的面,而最密排晶向则指的是在晶体中最紧密地排列的方向。
本文将分析三种不同的晶体结构,探讨它们各自的最密排晶面和最密排晶向。
通过深入研究这些结构的排列方式,可以更好地理解晶体的性质和行为。
第一种晶体结构是立方晶系,也是最简单的晶体结构之一。
它的最密排晶面是(111)晶面,最密排晶向则是[110]晶向。
这些晶面和晶向在晶体中具有紧密的排列,使晶体的结构呈现出高度的对称性。
第二种晶体结构是六方晶系,它相对于立方晶系而言稍复杂一些。
在六方晶系中,最密排晶面是(0001)晶面,最密排晶向是[10-10]晶向。
与立方晶系不同,六方晶系具有六方对称性,呈现出更复杂的晶体结构。
第三种晶体结构是四方晶系,它也是一种常见的晶体结构。
在四方晶系中,最密排晶面是(100)晶面,最密排晶向是[110]晶向。
四方晶系的晶体结构与立方晶系相似,但具有更多的对称性和排列方式。
通过对这三种晶体结构的最密排晶面和最密排晶向进行研究,我们可以更好地理解晶体的基本结构和性质。
这对于材料科学、凝聚态物理和相关领域的研究具有重要意义,同时也有助于开发新材料和改进现有材料的性能。
1.2文章结构文章结构部分的内容可以包括以下几个方面的介绍:1.2 文章结构本文主要分为引言、正文和结论三个部分。
引言部分概述了晶体结构和最密排晶面、最密排晶向的研究背景和重要性,并提出了本文研究的目的和意义。
正文部分分为三个小节,分别介绍了三种晶体结构的最密排晶面和最密排晶向。
每个小节将首先介绍该种晶体结构的一般特点和常见应用,然后详细讨论最密排晶面和最密排晶向的确定方法和规律,并给出具体的实例和数据进行说明。
结论部分对于每种晶体结构的最密排晶面和最密排晶向进行总结和回顾,并指出各种晶体结构最密排晶面和最密排晶向的综合特点和应用前景。
体心立方的晶面间距计算
设简单立方的晶格常数为a,我们都知道,其晶面间距与晶面指数的关系为:
只要知道晶面指数,晶格常数,代入公式计算就行了,不会出错。
但是,面心立方和体心立方却不能直接用这个公式,用了可能就会出错。
例如,我们知道面心立方的(100)晶面间距是a/2,而用上面的公式计算结果是a,这显然是不对的。
体心立方和面心立方的晶面间距应该按照如下方法计算。
面心立方晶体(FCC)晶面间距与点阵常数a之间的关系为:
若h、k、l均为奇数,则
否则
体心立方晶体(BCC)晶面间距与点阵常数a之间的关系:
若h+k+l=偶数,则
否则
例如,分别求体心立方的(100)、(110)、(111)晶面的面间距,并指出晶面间距最大的晶面。
对于面心立方,情况如何呢?我们算一下。
一、 名词解释(1)阵点;(2)(空间)点阵;(3)晶体结构;(4)晶胞;(5)晶带轴;二、填空(1)晶体中共有 种空间点阵,属于立方晶系的空间点阵有 三种。
(2)对于立方晶系,晶面间距的计算公式为 。
(3){110}晶面族包括 等晶面。
(4){h 1k 1l 1}和{h 2k 2l 2}两晶面的晶带轴指数[u v w]为 。
(5)(110)和(11-0)晶面的交线是 ;包括有[112]和[123]晶向的晶面是 。
三、计算及简答(1)原子间的结合键共有几种?各自有何特点?(2)在立方晶系的晶胞中,画出(111)、(112)、(011)、(123)晶面和[111]、[101]、[111-]晶向.(3)列出六方晶系{101-2} 晶面族中所有晶面的密勒指数,并绘出(101-0)、(112-0)晶面和〔112-0〕晶向。
(4)试证明立方晶系的〔111〕晶向垂直于(111)晶面。
(5)绘图指出面心立方和体心立方晶体的(100)、(110)、及(111)晶面,并求其面间距;试分别指出两种晶体中,哪一种晶面的面间距最大?(6)在立方晶系中,(1-10)、(3-11)、(1-3-2)晶面是否属于同一晶带?如果是,请指出其晶带轴;并指出属于该晶带的任一其他晶面.(7)写出立方晶系的{111}、{123}晶面族和〈112>晶向族中的全部等价晶面和晶向的具体指数。
(8)计算立方晶系中(111)和〔111-〕两晶面间的夹角。
(9)若采用四轴坐标系标定六方晶体的晶向指数,应该有什么约束条件?为什么?答 案二、填空(1)14 简单、体心、面心(2)222hkl d h k l =++(3) (110)、(101)、(011)、(1-10)、(1-01) 、(01-1)(4)1122k l u k l =;1122l h v l h =;1122h k w h k = (5)〔001〕 (111-)三、简答及计算(1)略(2)(3){101-2}晶面的密勒指数为(101-2)、(1-012)、(01-12)、(011-2)、(1-102)、(11-02)。
一、立方晶系立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。
具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。
属于立方晶系的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。
这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的晶体都属于立方晶系。
它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。
最典型立方晶系的晶体为:氯化钠。
