压缩感知理论(Compressive)
- 格式:ppt
- 大小:185.50 KB
- 文档页数:23
压缩感知理论
压缩感知理论(Compressive Sensing Theory, CSP)是一种用来提高信号采集和处
理效率、使采集传输系统节省资源的研究方向。
它的基本思想是:若一个实际的信号可以
满足一定的限制条件,则其采样、处理和传输所需的资源会比完全采集处理和传输这个信
号所需资源少得多。
简言之,就是在一定的稀疏假设下,有效的采样、处理和传输数据不
仅具有可行性,而且这种方法能够加速传输效率,降低资源消耗。
压缩感知理论(CSP)把信号采集、传输单元称为“感知器(Sensor)”,它是一种
缺乏全部信息的单元,可以仅仅通过选择部分子采集到的信息来对整体信号进行局部估计。
压缩传感的实现的关键在于建立能够快速地准确地完成局部估计的估计方法。
即使是在相
对限制的采样数据和传输带宽的情况下,也可以采取最优或者次优的估计方法,实现高效
而精准的压缩传播。
压缩感知理论(CSP)已经在诸多领域中取得了很大成功。
例如,它可以用来提高影
像处理效率、优化无线通信采样和图像传输、进行脑磁共振图像分析和信号处理等。
同时,它也可以在多源数据合成、脑科学和科学的计算中发挥作用。
压缩感知理论(CSP)为科
学研究带来了各自领域的新途径,使采集、传输技术得以突破性发展,从而为实时信号采
集和处理带来了极大的方便。
压缩感知理论及其在图像处理中的应用近年来,随着数字图像在我们日常生活中的普及和广泛应用,如何快速高效地实现对大量图像数据的处理成为了一个难题。
传统的数字图像处理技术需要高带宽高速率的数据传输,计算机高速缓存、内存等硬件设备的昂贵需求,而压缩感知理论(Compressive Sensing, CS)的出现,则为解决这一难题提供了新的思路。
一、压缩感知理论的提出压缩感知理论是由2006年图像处理领域的国际权威科学家Emmanuel J. Candès 率先提出的。
该理论认为,只有在信号的采样和重构过程中,才能更好地利用信号的特性和结构,减少无用信息和冗余信息,从而实现对信号的高效处理。
也就是说,我们可以对信息进行压缩处理,以更快更高效地存储和处理数据。
与传统的压缩技术相比,压缩感知理论具有以下优点:1. 压缩效率更高:传统的压缩技术往往只能压缩部分信号能量,而压缩感知理论则可以在采样过程中,直接压缩信号本身。
2. 重构精度更高:压缩感知理论采用某些稀疏变换方法,具有更高的重构精度。
同时,针对一些非常难处理的图像信号,在压缩感知理论的框架下,其重构精度可以得到进一步提升。
二、压缩感知理论在图像处理中的应用由于压缩感知理论具有较多的优点,使得其在大量图像处理领域中有广泛的应用。
1. 图像压缩图像压缩是对大量数字数据的压缩性能测试、可视化和度量等方面的技术。
对于大量数据,我们可以采用压缩感知理论来进行压缩,这样可以极大程度地减少数据存储的空间,加速数据读写和传输的速度。
压缩过的图像,可以减少对存储设备的空间占用,提高传输的速度等,是一种非常实用的技术。
2. 图像分类在机器学习中,需要大量分类样本进行模型训练。
需要对训练的样本进行压缩,得到表征样本的特征向量,然后通过学习的分类器对其进行分类。
在这个过程中,压缩感知理论可以很好地处理各种图像分类问题。
3. 图像处理图像处理是数字图像处理中一个非常重要的领域。
分布式压缩感知理论研究综述及应用分布式压缩感知(Distributed Compressive Sensing,DCS)是一种新兴的信号处理理论,它将压缩感知(Compressive Sensing,CS)与分布式网络相结合,通过分布式传感器进行信号采样和信息传输,以更高效的方式获取信号信息。
DCS理论在信号处理领域有着广泛的应用,本篇综述将对DCS理论的研究进展以及应用进行介绍。
DCS理论的基本原理是利用信号稀疏性来降低采样率,从而减少传感器的能耗和通信开销。
传统的压缩感知方法是使用单一的传感器采样信号,并通过计算进行信号恢复。
而DCS理论则是利用多个分布式传感器同时采样信号,将采样数据进行融合和压缩,再进行信号恢复。
由于多个传感器可以并行采样,使得信号采样率更低,从而减少了能耗和通信开销。
DCS理论的研究涉及到不同的问题,包括传感器节点选择、信号融合和信号恢复等。
在传感器节点选择方面,研究者通过优化算法来选择最优的传感器节点组合,使得总体的采样率更低,但仍能准确恢复信号。
在信号融合方面,研究者提出了不同的融合算法,如最小二乘法和分布式压缩感知算法,以实现传感器节点数据的融合。
在信号恢复方面,研究者提出了一些高效的算法,如分步传感器选择与分步信号恢复算法,以加快信号恢复的速度和提高恢复的精度。
DCS理论的应用非常广泛,涵盖了多个领域。
在图像处理方面,DCS可以减少图像传输时的数据量,提高传输速度,在云计算和物联网等领域有着广泛的应用前景。
在无线传感器网络中,DCS可以减少传感器节点的能耗和通信开销,延长网络寿命。
在医疗影像、无线通信、信号处理等领域,DCS也有着重要的应用价值。
DCS理论是一种新兴且有着广泛应用前景的信号处理技术。
通过分布式传感器进行信号采样和信息传输,可以显著降低信号采样率,减少传感器节点的能耗和通信开销。
DCS 理论的研究涉及到传感器节点选择、信号融合和信号恢复等问题,同时在图像处理、无线传感器网络和医疗影像等领域有着广泛的应用。
压缩感知方程定位
