压缩感知理论介绍PPT课件
- 格式:ppt
- 大小:643.01 KB
- 文档页数:27
形象易懂讲解算法II——压缩感知之前曾经写过一篇关于小波变换的回答,得到很多赞,十分感动。
之后一直说要更新,却不知不觉拖了快一年。
此次更新,思来想去,决定挑战一下压缩感知(compressed sensing, CS)这一题目。
在我看来,压缩感知是信号处理领域进入21世纪以来取得的最耀眼的成果,并在磁共振成像、图像处理等领域取得了有效应用。
压缩感知理论在其复杂的数学表述背后蕴含着非常精妙的思想。
基于一个有想象力的思路,辅以严格的数学证明,压缩感知实现了神奇的效果,突破了信号处理领域的金科玉律——奈奎斯特采样定律。
即,在信号采样的过程中,用很少的采样点,实现了和全采样一样的效果。
正是被它的精妙思想所打动,我选择它作为专栏第二篇的主题。
理解压缩感知的难度可能要比之前讲的小波还要大,但是我们从中依然可以梳理出清晰的脉络。
这篇文章的目标和之前一样,我将抛弃复杂的数学表述,用没有公式的语言讲清楚压缩感知的核心思路,尽量形象易懂。
我还绘制了大量示意图,因为排版问题,我将主要以PPT的形式呈现,并按slice标好了序号。
---------------------------------------------------------------------------------------------------------------------------一、什么是压缩感知(CS)?compressed sensing又称compressed sampling,似乎后者看上去更加直观一些。
没错,CS是一个针对信号采样的技术,它通过一些手段,实现了“压缩的采样”,准确说是在采样过程中完成了数据压缩的过程。
因此我们首先要从信号采样讲起:1. 我们知道,将模拟信号转换为计算机能够处理的数字信号,必然要经过采样的过程。
问题在于,应该用多大的采样频率,即采样点应该多密多疏,才能完整保留原始信号中的信息呢?---------------------------------------2. 奈奎斯特给出了答案——信号最高频率的两倍。
压缩感知原理1压缩感知引论传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图2.1。
图2.1 传统的信号压缩过程在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。
由于带宽的限制,许多信号只包含少量的重要频率的信息。
所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。
该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。
即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。
压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。
核心概念在于试图从原理上降低对一个信号进行测量的成本。
压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。
2压缩感知原理压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。
或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。
压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。
CS理论利用到了许多自然信号在特定的基 上具有紧凑的表示。
即这些信号是“稀疏”的或“可压缩”的。
由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。
对于一个实值的有限长一维离散时间信号X ,可以看作为一个N R 空间N ×1的维的列向量,元素为[]n ,n ,=1,2,…N 。
N R 空间的任何信号都可以用N ×1维的基向量{}1i N i =ψ的线性组合表示。