数值分析课后习题答案4
- 格式:pdf
- 大小:153.56 KB
- 文档页数:7
习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。
再给13169=建立3次插值公式,给出相应的结果。
解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。
第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
第一章题12给定节点01x =−,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项:(1)(1)3()432f x x x =−+(2)(2)43()2f x x x =−解(1)(4)()0f x =,由拉格朗日插值余项得(4)0123()()()()()()()04!f f x p x x x x x x x x x ξ−=−−−−=;(2)(4)()4!f x =由拉格朗日插值余项得01234!()()()()()()4!f x p x x x x x x x x x −=−−−−(1)(1)(3)(4)x x x x =+−−−.题15证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差01210()()()max ()8x x x x x f x p x f x ≤≤−′′−≤.证由拉格朗日插值余项得01()()()()()2!f f x p x x x x x ξ′′−=−−,其中01x x ξ≤≤,010101max ()()()()()()()()2!2!x x x f x f f x p x x x x x x x x x ξ≤≤′′′′−=−−≤−−01210()max ()8x x x x x f x ≤≤−′′≤.题22采用下列方法构造满足条件(0)(0)0p p ′==,(1)(1)1p p ′==的插值多项式()p x :(1)(1)用待定系数法;(2)(2)利用承袭性,先考察插值条件(0)(0)0p p ′==,(1)1p =的插值多项式()p x .解(1)有四个插值条件,故设230123()p x a a x a x a x =+++,2123()23p x a a x a x ′=++,代入得方程组001231123010231a a a a a a a a a =⎧⎪+++=⎪⎨=⎪⎪++=⎩解之,得01230021a a a a =⎧⎪=⎪⎨=⎪⎪=−⎩23()2p x x x ∴=−;(2)先求满足插值条件(0)(0)0p p ′==,(1)1p =的插值多项式()p x ,由0为二重零点,可设2()p x ax =,代入(1)1p =,得1a =,2()p x x ∴=;再求满足插值条件(0)(0)0p p ′==,(1)(1)1p p ′==的插值多项式()p x ,可设22()(1)p x x bx x =+−,2()22(1)p x x bx x bx ′=+−+∵,代入(1)1p ′=,得1b =−,2223()(1)2p x x x x x x ∴=−−=−.题33设分段多项式323201()2112x x x S x x bx cx x ⎧+≤≤=⎨++−≤≤⎩是以0,1,2为节点的三次样条函数,试确定系数,b c 的值.解由(1)2S =得212b c ++−=,1b c ∴+=;223201()6212x x x S x x bx c x ⎧+<<′=⎨++<<⎩,由(1)5S ′=得625b c ++=,21b c ∴+=−;联立两方程,得2,3b c =−=,且此时6201()12212x x S x x b x +<<⎧′′=⎨+<<⎩,(1)8(1)S S −+′′′′==,()S x 是以0,1,2为节点的三次样条函数.题35用最小二乘法解下列超定方程组:24113532627x y x y x y x y +=⎧⎪−=⎪⎨+=⎪⎪+=⎩.解记残差的平方和为2222(,)(2411)(353)(26)(27)f x y x y x y x y x y =+−+−−++−++−令00f x f y ∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,得3661020692960x y x y −−=⎧⎨−+−=⎩,解之得83027311391x y ⎧=⎪⎪⎨⎪=⎪⎩.题37用最小二乘法求形如2y a bx =+的多项式,使与下列数据相拟合:x1925313844y19.032.349.073.397.8解拟合曲线中的基函数为0()1x ϕ=,20()x x ϕ=,其法方程组为0001010001(,)(,)(,)(,)(,)(,)f a f b ϕϕϕϕϕϕϕϕϕϕ⎛⎞⎛⎞⎛⎞=⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠,其中00(,)5ϕϕ=,0110(,)(,)5327ϕϕϕϕ==,11(,)7277699ϕϕ=,0(,)271.4f ϕ=,1(,)369321.5f ϕ=,解之得5320.97265472850.055696a b ⎧==⎪⎪⎨⎪==⎪⎩,20.97260.05y x ∴=+.