压缩感知理论介绍
- 格式:ppt
- 大小:643.00 KB
- 文档页数:6
压缩感知,又称压缩采样,压缩传感。
它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号[1]。
压缩感知理论一经提出,就引起学术界和工业界的广泛关注。
他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,[2]并被美国科技评论评为2007年度十大科技进展。
编辑本段基本知识现代信号处理的一个关键基础是Shannon 采样理论:一个信号可以无失真重建所要求的离散样本数由其带宽决定。
但是Shannon 采样定理是一个信号重建的充分非必要条件。
在过去的几年内,压缩感知作为一个新的采样理论,它可以在远小于Nyquist 采样率的条件下获取信号的离散样本,保证信号的无失真重建。
压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。
[3]压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。
传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。
但是,现实生活中很多广受关注的信号本身具有一些结构特点。
相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。
换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。
所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。
稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。
理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。
这些波形要求是与信号所在的稀疏空间不相关的。
压缩感知方法抛弃了当前信号采样中的冗余信息。
它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。
这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。
压缩感知简介 压缩感知(也称为压缩感知、压缩采样或稀疏采样)是⼀种信号处理技术,通过寻找⽋定线性系统的解决⽅案来有效地获取和重构信号。
这是基于这样的原理,即通过优化,可以利⽤信号的稀疏性从⽐Nyquist-Shannon 采样定理所需的样本少得多的样本中恢复它。
有两种情况可以恢复。
第⼀个是稀疏的,这要求信号在某些域中是稀疏的。
第⼆个是不相⼲性,它通过等距属性应⽤,这对于稀疏信号来说已经⾜够了。
概述 信号处理⼯程领域的⼀个共同⽬标是从⼀系列采样测量中重建信号。
⼀般来说,这项任务是不可能的,因为在未测量信号的时间内⽆法重建信号。
然⽽,通过对信号的先验知识或假设,可以从⼀系列测量中完美地重建信号(获取这⼀系列测量称为采样)。
随着时间的推移,⼯程师们对哪些假设是实⽤的以及如何推⼴它们的理解有所提⾼。
信号处理的早期突破是奈奎斯特-⾹农采样定理。
它指出,如果真实信号的最⾼频率⼩于采样率的⼀半,则可以通过sinc 插值完美地重构信号。
主要思想是,利⽤关于信号频率约束的先验知识,重构信号所需的样本更少。
⼤约在 2004 年,Emmanuel Candès、Justin Romberg、Terence Tao和David Donoho证明,在了解信号稀疏性的情况下,可以使⽤⽐采样定理所需更少的样本来重建信号。
这个想法是压缩感知的基础。
历史 压缩传感依赖于其他⼏个科学领域在历史上使⽤过的技术。
在统计学中,最⼩⼆乘法由L1-norm,由Laplace引⼊。
随着线性规划和Dantzig单纯形算法的介绍,L1-norm ⽤于计算统计。
在统计理论中,L1-norm 被George W. Brown和后来的作者⽤于中值⽆偏估计量。
它被Peter J. Huber 和其他从事稳健统计⼯作的⼈使⽤。
L1-norm 也⽤于信号处理,例如,在 1970 年代,地震学家根据似乎不满⾜Nyquist-Shannon 标准的数据构建了地球内反射层的图像。
分布式压缩感知理论研究综述及应用分布式压缩感知是一种集合了压缩感知和分布式信号处理技术的新型信号采样和重构方法。
它可以有效地降低采样数据的大小,减少数据传输和存储的成本,并且可以在分布式环境中实现对信号的准确重构。
本文就分布式压缩感知的理论研究和应用进行综述,通过对该领域的研究进展和应用前景进行分析,展示了分布式压缩感知在信号处理领域的重要意义和潜在价值。
一、分布式压缩感知的基本原理分布式压缩感知技术将压缩感知理论应用于分布式信号处理系统中,实现了在采样端进行压缩,并在重构端对信号进行准确还原。
它主要包括信号的采样、测量矩阵的设计、信号的重构这三个基本环节。
1. 信号的采样传统的信号采样通常是采用奈奎斯特采样定理,即采样频率要大于信号的最高频率成分。
而分布式压缩感知采用的是压缩采样,即采用远远小于奈奎斯特采样频率的采样率。
这样可以有效减少采样数据的大小,降低数据传输和存储的成本。
2. 测量矩阵的设计在分布式压缩感知中,测量矩阵的设计是非常关键的一步。
它决定了采样得到的投影数据,从而影响信号的重构效果。
常见的测量矩阵包括随机测量矩阵、稀疏测量矩阵等。
在分布式压缩感知中,信号的重构是指利用采样数据和测量矩阵来恢复原始信号。
常用的信号重构方法包括基于稀疏表示的重构算法、基于字典学习的重构算法等。
