题型一 补集的简单运算 【例 1】 已知全集为 U,集合 A={1,3,5,7},∁UA={2,4,6},∁UB ={1,4,6},求集合 B. [思路探索] 先结合条件,利用补集性质求出全集 U,再由补集 定义求集合 B.
解 法一 ∵A={1,3,5,7},∁UA={2,4,6}, ∴U={1,2,3,4,5,6,7}, 又∁UB={1,4,6},∴B={2,3,5,7}. 法二 借助 Venn 图,如图所示,
2.补集的性质 利用补集的定义可知,补集仍是一个集合,具有如下性质: (1)∁UU=∅,∁U∅=U; (2)A∪∁UA=U,A∩∁UA=∅; (3)∁U(∁UA)=A. 拓展 补集除具有以上较为明显的性质外,还有如下两个性质: ∁U(A∩B)=(∁UA)∪(∁UB); ∁U(A∪B)=(∁UA)∩(∁UB).
题型三 补集的综合应用 【例 3】 (12 分)已知集合 A={x|2a-2<x<a},B={x|1<x<2}, 且 A ∁RB,求 a 的取值范围. 审题指导 先求∁RB → 分情况讨论 → 由A ∁RB,求a
[规范解答] ∁RB={x|x≤1 或 x≥2}≠∅,(2 分) ∵A ∁RB, ∴分 A=∅和 A≠∅两种情况讨论.(4 分) (1)若 A=∅,此时有 2a-2≥a, ∴a≥2.(7 分) (2)若 A≠∅, 则有2aa≤-12<a, 或22aa--22<≥a2,. ∴a≤1.(11 分) 综上所述,a≤1 或 a≥2.(12 分)
【题后反思】 解答本题的关键是利用 A ∁RB,对 A=∅与 A≠∅ 进行分类讨论,转化为等价不等式(组)求解,同时要注意区域 端点的问题.
误区警示 考虑问题不全面,等价变换时易出错 【示例】 已知全集 U={1,2,3,4,5},A={x|x2+px+4=0},求 ∁UA. [错解] 由已知得 A⊆U,设方程 x2+px+4=0 的两根为 x1,x2, 所以 x1x2=4. 当 A={1,4}时,p=-5,∁UA={2,3,5}. 当 A={2}时,p=-4,∁UA={1,3,4,5}.