压缩感知CS-PPT课件
- 格式:ppt
- 大小:711.50 KB
- 文档页数:19
2011.No31 03.2 熟悉结构施工图结构施工图是关于承重构件的布置,使用的材料、形状、大小及内部构造的工程图样,是承重构件以及其他受力构件施工的依据。
看结构施工图最难的就是钢筋,要把结施图看懂就要知道钢筋的分布情况,现在都是在使用平法来标示钢筋,所以也要把平法弄懂才行。
在识读与熟悉结施图的过程中应该充分结合钢筋平法表示的系列图集,搞清楚:a 各结构构件的钢筋的品种,规格,以及受力钢筋在各构件的布置情况。
b 箍筋与纵向受力钢筋的位置关系。
c 各个构件纵向钢筋以及箍筋弯钩的角度及其长度。
d 熟悉各构件节点的钢筋的锚固长度。
e 熟悉各个构件钢筋的连接方式。
f 熟悉在钢筋的搭接区域内,钢筋的搭接长度。
g 核算钢筋的间距是否满足施工要求,尤其是各个构件节点处的钢筋间距。
h 弯起钢筋的弯折角度以及离连接点的距离。
除此以外,对于钢筋混凝土构件,还应该熟悉各个构件的砼保护层厚度,各个构件的尺寸大小、布置位置等。
特别注意的是对于结施图的阅读应充分结合建施图进行。
4 结束语在熟悉施工图纸的过程中,施工技术人员对于施工图纸中的疑问,和比较好的建议应该做好记录,为后续工作(图纸自审和会审)做好准备。
参考文献[1]《建筑识图》周坚主编 中国电力出版社 2007年;[2]《建筑工程项目管理》银花主编 机械工业出版社 2010年;摘 要 压缩感知(Compressive Sensing, CS)理论是一个充分利用信号稀疏性或可压缩性的全新信号采集、编解码理论。
本文系一文献综述,主要介绍了压缩感知的三部分即信号的稀疏表示、测量矩阵的设计、信号恢复算法的设计。
关键词 压缩感知 稀疏表示 测量矩阵 信号恢复算法1 引言1928年由美国电信工程师H.奈奎斯特(Nyquist)首先提出,1948年信息论的创始人C.E.香农(Shannon)又对其加以明确说明并正式作为定理引用的奈奎斯特采样定理,是采样带限信号过程所遵循的规律。
万方数据 万方数据为稀疏基,得到稀疏个数K=30。
在基于CS理论的编解码框架中,编码端采用高斯测量矩阵,解码端采用OMP法进行恢复重构。
仿真实验首先观察CS理论下测量值数量对信号重建效果的影响。
由图3可知。
当测量值的样本数图3一维稀疏信号恢复成功概率数量M增加时,信号成功恢复的概率同步增加。
而且当样本数目达到膨=llO时.信号已经能够准确恢复。
此时由图4可以看出信号得到了准确的解码重构。
銎毒0.5圈壁堕豳2广—■———————T——]墨。
卜●■)_—严_TLL——+-f-—剥Oj粤馨.0b菇焉。
篡蔷赢.《零妻§蕊,赢球薅热j盛》德0蛾Z一碰潼舔.《}糟哿,学一氛77≯叩’6哆滞可刘(c)CS解码重构后信号。
长度N=256图4源信号、解码重构稀疏系数、解码重构信号图6.2二维图像情况下的实验仿真源图像为256x256的boat图,选小波基为稀疏基。
基于CS理论的编解码框架中,测量编码端采用分块(块大小为32x32)Hadamard测量矩阵.解码端基于Tv最小化的梯度投影法进行恢复重构。
图像的测量样本数胜25000,其重构结果如图5a所示。
在传统的编解码理论下,对图像小波变换后保留其中的25000个大系数进行编码,后进行解码、反变换重建,其结果如图5b所示。
仿真结果表明。
在编码端的测量值个数相同的情况下,CS理论下的恢复图像PSNR达到27.9dB,远远高于传统编图5CS与传统编解码boat图恢复效果比较181塑丝查正面磊i西函再孬丽孺面解码的15.49dB。
7小结笔者主要阐述了CS理论框架,以及基于CS理论的编解码模型。
通过对一维信号、二维图像进行编解码的仿真实验说明了CS理论是一种能够使用少量测量值实现信号准确恢复的数据采集、编解码理论。
由于CS理论对处理大规模稀疏或可压缩数据具有十分重要的意义。
所以该理论提出后在许多研究领域得到了关注。
目前,国外研究人员已开始将CS理论用于压缩成像、医学图像、模数转换、雷达成像、天文学、通信等领域。
2008年第32卷第12期(总第322期)电视技术图2基于CS 理论的编解码框图编码端X 测量编码稀疏信号Y 解码端接收数据Y 解码重构恢复信号X赞文章编号:1002-8692(2008)12-0016-03压缩感知理论简介*喻玲娟1,谢晓春2,3(1.华南理工大学电子与信息学院,广东广州510640;2.赣南师范学院物理与电子信息学院,江西赣州341000;3.中国科学院空间科学与应用研究中心,北京100190)【摘要】压缩感知(CS )理论是在已知信号具有稀疏性或可压缩性的条件下,对信号数据进行采集、编解码的新理论。
主要阐述了CS 理论框架以及信号稀疏表示、CS 编解码模型,并举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。