二、四方晶系四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。
其中两个水平轴(X轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。
横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。
所有主晶面交角都是90。
特征对称元素为四重轴。
如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。
三、斜方晶系斜方晶系的晶体中三个轴的长短完全不相等,它们的交角仍然是互为90度垂直。
即X≠Y≠Z。
Z轴和Y轴相互垂直90°。
X轴与Y轴垂直,但是不与Z轴垂直,即α=γ=90,β>90°与正方晶系直观相比,区别就是:x轴、y轴长短不一样。
如果围绕z轴旋转,四方晶系旋转九十度即可使x轴y轴重合,旋转一周使x轴y轴重合四次(使另两轴重合的次数多于两次,该轴称“高次轴”),四方晶系有一个高次轴,也叫“主轴”。
斜方晶系围绕z 轴旋转,需180度才可使x轴y轴重合,旋转一周只重合两次,属低次轴。
也就是说,斜方晶系的对称性比四方晶系要低。
特征对称元素是二重对称轴或对称面。
其实,斜方晶系的晶体如果围绕x轴或y轴旋转,情况与围绕z轴旋转相同。
换句话说,斜方晶系没有高次轴,或曰没有理论上的主轴。
体心立方(112)晶面的原子面密度一、体心立方结构简介体心立方是一种晶体结构,由于其具有密排的结构和较好的热稳定性,在工程材料领域得到广泛应用。
在体心立方结构中,原子以一定的规律排列,形成晶格。
体心立方晶格的基本单元包含一个原子在每个晶胞的中心和八个原子分别位于八个顶点上。
这种排列方式使得体心立方结构具有较高的密度和较好的机械性能。
二、体心立方(112)晶面简介在体心立方结构中(112)晶面是一个重要的晶面,它具有特殊的原子排列方式和性质。
通过研究体心立方(112)晶面的原子面密度,可以更好地了解该结构的物理性质和应用潜力。
三、体心立方(112)晶面的原子排列体心立方(112)晶面的原子排列方式是指晶面上原子的位置关系。
体心立方结构的晶面排列方式决定了晶体的表面性质和物理化学行为。
通过对体心立方(112)晶面的原子排列进行研究,可以揭示其在材料科学和工程技术中的应用潜力。
四、体心立方(112)晶面的原子面密度计算方法体心立方(112)晶面的原子面密度是指单位面积上原子的数量。
计算方法一般包括通过晶体结构参数和晶胞参数进行计算。
通过计算可以得到体心立方(112)晶面的原子面密度,从而为材料设计和应用提供重要参考。
五、体心立方(112)晶面的原子面密度实验测定除了计算方法,实验测定也是研究体心立方(112)晶面的原子面密度的重要手段之一。
通过实验测定,可以获得更真实和准确的数据,对体心立方结构的表面性质和晶体稳定性有更深刻的认识。
六、体心立方(112)晶面的原子面密度在材料设计中的应用体心立方(112)晶面的原子面密度对材料设计具有重要意义。
通过对其进行深入研究和应用,可以开发出具有优异性能和广泛用途的新型材料,为材料科学和工程技术提供新的发展方向。
七、总结体心立方(112)晶面的原子面密度是晶体结构中重要的研究内容之一,对于深入理解晶体的物理性质和开发新型材料具有重要意义。
通过系统的研究和应用,可以推动材料科学和工程技术领域的发展,为人类社会进步做出贡献。
第一章(2)体心立方(body- centered cubic,bcc):原胞基矢每个晶胞有2个等效格点。
常见金属:碱金属晶体,过渡金属晶体,Cr ,Mo, W.体心立方原胞体积为: a1 ⋅ ( a2⨯a3 ) = a3/2最近邻原子数:8个(3)面心立方(face-centered cubic,fcc) 原胞基矢每个晶胞有4个等效格点。
常见金属:贵金属Cu、Ag、Au、Al、Ni、Pb等。
面心立方原胞体积为: a1 ⋅ ( a2⨯a3 ) = a3/4最近邻原子数:12个7大晶系,14种布拉菲格子,32种宏观对称操作。
密堆积配位数配位数:一个原子周围最近邻的粒子数。
致密度:晶胞中粒子所占的体积与晶胞体积之比。
比值越大,堆积越密。
粒子被看作为有一定半径的刚性小球。
最近邻的小球互相相切。
两球心间的距离等于两最近邻粒子间的距离。
1.同种粒子构成的晶体原子半径相同,刚球半径也相同。
一般采用密堆积。
配位数为12、8。
2. 不同粒子组成的晶体(1)氯化铯(CsCl)Cs+离子半径为r,Cl-离子半径为R,则r = 0.73R 配位数为8。
(2)氯化钠(NaCl), Na+离子半径为r,Cl-离子半径为R,则r = 0.41R 配位数为6。
晶列、晶面、密勒指数;晶向:晶格可看成是在任意方向上由无穷多的平行直线组成的,所有的格点都落在这些直线上。
每一条这样的直线称为晶格的一个晶列。
晶列的方向称为晶格的晶向。
晶向的表示:晶向指数 [ l1l2l3 ]:任取一个格点作为原点O。
作晶胞基矢a、b、c,考虑某晶列上的一个格点P,该格点的位矢为:l1a1+ l2a2+ l3a2且l1 l2 l3 为三个互质整数。
则该晶向指数为[ l1 l2 l3 ]。
晶面:晶格可在任意方向上分割成无穷多的平行平面组成,使得所有的格点都落在这些平面上。
所有互相平行的平面构成一族,称为晶格的晶面。
晶面的表示:在晶胞基矢a、b、c下,一晶面与它们的截距分别为 l'a、m'b、n'c若有互质整数 l、m、n 使(lmn)称为晶体的密勒指数(Millerindices)。