改进粒子群算法在机器人路径规划中的应用
- 格式:pdf
- 大小:2.09 MB
- 文档页数:4
动态扩散粒子群算法及在机器人路径规划上的应用【摘要】针对粒子群算法对高维函数优化性能不佳问题,提出了一种动态扩散粒子群算法,并将其应用于移动机器人路径规划中。
该算法通过引进动态调节数,动态的选择粒子的运行轨迹,阻止种群在演化过程中搜索效率降低的缺陷,提高算法的寻优性能,在处理大规模函数优化及移动机器人路径规划方面具有更强的寻优能力及更高的搜索精度。
【关键词】粒子群算法;大规模函数优化;动态调节数;路径规划1.引言粒子群算法( particle swarm optimization, pso)是基于一定假设条件下源于对鸟类捕食行为模拟的一种新型的仿生优化算法。
该算法以其结构简单、计算速度快受到国内外众多学者的广泛关注并成功地应用于函数优化,神经网络训练[3]等领域。
近年来随着科学技术的不断发展,面对复杂程度越来越高的优化问题,pso 算法在求解质量和优化速度上显得“不尽人意”。
尽管国内外学者提出了各式各样的改进方案提高pso算法性能,但其理论及应用研究还有待进一步的扩展。
本文提出一种动态扩散粒子群算法(a dynamic diffusion particle swarm optimization algorithm,ddpso)。
该算法在演化过程中通过有选择的动态的调整粒子的飞行轨迹,加强对种群信息的利用,增强种群的多样性,从而提高算法的性能。
实验结果表明该方法在处理高维函数优化问题及机器人路径规划问题时效果理想。
2.粒子群算法pso算法中的每个个体我们称它为一个粒子,每个粒子模仿鸟的寻食行为,通过跟踪两个“极值”来搜索解空间的最优值:一个是每个粒子当前已搜索到的极值,称为个体极值;另一个是整个群体当前已搜索到的极值,称为全局极值。
设函数优化问题描述为(1)其中:为目标函数,为自变量的维数,为的搜索区间。
pso算法是基于群体智能的迭代演化技术,群中的每个粒子代表了目标函数的一种可能解。
粒子速度位置更新公式如下:(2)(3)其中为粒子的速度;是粒子的当前位置;为迄今搜索到的个体最优解;为整个群体迄今搜索到的最优解;是保持原来速度的系数,称为惯性权重;和被称为学习因子;、是[0,1]区间内均匀分布的随机数。
基于粒子群优化算法的机器人路径规划研究机器人路径规划在现代机器人技术中扮演着重要的角色。
它是指如何使机器人在给定的环境中选择最佳路径以达到预定目标的问题。
机器人路径规划不仅在工业自动化中广泛应用,还在军事、医疗和服务机器人等领域起到了重要作用。
为了解决机器人路径规划问题,许多优化算法被提出,其中粒子群优化算法是一种较为常用的方法。
粒子群优化算法源于模拟鸟群觅食行为的研究,借鉴了自然界中群体智能的优点。
该算法通过模拟鸟群中鸟的行为来寻找最优解。
在粒子群优化算法中,问题被建模为一个优化问题,并通过一群粒子表示潜在解。
每个粒子都有自己的位置和速度,并通过学习和交流信息来寻找全局最优解。
通过迭代的方式,粒子群优化算法可以在搜索空间中找到最佳的解决方案。
在机器人路径规划中,粒子群优化算法可以应用于不同的环境和不同的约束条件下。
首先,我们需要将机器人的运动规划问题转化为一个优化问题。
例如,我们可以将机器人的路径规划问题定义为找到一条最短路径或是最低能耗路径等。
然后,我们可以使用粒子群优化算法来搜索最优解。
在粒子群优化算法中,每个粒子代表一个可能的路径解。
粒子的位置表示了机器人在路径中的位置,速度表示了机器人从一个位置移动到下一个位置的速度。
每个粒子根据自己的位置和速度计算出一个适应度值,用于评估解的优劣。
然后,粒子通过学习和交流信息来调整自己的位置和速度,以寻找最优解。
这个过程将不断重复,直到满足停止条件为止。
在机器人路径规划中,粒子群优化算法的性能取决于问题本身的复杂度和算法的参数设置。
为了提高算法的性能,研究人员提出了许多改进的粒子群优化算法。
例如,可以引入局部搜索策略来增加算法的局部搜索能力;可以改变粒子速度更新公式以增加算法的探索能力;还可以引入自适应机制来自动调整算法的参数。
除了粒子群优化算法,还有其他的优化算法可以用于机器人路径规划,如遗传算法、蚁群优化算法等。
每种算法都有其独特的优点和适用场景。
基于粒子群算法的路径规划优化研究路径规划是人工智能领域中一项重要的技术,它在自动驾驶、机器人导航和无人机飞行等领域具有广泛的应用。
粒子群算法(Particle Swarm Optimization, PSO)是一种模拟鸟群觅食行为的优化算法,被广泛应用于路径规划问题的求解。
本文将基于粒子群算法对路径规划进行优化研究,旨在提高路径规划的效率和准确性。
1. 引言路径规划问题可以描述为在给定环境下,找到一条从起点到终点的最优路径,使得路径的长度最短或者到达终点所需时间最短。
路径规划在现实生活中有着广泛的应用,如物流配送、交通导航和智能机器人等。
由于路径规划问题的复杂性,传统的算法难以快速准确地求解,因此需要借助优化算法进行解决。
2. 粒子群算法原理粒子群算法是一种基于群体智能的优化算法,受到鸟群觅食行为的启发而提出。
算法的基本原理是通过模拟鸟群中个体的协作行为,在搜索空间中寻找最优解。
每个个体被称为粒子,它们通过跟随当前群体中最优解的轨迹,来更新自己的位置和速度。
在路径规划中,将每个粒子对应到一条路径,并通过不断迭代来优化路径的长度或时间。