压缩感知(Compressed Sensing, CS)是一种新兴的信号处理
理论,它可以在采样率远低于传统理论所要求的情况下,实现对信
号的准确重构。
压缩感知方程定位是指利用压缩感知技术来实现对
目标位置的准确定位。
这种方法可以在较短的时间内,使用远远低
于传统方法所需的采样率,实现对目标位置的高精度定位。
压缩感知方程定位的关键在于如何设计合适的测量矩阵和重构
算法。
测量矩阵是指在采样过程中对目标位置进行测量的矩阵,而
重构算法则是指如何从这些测量数据中准确地重构出目标位置信息。
通过合理设计测量矩阵和高效的重构算法,压缩感知方程定位可以
实现对目标位置的高精度定位,并且具有较强的抗干扰能力。
压缩感知方程定位在无线通信、雷达、定位导航等领域具有广
泛的应用前景。
相比传统的定位方法,压缩感知方程定位可以大大
减少采样数据的传输和处理量,从而降低了系统的能耗和成本,并
且能够在复杂的环境下实现更加可靠的定位效果。
随着压缩感知理论的不断深入和发展,压缩感知方程定位技术
将会在未来的定位领域发挥越来越重要的作用,为我们的生活和工作带来更多便利和效益。
万方数据 万方数据为稀疏基,得到稀疏个数K=30。
在基于CS理论的编解码框架中,编码端采用高斯测量矩阵,解码端采用OMP法进行恢复重构。
仿真实验首先观察CS理论下测量值数量对信号重建效果的影响。
由图3可知。
当测量值的样本数图3一维稀疏信号恢复成功概率数量M增加时,信号成功恢复的概率同步增加。
而且当样本数目达到膨=llO时.信号已经能够准确恢复。
此时由图4可以看出信号得到了准确的解码重构。
銎毒0.5圈壁堕豳2广—■———————T——]墨。
卜●■)_—严_TLL——+-f-—剥Oj粤馨.0b菇焉。
篡蔷赢.《零妻§蕊,赢球薅热j盛》德0蛾Z一碰潼舔.《}糟哿,学一氛77≯叩’6哆滞可刘(c)CS解码重构后信号。
长度N=256图4源信号、解码重构稀疏系数、解码重构信号图6.2二维图像情况下的实验仿真源图像为256x256的boat图,选小波基为稀疏基。
基于CS理论的编解码框架中,测量编码端采用分块(块大小为32x32)Hadamard测量矩阵.解码端基于Tv最小化的梯度投影法进行恢复重构。
图像的测量样本数胜25000,其重构结果如图5a所示。
在传统的编解码理论下,对图像小波变换后保留其中的25000个大系数进行编码,后进行解码、反变换重建,其结果如图5b所示。
仿真结果表明。
在编码端的测量值个数相同的情况下,CS理论下的恢复图像PSNR达到27.9dB,远远高于传统编图5CS与传统编解码boat图恢复效果比较181塑丝查正面磊i西函再孬丽孺面解码的15.49dB。
7小结笔者主要阐述了CS理论框架,以及基于CS理论的编解码模型。
通过对一维信号、二维图像进行编解码的仿真实验说明了CS理论是一种能够使用少量测量值实现信号准确恢复的数据采集、编解码理论。
由于CS理论对处理大规模稀疏或可压缩数据具有十分重要的意义。
所以该理论提出后在许多研究领域得到了关注。
目前,国外研究人员已开始将CS理论用于压缩成像、医学图像、模数转换、雷达成像、天文学、通信等领域。
2008年第32卷第12期(总第322期)电视技术图2基于CS 理论的编解码框图编码端X 测量编码稀疏信号Y 解码端接收数据Y 解码重构恢复信号X赞文章编号:1002-8692(2008)12-0016-03压缩感知理论简介*喻玲娟1,谢晓春2,3(1.华南理工大学电子与信息学院,广东广州510640;2.赣南师范学院物理与电子信息学院,江西赣州341000;3.中国科学院空间科学与应用研究中心,北京100190)【摘要】压缩感知(CS )理论是在已知信号具有稀疏性或可压缩性的条件下,对信号数据进行采集、编解码的新理论。
主要阐述了CS 理论框架以及信号稀疏表示、CS 编解码模型,并举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。
【关键词】压缩感知;稀疏表示;编码;解码;受限等距特性【中图分类号】TN919.81【文献标识码】ABrief Introduction of Compressed Sensing TheoryYU Ling-juan 1,XIE Xiao-chun 2,3(1.School of Electronic and Information Engineering,South China University of Teconology,Guangzhou 510640,China ;2.School of Physics and Electronic Information,Gannan Normal University,Jiangxi Ganzhou 341000,China ;3.Center for Space Science and Applied Research,Chinese Academy of Sciences,Beijing 100190,China )【Abstract 】Compressed Sensing(CS)theory is a novel data collection and coding theory under the condition that signal is sparseor compressible.In this paper,the CS framework,CS coding model are introduced,after which the application of CS theory in one-dimensional signal and two-dimension image are illustrated.【Key words 】compressed sensing;sparse presentation;encoding;decoding;restricted isometry property·综述·1引言过去的几十年间,传感系统获取数据的能力不断地得到增强,需要处理的数据量也不断增多,而传统的Nyquist 采样定理要求信号的采样率不得低于信号带宽的2倍,这无疑给信号处理的能力提出了更高的要求,也给相应的硬件设备带来了极大的挑战。