近年来,分布式压缩感知在信号处理领域取得了许多研究进展。
研究者们提出了许多新的理论方法和算法,丰富了分布式压缩感知的理论体系,推动了该领域的发展。
1. 分布式压缩感知的优化算法针对分布式压缩感知中的信号重构问题,研究者们提出了许多优化算法,如迭代硬阈值算法、基于二阶范数的重构算法等,这些算法在信号重构的准确性和计算效率上都取得了显著的进展。
分布式压缩感知不仅在通信和图像处理领域有着广泛的应用,还在生物医学、环境监测、无线传感器网络等领域展现了广阔的应用前景。
在医学影像处理中,可以利用分布式压缩感知技术对医学影像进行高效压缩和传输,从而节约了存储和传输成本。
压缩感知理论
压缩感知理论(Compressive Sensing Theory, CSP)是一种用来提高信号采集和处
理效率、使采集传输系统节省资源的研究方向。
它的基本思想是:若一个实际的信号可以
满足一定的限制条件,则其采样、处理和传输所需的资源会比完全采集处理和传输这个信
号所需资源少得多。
简言之,就是在一定的稀疏假设下,有效的采样、处理和传输数据不
仅具有可行性,而且这种方法能够加速传输效率,降低资源消耗。
压缩感知理论(CSP)把信号采集、传输单元称为“感知器(Sensor)”,它是一种
缺乏全部信息的单元,可以仅仅通过选择部分子采集到的信息来对整体信号进行局部估计。
压缩传感的实现的关键在于建立能够快速地准确地完成局部估计的估计方法。
即使是在相
对限制的采样数据和传输带宽的情况下,也可以采取最优或者次优的估计方法,实现高效
而精准的压缩传播。
压缩感知理论(CSP)已经在诸多领域中取得了很大成功。
例如,它可以用来提高影
像处理效率、优化无线通信采样和图像传输、进行脑磁共振图像分析和信号处理等。
同时,它也可以在多源数据合成、脑科学和科学的计算中发挥作用。
压缩感知理论(CSP)为科
学研究带来了各自领域的新途径,使采集、传输技术得以突破性发展,从而为实时信号采
集和处理带来了极大的方便。
压缩感知理论及其在图像处理中的应用近年来,随着数字图像在我们日常生活中的普及和广泛应用,如何快速高效地实现对大量图像数据的处理成为了一个难题。
传统的数字图像处理技术需要高带宽高速率的数据传输,计算机高速缓存、内存等硬件设备的昂贵需求,而压缩感知理论(Compressive Sensing, CS)的出现,则为解决这一难题提供了新的思路。
一、压缩感知理论的提出压缩感知理论是由2006年图像处理领域的国际权威科学家Emmanuel J. Candès 率先提出的。
该理论认为,只有在信号的采样和重构过程中,才能更好地利用信号的特性和结构,减少无用信息和冗余信息,从而实现对信号的高效处理。
也就是说,我们可以对信息进行压缩处理,以更快更高效地存储和处理数据。
与传统的压缩技术相比,压缩感知理论具有以下优点:1. 压缩效率更高:传统的压缩技术往往只能压缩部分信号能量,而压缩感知理论则可以在采样过程中,直接压缩信号本身。
2. 重构精度更高:压缩感知理论采用某些稀疏变换方法,具有更高的重构精度。
同时,针对一些非常难处理的图像信号,在压缩感知理论的框架下,其重构精度可以得到进一步提升。
二、压缩感知理论在图像处理中的应用由于压缩感知理论具有较多的优点,使得其在大量图像处理领域中有广泛的应用。
1. 图像压缩图像压缩是对大量数字数据的压缩性能测试、可视化和度量等方面的技术。
对于大量数据,我们可以采用压缩感知理论来进行压缩,这样可以极大程度地减少数据存储的空间,加速数据读写和传输的速度。
压缩过的图像,可以减少对存储设备的空间占用,提高传输的速度等,是一种非常实用的技术。
2. 图像分类在机器学习中,需要大量分类样本进行模型训练。
需要对训练的样本进行压缩,得到表征样本的特征向量,然后通过学习的分类器对其进行分类。
在这个过程中,压缩感知理论可以很好地处理各种图像分类问题。
3. 图像处理图像处理是数字图像处理中一个非常重要的领域。
压缩感知理论综述摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。
多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。
压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。
本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及仿真,举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。
关键词:压缩感知;稀疏表示;观测矩阵;编码;解码一、引言Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。
可见,带宽是Nyquist采样定理对采样的本质要求。
然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。
解决这些压力常见的方案是信号压缩。
但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。
从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。
于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist 采样定理要求的速率采样信号,同时又可以完全恢复信号。
与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。
事实上,稀疏性在现代信号处理领域起着至关重要的作用。