第二章题3确定下列求积公式中的待定参数,使其代数精度尽量地高,并指明求积公式所具有的代数精度:(2)10120113()(()()424f x dx A f A f A f ≈++∫(2)从结论“在机械求积公式中,代数精度最高的是插值型的求积公式”出发,11000013()(224()11133()()4244x x A l x dx dx −−===−−∫∫,11110013()()144()11133()()2424x x A l x dx dx −−===−−−∫∫,11220011()242()31313()4442x x A l x dx dx −−===−−∫∫,10211123()()()(343234f x dx f f f ∴≈−+∫,当3()f x x =时,有左边=113001()d d 4f x x x x ==∫∫,右边=3332111232111231()()()()()()3432343432344f f f −+=⋅−⋅+⋅=,左边=右边,当4()f x x =时,有左边=114001()d d 5f x x x x ==∫∫,右边=44421112321112337()()()()()()343234343234192f f f −+=⋅−⋅+⋅=,左边≠右边,所以该求积公式的代数精度为3.题8已知数据表x 1.11.3 1.5xe3.00423.66934.4817试分别用辛甫生法与复化梯形法计算积分 1.51.1x e dx∫.解辛甫生法1.51.1xe dx ∫()1.5 1.13.00424 3.66934.4817 1.477546−≈+×+=;复化梯形法1.51.1xe dx ∫()0.23.00422 3.66934.4817 1.482452≈+×+=.题17用三点高斯公式求下列积分值12041dxx π=+∫.解先做变量代换,设)(1+21=t x ,则1204d 1x x +∫=112112418d d 124(1)1(1)4t t t t −−⋅=++++∫∫()2225888589994014141≈×+×+×++⎛⎞⎞++⎜⎟⎟⎝⎠⎠3.141068=.第三章用欧拉方法求解初值问题y ax b ′=+,(0)0y =:(1)试导出近似解n y的显式表达式;解(1)其显示的Euler 格式为:11111(,)()n n n n n n y y hf x y y h ax b −−−−−=+=+⋅+故122()n n n y y h ax b −−−=+⋅+⋯⋯100()y y h ax b =+⋅+将上组式子左右累加,得0021()n n n y y ah x x x nhb−−=+++++⋯(02(2)(1))ah h h n h n h nhb =+++−+−+⋯2(1)/2ah n n nhb=−+题10选取参数p 、q ,使下列差分格式具有二阶精度:1111(,)n n n n y y hK K f x ph y qhK +=+⎧⎨=++⎩.解将1K 在点(,)n n x y 处作一次泰勒展开,得11(,)n n K f x ph y qhK =++21(,)(,)(,)()n n x n n y n n f x y phf x y qhK f x y O h =+++()221(,)(,)(,)(,)(,)()(,)()n n x n n n n x n n y n n y n n f x y phf x y qh f x y phf x y qhK f x y O h f x y O h =++++++2(,)(,)(,)(,)()n n x n n n n y n n f x y phf x y qhf x y f x y O h =+++代入,得()21(,)(,)(,)(,)()n n n n x n n n n y n n y y h f x y phf x y qhf x y f x y O h +=++++2231(,)(,)(,)(,)()n n n n x n n n n y n n y y hf x y ph f x y qh f x y f x y O h +=++++而231()()()()()()2n n n n n h y x y x h y x hy x y x O h +′′′=+=+++23()(,())(,())(,())(,())()2n n n x n n n n y n n h y x hf x y x f x y x f x y x f x y x O h ⎡⎤=++++⎣⎦考虑其局部截断误差,设()n n y y x =,比较上两式,当12p =,12q =时,311()()n n y x y O h ++−=.第四章题2证明方程1cos 2x x=有且仅有一实根;试确定这样的区间[,]a b ,使迭代过程11cos 2k kx x +=对一切0[,]x a b ∈均收敛.解设1()cos 2f x x x=−,则()f x 在区间(,)−∞+∞上连续,且11(0)cos 0022f =−=−<,1(cos 022222f ππππ=−=>,所以()f x 在[0,]2π上至少有一根;又1()1sin 02f x x ′=+>,所以()f x 单调递增,故()f x 在[0,]2π上仅有一根.迭代过程11cos 2k k x x +=,其迭代函数为1()cos 2g x x=,[0,]2x π∀∈,110()cos 222g x x π≤=≤≤,()[0,]2g x π∴∈;1()sin 2g x x ′=−,1()12g x ′≤<,由压缩映像原理知0[0,2x π∀∈,11cos 2k kx x +=均收敛.注这里取[,]a b 为区间[0,]2π,也可取[,]a b 为区间(,)−∞+∞等.