【关键词】压缩感知;稀疏表示;编码;解码;受限等距特性【中图分类号】TN919.81【文献标识码】ABrief Introduction of Compressed Sensing TheoryYU Ling-juan 1,XIE Xiao-chun 2,3(1.School of Electronic and Information Engineering,South China University of Teconology,Guangzhou 510640,China ;2.School of Physics and Electronic Information,Gannan Normal University,Jiangxi Ganzhou 341000,China ;3.Center for Space Science and Applied Research,Chinese Academy of Sciences,Beijing 100190,China )【Abstract 】Compressed Sensing(CS)theory is a novel data collection and coding theory under the condition that signal is sparseor compressible.In this paper,the CS framework,CS coding model are introduced,after which the application of CS theory in one-dimensional signal and two-dimension image are illustrated.【Key words 】compressed sensing;sparse presentation;encoding;decoding;restricted isometry property·综述·1引言过去的几十年间,传感系统获取数据的能力不断地得到增强,需要处理的数据量也不断增多,而传统的Nyquist 采样定理要求信号的采样率不得低于信号带宽的2倍,这无疑给信号处理的能力提出了更高的要求,也给相应的硬件设备带来了极大的挑战。
压缩感知概述一、压缩感知的提出信号采样是模拟的物理世界通向数字的信息世界之必备手段。
多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理。
定理指出,只有当采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。
可见,带宽是Nyquist采样定理对采样的本质要求。
但是,对于超宽带通信和信号处理、核磁共振成像、雷达遥感成像、传感器网络等实际应用,信号的带宽变得越来越大,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。
然而传统的信号压缩实际上是一种严重的资源浪费,因为大量的采样数据在压缩过程中被丢弃了,而它们对于信号来说是不重要的或者只是冗余信息。
从这个层面上讲:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。
近年来基于信号稀疏性提出一种称为压缩感知(compressed sensing)或压缩采样(compressive sampling)的新兴采样理论,成功实现了信号的同时采样与压缩。
二、压缩感知基本原理简单地说,压缩感知理论指出:当信号在某个变换域是稀疏的或可压缩的,可以利用与变换矩阵非相干的测量矩阵将变换系数线性投影为低维观测向量,同时这种投影保持了重建信号所需的信息,通过进一步求解稀疏最优化问题就能够从低维观测向量精确地或高概率精确地重建原始高维信号。
原理框图如图(一)所示:图一原理框图图解:设长度为N的信号X在某组正交基或紧框架 上的变换系数是稀疏的,则用一个与变换基ψ不相关的观测基N)N(M M <<⨯Φ:对系数向量进行线性变换,并得到观测集合Y :M*1,从而使得维数降低。
即:Y=ΦΘ=X A X CS T =Φψ;X T ψ=Θ。
在该理论框架下,采样速率不再取决于信号的带宽,而在很大程度上取决于两个基本准则:稀疏性和非相干性,或者说是稀疏性和等距约束性。
当前压缩感知理论主要涉及三个核心问题是:信号系数表示即稀疏矩阵ψ,观测矩阵Φ,以及重构算法的设计。
压缩感知⼀、什么是压缩感知(CS)?compressed sensing⼜称compressed sampling,CS是⼀个针对信号采样的技术,它通过⼀些⼿段,实现了“压缩的采样”,准确说是在采样过程中完成了数据压缩的过程。
因此我们⾸先要从信号采样讲起:1. 我们知道,将模拟信号转换为计算机能够处理的数字信号,必然要经过采样的过程。
问题在于,应该⽤多⼤的采样频率,即采样点应该多密多疏,才能完整保留原始信号中的信息呢?------------------------------------------------------------------------------------------------------------------------------------------------------------2. 奈奎斯特给出了答案——信号最⾼频率的两倍。
⼀直以来,奈奎斯特采样定律被视为数字信号处理领域的⾦科⽟律。
-----------------------------------------------------------------------------------------------------------------------------------------------------------3. ⾄于为什么是两倍,学过信号处理的同学应该都知道,时域以τ为间隔进⾏采样,频域会以1/τ为周期发⽣周期延拓。
那么如果采样频率低于两倍的信号最⾼频率,信号在频域频谱搬移后就会发⽣混叠。
-----------------------------------------------------------------------------------------------------------------------------------------------------------4. 然⽽这看似不容置疑的定律却受到了⼏位⼤神的挑战。