近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。
简单地说,压缩感知理论指出:只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。
压缩感知理论一、压缩感知理论简介压缩感知,又称压缩采样,压缩传感。
它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。
压缩感知理论一经提出,就引起学术界和工业界的广泛关注。
它在信息论、图像处理、地球科学、光学、微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
二、压缩感知产生背景信号采样是模拟的物理世界通向数字的信息世界之必备手段。
多年来,指导信号采样的理论基础一直是著名的Nyquist 采样定理。
定理指出,只有当采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。
可见,带宽是Nyquist 采样定理对采样的本质要求。
但是,对于超宽带通信和信号处理、核磁共振成像、雷达遥感成像、传感器网络等实际应用,信号的带宽变得越来越大,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。
为了缓解对信号传输速度和存储空间的压力,当前常见的解决方案是信号压缩但是,信号压缩实际上是一种严重的资源浪费,因为大量采样数据在压缩过程中被丢弃了,它们对于信号来说是不重要的或者只是冗余信息。
故而就有人研究如何很好地利用采集到的信号,压缩感知是由 E. J. Candes 、J. Romberg 、T. T ao 和D. L. Donoho 等科学家于2004 年提出,压缩感知方法抛弃了当前信号采样中的冗余信息。
它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。
这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。
三、压缩感知理论压缩感知理论主要涉及到三个方面,即信号的稀疏表示、测量矩阵的设计和重构算法的构造。
稀疏信号广义上可理解为信号中只有少数元素是非零的,或者信号在某一变换域内少数元素是非零的。
万方数据 万方数据为稀疏基,得到稀疏个数K=30。
在基于CS理论的编解码框架中,编码端采用高斯测量矩阵,解码端采用OMP法进行恢复重构。
仿真实验首先观察CS理论下测量值数量对信号重建效果的影响。
由图3可知。
当测量值的样本数图3一维稀疏信号恢复成功概率数量M增加时,信号成功恢复的概率同步增加。
而且当样本数目达到膨=llO时.信号已经能够准确恢复。
此时由图4可以看出信号得到了准确的解码重构。
銎毒0.5圈壁堕豳2广—■———————T——]墨。
卜●■)_—严_TLL——+-f-—剥Oj粤馨.0b菇焉。
篡蔷赢.《零妻§蕊,赢球薅热j盛》德0蛾Z一碰潼舔.《}糟哿,学一氛77≯叩’6哆滞可刘(c)CS解码重构后信号。
长度N=256图4源信号、解码重构稀疏系数、解码重构信号图6.2二维图像情况下的实验仿真源图像为256x256的boat图,选小波基为稀疏基。
基于CS理论的编解码框架中,测量编码端采用分块(块大小为32x32)Hadamard测量矩阵.解码端基于Tv最小化的梯度投影法进行恢复重构。
图像的测量样本数胜25000,其重构结果如图5a所示。
在传统的编解码理论下,对图像小波变换后保留其中的25000个大系数进行编码,后进行解码、反变换重建,其结果如图5b所示。
仿真结果表明。
在编码端的测量值个数相同的情况下,CS理论下的恢复图像PSNR达到27.9dB,远远高于传统编图5CS与传统编解码boat图恢复效果比较181塑丝查正面磊i西函再孬丽孺面解码的15.49dB。
7小结笔者主要阐述了CS理论框架,以及基于CS理论的编解码模型。
通过对一维信号、二维图像进行编解码的仿真实验说明了CS理论是一种能够使用少量测量值实现信号准确恢复的数据采集、编解码理论。
由于CS理论对处理大规模稀疏或可压缩数据具有十分重要的意义。
所以该理论提出后在许多研究领域得到了关注。
目前,国外研究人员已开始将CS理论用于压缩成像、医学图像、模数转换、雷达成像、天文学、通信等领域。
2008年第32卷第12期(总第322期)电视技术图2基于CS 理论的编解码框图编码端X 测量编码稀疏信号Y 解码端接收数据Y 解码重构恢复信号X赞文章编号:1002-8692(2008)12-0016-03压缩感知理论简介*喻玲娟1,谢晓春2,3(1.华南理工大学电子与信息学院,广东广州510640;2.赣南师范学院物理与电子信息学院,江西赣州341000;3.中国科学院空间科学与应用研究中心,北京100190)【摘要】压缩感知(CS )理论是在已知信号具有稀疏性或可压缩性的条件下,对信号数据进行采集、编解码的新理论。
主要阐述了CS 理论框架以及信号稀疏表示、CS 编解码模型,并举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。