题5考察求解方程1232cos 0x x −+=的迭代法124cos 3k kx x +=+(1)(1)证明它对于任意初值0x 均收敛;(2)证明它具有线性收敛性;证(1)迭代函数为2()4cos 3g x x=+,(,)x ∀∈−∞+∞,()(,)g x ∈−∞+∞;又22()sin 133g x x ′=−≤<,由压缩映像原理知0x ∀,124cos 3k k x x +=+均收敛;(2)***1*2lim ()sin 03k k k x x g x x x x +→∞−′==−≠−(否则,若*sin 0x =,则*,x m m Z π=∈,不满足方程),所以迭代124cos 3k kx x +=+具有线性收敛速度;题7求方程3210x x −−=在0 1.5x =附近的一个根,证明下列两种迭代过程在区间[1.3,1.6]上均收敛:(1)(1)改写方程为211x x =+,相应的迭代公式为1211k k x x +=+;(2)(2)改写方程为321x x =+,相应的迭代公式为1k x +=解(1)3232211011x x x x x x −−=⇔=+⇔=+,迭代公式为1211k k x x +=+,其迭代函数为21()1g x x =+[1.3,1.6]x ∀∈,2221111.3 1.3906111 1.5917 1.61.6 1.3x ≤≈+≤+≤+≈<,()[1.3,1.6]g x ∴∈;又32()g x x ′=−,333222-0.9103==-0.48831.3 1.6x −−−≤≤,()0.91031g x ′≤<,由大范围收敛定理知0[1.3,1.6]x ∀∈,1211k k x x +=+均收敛;(2)3232101x x x x x −−=⇔=+⇔=1k x +=其迭代函数为()g x =[1.3,1.6]x ∀∈,1.3 1.3908 1.5269 1.6≤≈≤≤≈<,()[1.3,1.6]g x ∴∈;又()g x ′=,00.4912≤≤≤=,()0.49121g x ′≤<,由大范围收敛定理知0[1.3,1.6]x ∀∈,1k x +=均收敛.题5分别用雅可比迭代与高斯-塞德尔迭代求解下列方程组:1231231235325242511x x x x x x x x x +−=⎧⎪−+=⎨⎪+−=−⎩(2)其雅可比迭代格式为(1)()()123(1)()()213(1)()()312253512221121555k k k k k k k k k x x x x x x x x x +++⎧⎪=−+⎪⎪=−++⎨⎪⎪=++⎪⎩,取初始向量(0)000x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,迭代发散;其高斯-塞德尔迭代格式为(1)()()123(1)(1)()213(1)(1)(1)312253512221121555k k k k k k k k k x x x x x x x x x ++++++⎧⎪=−+⎪⎪=−++⎨⎪⎪=++⎪⎩,取初始向量(0)000x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,迭代发散.第六章题2用主元消去法解下列方程组)12312312323553476335x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩解(2)对其增广矩阵进行列主元消元得23553476347634763476235501/31/3105/32/331335133505/32/3301/31/31⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟→→→⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠347605/32/33001/52/5⎛⎞⎜⎟→⎜⎟⎜⎟⎝⎠回代求解上三角方程组1232333476523331255x x x x x x ⎧⎪++=⎪⎪+=⎨⎪⎪=⎪⎩得321214x x x =⎧⎪=⎨⎪=−⎩,所以412x −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠.。
7、计算的近似值,取。
利用以下四种计算格式,试问哪一种算法误差最小。
〔1〕〔2〕〔3〕〔4〕解:计算各项的条件数由计算知,第一种算法误差最小。
解:在计算机上计算该级数的是一个收敛的级数。
因为随着的增大,会出现大数吃小数的现象。
9、通过分析浮点数集合F=〔10,3,-2,2〕在数轴上的分布讨论一般浮点数集的分布情况。
10、试导出计算积分的递推计算公式,用此递推公式计算积分的近似值并分析计算误差,计算取三位有效数字。
解:此算法是数值稳定的。
第二章习题解答1.〔1〕 R n×n中的子集“上三角阵〞和“正交矩阵〞对矩阵乘法是封闭的。
〔2〕R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。
设A是n×n的正交矩阵。
证明A-1也是n×n的正交矩阵。
证明:〔2〕A是n×n的正交矩阵∴A A-1 =A-1A=E 故〔A-1〕-1=A∴A-1〔A-1〕-1=〔A-1〕-1A-1 =E 故A-1也是n×n的正交矩阵。
设A是非奇异的对称阵,证A-1也是非奇异的对称阵。
A非奇异∴A可逆且A-1非奇异又A T=A ∴〔A-1〕T=〔A T〕-1=A-1故A-1也是非奇异的对称阵设A是单位上〔下〕三角阵。