压缩感知技术综述摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。
多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。
压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。
本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及基于压缩感知SAR成像的仿真。
关键词:压缩感知;稀疏表示;观测矩阵;SAR成像;Abstract: Signal sampling is a necessary means of information world physical world to the digital simulation. Over the years, the base theory of signal sampling is the famous Nyquist sampling theorem, but a large amount of data generated by the waste of storage space. Compressed sensing and put forward a new kind of sampling theory, it can be much less than the Nyquist sampling signal sampling rate. This paper introduces the basic theory of compressed sensing, emphatically introduces the new progress in three aspects of signal sparse representation, design of measurement matrix and reconstruction algorithm, and introduces the application of compressed sensing and Simulation of SAR imaging based on Compressive Sensing Keywords: Compressed sensing; Sparse representation; The observation matrix; SAR imaging;0 引言Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。
压缩传感总结报告摘 要 随着信息技术的不断发展,人们对信息需求量越来越大,这给信号采样、传输和存储的实现带来的压力越来越大。
传统的采样方法容易造成信息的冗余,因此,人们寻求新的方法避免信息的冗余。
压缩传感的问世,打破了常规的信号处理的思路,它将压缩和采样合并进行,突破了香农采样定理的瓶颈。
本文主要围绕稀疏表示、编码测量、重构算法三个方面对压缩传感进行基本的介绍。
最后介绍了压缩传感的应用以及展望。
关键词 压缩传感,稀疏表示,编码测量,重构算法1 引言传统的信号获取和处理过程主要包括采样、压缩、传输和解压缩四个部分。
其采样过程必须满足香农采样定理, 即采样频率不能低于模拟信号频谱中最高频率的2倍。
在信号压缩中,先对信号进行某种变换,如离散余弦变换或小波变换, 然后对少数绝对值较大的系数进行压缩编码, 舍弃零或接近于零的系数。
通过对数据进行压缩,舍弃了采样获得的大部分数据, 但不影响“感知效果”[1]。
但是,信号压缩实际上是一种严重的资源浪费,因为大量的采样数据在压缩过程中被丢弃了,而它们对于信号来说是不重要的或者只是冗余信息。
从这个意义而言,可得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist 采样机制是冗余的或者说是非信息的。
如果信号本身是可压缩的, 那么是否可以直接获取其压缩表示(即压缩数据),从而略去对大量无用信息的采样呢?换句话说,是否存在一种基于信息的采样理论框架,使得采样过程既能保持信号信息,又能只需远少于Nyquist 采样定理所要求的采样数目就可精确或近似精确重建原始信号?Cand és 在2006年从数学上证明了可以从部分傅立叶变换系数精确重构原始信号, 为压缩传感奠定了理论基础。
Cand és 和Donoho 在相关研究基础上于2006年正式提出了压缩传感的概念。
其核心思想是将压缩与采样合并进行,首先采集信号的非自适应线性投影(测量值), 然后根据相应重构算法由测量值重构原始信号[7]。