【关键词】压缩感知;稀疏表示;编码;解码;受限等距特性【中图分类号】TN919.81【文献标识码】ABrief Introduction of Compressed Sensing TheoryYU Ling-juan 1,XIE Xiao-chun 2,3(1.School of Electronic and Information Engineering,South China University of Teconology,Guangzhou 510640,China ;2.School of Physics and Electronic Information,Gannan Normal University,Jiangxi Ganzhou 341000,China ;3.Center for Space Science and Applied Research,Chinese Academy of Sciences,Beijing 100190,China )【Abstract 】Compressed Sensing(CS)theory is a novel data collection and coding theory under the condition that signal is sparseor compressible.In this paper,the CS framework,CS coding model are introduced,after which the application of CS theory in one-dimensional signal and two-dimension image are illustrated.【Key words 】compressed sensing;sparse presentation;encoding;decoding;restricted isometry property·综述·1引言过去的几十年间,传感系统获取数据的能力不断地得到增强,需要处理的数据量也不断增多,而传统的Nyquist 采样定理要求信号的采样率不得低于信号带宽的2倍,这无疑给信号处理的能力提出了更高的要求,也给相应的硬件设备带来了极大的挑战。
基于压缩感知理论的模数转换器采样速率降低方案一、压缩感知理论概述压缩感知理论是一种新兴的信号处理理论,它突破了传统的奈奎斯特采样定理,允许在远低于信号最高频率的情况下对信号进行采样,并且能够从这些不完整的采样中恢复出原始信号。
这一理论的提出,为模数转换器(ADC)的设计提供了新的思路,使得在保持信号质量的前提下,降低采样速率成为可能。
1.1 压缩感知理论的核心概念压缩感知理论的核心在于信号的稀疏表示。
一个信号如果能够在某个变换域(如小波变换、傅里叶变换等)下表示为稀疏的,即只有少数几个非零系数,那么这个信号就可以被压缩感知。
在实际应用中,许多自然信号(如图像、声音等)都具有稀疏特性,这为压缩感知理论的应用提供了广阔的空间。
1.2 压缩感知理论的数学基础压缩感知理论的数学基础是线性代数中的稀疏信号恢复问题。
给定一个信号向量 \( \mathbf{x} \) 和一个测量矩阵 \( \mathbf{\Phi} \),通过测量向量 \( \mathbf{y} = \mathbf{\Phi x} \) 来恢复原始信号 \( \mathbf{x} \)。
如果 \( \mathbf{x} \) 是 K-稀疏的,即在某个变换域下只有 K 个非零系数,那么在一定条件下,可以通过优化算法从 \( \mathbf{y} \) 恢复出 \( \mathbf{x} \)。
1.3 压缩感知理论的应用前景压缩感知理论在信号处理、图像处理、通信等领域具有广泛的应用前景。
在模数转换器的设计中,利用压缩感知理论可以降低采样速率,减少数据量,从而降低硬件成本和功耗,提高系统性能。
二、基于压缩感知的模数转换器设计基于压缩感知理论的模数转换器设计,旨在通过降低采样速率来减少数据量,同时保证信号的恢复质量。
这种设计方法需要考虑信号的稀疏性、测量矩阵的选择、优化算法等多个方面。
2.1 信号的稀疏表示在设计基于压缩感知的模数转换器时,首先要确定信号的稀疏表示。
压缩感知原理1压缩感知引论传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图2.1。
图2.1 传统的信号压缩过程在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。
由于带宽的限制,许多信号只包含少量的重要频率的信息。
所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。
该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。
即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。
压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。
核心概念在于试图从原理上降低对一个信号进行测量的成本。
压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。
2压缩感知原理压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。
或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。
压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。
CS理论利用到了许多自然信号在特定的基 上具有紧凑的表示。
即这些信号是“稀疏”的或“可压缩”的。
由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。
对于一个实值的有限长一维离散时间信号X ,可以看作为一个N R 空间N ×1的维的列向量,元素为[]n ,n ,=1,2,…N 。
N R 空间的任何信号都可以用N ×1维的基向量{}1i N i =ψ的线性组合表示。