压缩感知CS-PPT课件
- 格式:ppt
- 大小:711.50 KB
- 文档页数:19
2011.No31 03.2 熟悉结构施工图结构施工图是关于承重构件的布置,使用的材料、形状、大小及内部构造的工程图样,是承重构件以及其他受力构件施工的依据。
看结构施工图最难的就是钢筋,要把结施图看懂就要知道钢筋的分布情况,现在都是在使用平法来标示钢筋,所以也要把平法弄懂才行。
在识读与熟悉结施图的过程中应该充分结合钢筋平法表示的系列图集,搞清楚:a 各结构构件的钢筋的品种,规格,以及受力钢筋在各构件的布置情况。
b 箍筋与纵向受力钢筋的位置关系。
c 各个构件纵向钢筋以及箍筋弯钩的角度及其长度。
d 熟悉各构件节点的钢筋的锚固长度。
e 熟悉各个构件钢筋的连接方式。
f 熟悉在钢筋的搭接区域内,钢筋的搭接长度。
g 核算钢筋的间距是否满足施工要求,尤其是各个构件节点处的钢筋间距。
h 弯起钢筋的弯折角度以及离连接点的距离。
除此以外,对于钢筋混凝土构件,还应该熟悉各个构件的砼保护层厚度,各个构件的尺寸大小、布置位置等。
特别注意的是对于结施图的阅读应充分结合建施图进行。
4 结束语在熟悉施工图纸的过程中,施工技术人员对于施工图纸中的疑问,和比较好的建议应该做好记录,为后续工作(图纸自审和会审)做好准备。
参考文献[1]《建筑识图》周坚主编 中国电力出版社 2007年;[2]《建筑工程项目管理》银花主编 机械工业出版社 2010年;摘 要 压缩感知(Compressive Sensing, CS)理论是一个充分利用信号稀疏性或可压缩性的全新信号采集、编解码理论。
本文系一文献综述,主要介绍了压缩感知的三部分即信号的稀疏表示、测量矩阵的设计、信号恢复算法的设计。
关键词 压缩感知 稀疏表示 测量矩阵 信号恢复算法1 引言1928年由美国电信工程师H.奈奎斯特(Nyquist)首先提出,1948年信息论的创始人C.E.香农(Shannon)又对其加以明确说明并正式作为定理引用的奈奎斯特采样定理,是采样带限信号过程所遵循的规律。
万方数据 万方数据为稀疏基,得到稀疏个数K=30。
在基于CS理论的编解码框架中,编码端采用高斯测量矩阵,解码端采用OMP法进行恢复重构。
仿真实验首先观察CS理论下测量值数量对信号重建效果的影响。
由图3可知。
当测量值的样本数图3一维稀疏信号恢复成功概率数量M增加时,信号成功恢复的概率同步增加。
而且当样本数目达到膨=llO时.信号已经能够准确恢复。
此时由图4可以看出信号得到了准确的解码重构。
銎毒0.5圈壁堕豳2广—■———————T——]墨。
卜●■)_—严_TLL——+-f-—剥Oj粤馨.0b菇焉。
篡蔷赢.《零妻§蕊,赢球薅热j盛》德0蛾Z一碰潼舔.《}糟哿,学一氛77≯叩’6哆滞可刘(c)CS解码重构后信号。
长度N=256图4源信号、解码重构稀疏系数、解码重构信号图6.2二维图像情况下的实验仿真源图像为256x256的boat图,选小波基为稀疏基。
基于CS理论的编解码框架中,测量编码端采用分块(块大小为32x32)Hadamard测量矩阵.解码端基于Tv最小化的梯度投影法进行恢复重构。
图像的测量样本数胜25000,其重构结果如图5a所示。
在传统的编解码理论下,对图像小波变换后保留其中的25000个大系数进行编码,后进行解码、反变换重建,其结果如图5b所示。
仿真结果表明。
在编码端的测量值个数相同的情况下,CS理论下的恢复图像PSNR达到27.9dB,远远高于传统编图5CS与传统编解码boat图恢复效果比较181塑丝查正面磊i西函再孬丽孺面解码的15.49dB。
7小结笔者主要阐述了CS理论框架,以及基于CS理论的编解码模型。
通过对一维信号、二维图像进行编解码的仿真实验说明了CS理论是一种能够使用少量测量值实现信号准确恢复的数据采集、编解码理论。
由于CS理论对处理大规模稀疏或可压缩数据具有十分重要的意义。
所以该理论提出后在许多研究领域得到了关注。
目前,国外研究人员已开始将CS理论用于压缩成像、医学图像、模数转换、雷达成像、天文学、通信等领域。