证A-1也是单位上〔下〕三角阵。
证明:A是单位上三角阵,故|A|=1,∴A可逆,即A-1存在,记为〔b ij〕n×n由A A-1 =E,那么〔其中 j>i时,〕故b nn=1, b ni=0 (n≠j)类似可得,b ii=1 (j=1…n) b jk=0 (k>j)即A-1是单位上三角阵综上所述可得。
R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。
2、试求齐次线行方程组Ax=0的根底解系。
A=解:A=~~~故齐次线行方程组Ax=0的根底解系为,3.求以下矩阵的特征值和特征向量。
第一章习题解答1、 在下列各对数中,x 是精确值 a 的近似值。
3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。
解:(1)0132.00416.01.3≈=≈−=−=aee x a e r π (2)0011.00143.0143.07/1≈=≈−=−=a ee x a e r (3)0127.000004.00031.01000/≈=≈−=−=aee x a e r π (4)001.00143.03.147/100≈=≈−=−=aee x a e r2、已知四个数:001.0,25.134,0250.0,3.264321====x x x x 。
试估计各近似数的有效位数和误差限,并估计运算3211x x x =μ和1431/x x x =μ的相对误差限。
解:21111121101901.0,1021,3,10263.06.23−−⨯≈=⨯==⨯==x x x x n x r δδδ22214212102.0,1021,3,10250.00250.0−−−⨯≈=⨯==⨯==x x x x n x r δδδ 43332333103724.0,1021,5,1013425.025.134−−⨯≈=⨯==⨯==x x x x n x r δδδ 5.0,1021,1,101.0001.04443424==⨯==⨯==−−x x x x n x r δδδ 由相对误差限公式:i r ini n in ni i ir x x fx x f x x x f x x f u δδδ∂∂=∂∂=∑∑==1111),,(),,()(所以有:232123113211103938.0)(1)(−⨯≈++=x x x x x x x x x r δδδμμδ4971.0)(1)(4133141214311≈++−=x x x x x x x x x x r δδδμμδ 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。
数值分析课后答案(4)习题四1.已知ln(2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0.8329, 试用线性插值和抛物插值计算.ln2.1的值并估计误差解:线形插值:取02.0x = 00.6931y = 12.2x = 10.7885y = 22.3x = 20.8329y = 110 2.1 2.3 2.1 2.0(0)(1)0.69310.832901102.0 2.32.3 2.0x x x x L f x f x x x x x ----=+=+----=0.7410抛物线插值:12200102()()()()x x x x l x x x x --=-- 02211012()()()()x x x x l x x x x --=-- 01222021()()()()x x x x l x x x x --=--2200211222L l y l y l y =++=0.7422.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值解:解:取00x = 12x = 23x = 35x = 12330010203()()()()()()x x x x x x l x x x x x x ---=--- 023********()()()()()()x x x x x x l x x x x x x ---=---01332202123()()()()()()x x x x x x l x x x x x x ---=--- 01233303132()()()()()()x x x x x x l x x x x x x ---=---3300311322333L l y l y l y l y =+++=1156261310323++-x x x3.设函数f(x)在[a,b]上具有直到二阶的连续导数,且f(a)=f(b)=0, 求证:2"1m ax |()|()m ax |()|8a x ba x bf x b a f x ≤≤≤≤≤-解:取01;x a x b ==,1()()0x a x b L f a f b a bb a--=+=--''''211()()()|()()||()()|||||224f f b a R f x L x x a x b εε-=-≤--≤∴''21()()|()||()|||||24f b a f x L x ε-≤+''1()|()||||()|8f L x b a ε=+-|||8)("|a b f -=ε4.