(2){1,2,3,4}∪{0,2,3}={1,2,3,4,0,2,3}.( (3)若 A∪B=A,则 A⊆B.( )
【解析】
(1)×.当两个集合没有公共元素时,两个集合的并集中元素的个
数等于这两个集合中元素个数之和. (2)×.求两个集合的并集时,这两个集合的公共元素在并集中只能出现一次, 需要满足集合中元素的互异性. (3)×.若 A∪B=A,则应有 B⊆A.
)
(2)设集合 A={x|1≤x≤5},Z 为整数集,则集合 A∩Z 中元素的个数是( B.5 D.3
)
【精彩点拨】 (1)欲求 A∩B,只需将 A,B 用数轴表示出来,找出它们的公 共元素,即得 A∩B. (2)用列举法表示{x∈Z|1≤x≤5}即可.
【自主解答】 (1)A={x|2<x<4},B={x|x<3 或 x>5}, 如图 A∩B={x|2<x<3}.
)
【精彩点拨】 (1)集合 M 和集合 N 都是含有三个元素的集合,把两个集合的 所有元素找出写在花括号内即可,注意不要违背集合中元素的互异性. (2)欲求 P∪Q,只需将 P,Q 用数轴表示出来,取它们所有元素构成的集合, 即得 P∪Q.
【自主解答】 (1)因为 M={-1,0,1},N={0,1,2}, 所以 M∪N={-1,0,1}∪{0,1,2}={-1,0,1,2}. (2)P={x|x<3},Q={x|-1≤x≤4},如图,P∪Q={x|x≤4}.
【答案】
{-1}
[探究共研型]
探究 1 设 A、B 是两个集合,若已知 A∩B=A,A∪B=B,由此可分别得 到集合 A 与 B 具有什么关系?
【提示】 A∩B=A⇔A∪B=B⇔A⊆B,即 A∩B=A,A∪B=B,A⊆B 三者 为等价关系.