3. 路径规划优化模型为了对路径规划进行优化,需要定义适当的优化模型。
以路径长度最短为目标,路径规划问题可以描述为一个多维度的优化问题。
假设有N个粒子,每个粒子对应一个候选路径,路径上的每个点都有对应的位置和速度信息。
优化模型的目标是找到最优的路径集合,使得路径的长度最短。
4. 路径规划优化过程基于粒子群算法的路径规划优化过程可以分为初始化、目标函数计算、速度更新和位置更新四个步骤。
4.1 初始化在算法开始之前,需要初始化粒子群的位置和速度。
将每个粒子的位置初始化为起点,并随机生成速度向量。
4.2 目标函数计算根据路径长度作为目标函数,计算每个粒子对应路径的长度。
通过计算每个粒子的适应度值,可以评估候选路径的优劣程度。
4.3 速度更新根据当前粒子的最优位置、全局最优位置和经验因子来更新粒子的速度。
基于改进粒子群算法的智能机器人路径规划作者:张万绪张向兰李莹来源:《计算机应用》2014年第02期摘要:针对粒子群算法局部寻优能力差的缺点,提出一种非线性动态调整惯性权重的改进粒子群路径规划算法。
该算法将栅格法与粒子群算法进行有效结合,在路径长度的基础上引入安全度和平滑度概念,建立动态调整路径长度的适应度函数。
与传统的粒子群算法相比,实验结果表明,改进算法具有较强的安全性、实时性及寻优能力。
关键词:智能机器人;路径规划;栅格法;粒子群算法中图分类号: TP301.6文献标志码:APath planning for intelligent robots based on improved particle swarm optimization algorithmAbstract:As regards the poor local optimization ability of Particle Swarm Optimization (PSO), a nonlinear dynamic adjusting inertia weight was put forward to improve the particle swarm path planning algorithm. This algorithm combined the grid method and particle swarm algorithm,introduced the two concepts of safety and smoothness based on path length, and established dynamic adjustment path length of the fitness function. Compared with the traditional PSO. The experimental results show that the improved algorithm has stronger security, real-time and optimization ability.Key words:intelligent robot; path planning; grid method; Particle Swarm Optimization (PSO)algorithm0 引言路径规划是智能机器人导航的最基本环节之一,它是指智能机器人在具有障碍物的工作环境中,按照某一性能指标(如距离、时间、能量等),不间断地利用所携带的传感器去认知周围的环境,读取障碍物的大小、位置和距离,不断地感知环境信息和周围障碍物的变化,搜索一条从起始状态到目标状态的最优或近似最优的安全、无碰撞路径。
基于粒子群优化算法的机器人路径规划机器人路径规划是指在给定的环境中,设计一条能够满足机器人移动需求的路径。
机器人路径规划通常包括机器人的起点、终点,以及避开障碍物等制约条件。
粒子群优化算法(PSO)是一种优化算法,被广泛应用于机器人路径规划中。
PSO是一种智能优化算法,最初由Kennedy和Eberhart在1995年提出的。
它的基本思想是借鉴了群体行为,将优化问题看作是一群粒子在解空间中搜索最优解的过程。
每个粒子代表一种解,在搜索过程中不断调整自己的位置和速度,并借鉴群体中其他粒子的经验,来寻找最优解。
在机器人路径规划中,PSO算法首先需要定义适应度函数。
适应度函数通常用于评价一条路径的好坏程度。
优良的路径应该具有以下特点:从起点到终点的距离较短,路径应避开所有障碍物,同时路径也应尽可能平滑。
PSO算法的核心是粒子更新过程。
每个粒子根据自己的位置和速度不断调整,以寻找最优解。
在机器人路径规划中,每个粒子代表一条路径,由一系列的路径点构成。
每个粒子都有自己的最优解和全局最优解,用于更新自身的位置和速度。
在更新位置和速度的过程中,应当根据适应度函数的值来调整路径点的位置和速度。
如果适应度函数的值较高,则说明该路径可行度高,应该向该方向移动。
相反,如果适应度函数的值较低,则说明该路径可行度低,应该调整位置和速度。
最终,PSO算法在多次迭代后,能够找到一条机器人路径,使得从起点到终点的距离最短,同时避开所有障碍物,并且路径较为平滑。
总之,基于PSO算法的机器人路径规划是一种有效的优化算法。
它通过模拟群体行为,在解空间中搜索最优解,从而找到一条满足机器人移动需求的路径。
相比其他传统的优化算法,PSO算法具有计算量小,收敛速度快等优点,是目前机器人路径规划领域中被广泛应用的算法之一。