有限元用三角形单元分析优秀课件
- 格式:ppt
- 大小:338.00 KB
- 文档页数:11
§2.9平面问题单元划分有限元法在平面问题进行分析时,才采用三角形单元和四边形单元、或者矩形单元,三角形单元的优点是简单且对结构的不规则边界逼近好,而矩形单元却更能反映实际弹性体内部的应力应变变化。
这两点我们会逐渐向大家说明。
所以一般说来,有限元分析,单元划分的密度和单元种类选取,对计算结果起重要作用。
一般单元划分越密集,结果越精确。
单元多也导致求解的线性方程组阶数增高,要求计算机的内存也更大,计算的时间也越长,分析的效率就越低。
解决这一矛盾的方法就是在应力集中区域单元划分密集一些,应力变化梯度小的位置,划稀疏些,这样就能兼顾精度与效率的关系。
一般的原则是:1)根据结构的受力和支承特点,按对称和反对称的性质,简化分析模型,以减少计算分析的规模。
2)合理布局单元的密集程度,以使计算结果精度高而计算量小。
3)在同一单元内,单元的特性数据和材质数据应保持一致。
4)集中载荷的作用点和载荷密度突变处应有节点。
5)在欲知道应力状态、内力情况和位移值的位置应有节点。
6)单元的选取欲分析的目标密切相关。
模型的单元划分好后,把所有的单元和节点按一定的规律和顺序进行编号,选择适当的坐标系(直角、柱面和球面),以方便确定各节点的坐标值。
§2.10 节点位移、节点力和节点载荷弹性体在承受外力作用后,其内力的传递实际是通过单元之间的边界来实现的。
但我们把结构离散化后,如果单元划分得足够小时,可以看成为其内力的传递通过单元与单元之间的节点进行传递。
对于平面问题而言,每个节点都有位移和力两个未知量,这两个量又都是x、y的函数,注意平面问题的节点是不能传递力矩的,为什么?一,节点位移对三节点三角形单元而言,因有三个节点,每个节点的位移都有x ,y 两个分量,所以一共有6个自由度。
单元节点位移向量可表示为:{}[]Tm m j j i ie v u v u v u =δ二,节点力所谓节点力,就是单元对节点或节点对单元作用的力,它是弹性体内部的作用力,也就是我们常说的内力。