证明n 次Lagrange 插值多项式基函数满足∑==ni ki n ki x x l x 0,)(, n k ≤≤0解:取()kf x x = 则n 0()nki i Ln lx x ==∑(1)()()()!n nii fx f x Ln Rn x x n +=-==-∑(1)0()()!k n nii x x x n +==-∑=0所以()()f x Ln x = 即证 5.证明 )(')()()(,xi x x x x l n i n i n ωω-=证明:、01110111()()()()()ln ()()()()()i i n i i i i i i i n x x x x x x x x x x i x x x x x x x x x x -+-+-----= -----01110111()()()()()()()()()()i i ni i ii i i i i nix x x x x x x x x x x x x x x x x x x x x x x x -+-+------=------取 0111()()()()()()n i ii n x x xx xxxx x x x x ω-+=------则 '1020111011()()()())()()()()()()()()()n nn i in n x x x x x x x x x x x x x xx xx x x x x x x x x xxω-+-=--+---+-----++--- ('0111()()()()()()n i i i i i i i i n x x x x x x x x x x x ω-+=-----所以,'()ln ()()n i n i x i x x x ωω=-6.设nn x a x a a x f ++=10)(有n 个不同的实根.,,21n x x x证明:=-=∑11,0)('n ni i kia x f x证明:取()kx x ?= 1()()n n x x xx ω=-- 而,0()nn f x a a x =++ 有n 个不同的实根。
习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。
再给13169=建立3次插值公式,给出相应的结果。
解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。
第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
第一章题12给定节点01x =−,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项:(1)(1)3()432f x x x =−+(2)(2)43()2f x x x =−解(1)(4)()0f x =,由拉格朗日插值余项得(4)0123()()()()()()()04!f f x p x x x x x x x x x ξ−=−−−−=;(2)(4)()4!f x =由拉格朗日插值余项得01234!()()()()()()4!f x p x x x x x x x x x −=−−−−(1)(1)(3)(4)x x x x =+−−−.题15证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差01210()()()max ()8x x x x x f x p x f x ≤≤−′′−≤.证由拉格朗日插值余项得01()()()()()2!f f x p x x x x x ξ′′−=−−,其中01x x ξ≤≤,010101max ()()()()()()()()2!2!x x x f x f f x p x x x x x x x x x ξ≤≤′′′′−=−−≤−−01210()max ()8x x x x x f x ≤≤−′′≤.题22采用下列方法构造满足条件(0)(0)0p p ′==,(1)(1)1p p ′==的插值多项式()p x :(1)(1)用待定系数法;(2)(2)利用承袭性,先考察插值条件(0)(0)0p p ′==,(1)1p =的插值多项式()p x .解(1)有四个插值条件,故设230123()p x a a x a x a x =+++,2123()23p x a a x a x ′=++,代入得方程组001231123010231a a a a a a a a a =⎧⎪+++=⎪⎨=⎪⎪++=⎩解之,得01230021a a a a =⎧⎪=⎪⎨=⎪⎪=−⎩23()2p x x x ∴=−;(2)先求满足插值条件(0)(0)0p p ′==,(1)1p =的插值多项式()p x ,由0为二重零点,可设2()p x ax =,代入(1)1p =,得1a =,2()p x x ∴=;再求满足插值条件(0)(0)0p p ′==,(1)(1)1p p ′==的插值多项式()p x ,可设22()(1)p x x bx x =+−,2()22(1)p x x bx x bx ′=+−+∵,代入(1)1p ′=,得1b =−,2223()(1)2p x x x x x x ∴=−−=−.题33设分段多项式323201()2112x x x S x x bx cx x ⎧+≤≤=⎨++−≤≤⎩是以0,1,2为节点的三次样条函数,试确定系数,b c 的值.解由(1)2S =得212b c ++−=,1b c ∴+=;223201()6212x x x S x x bx c x ⎧+<<′=⎨++<<⎩,由(1)5S ′=得625b c ++=,21b c ∴+=−;联立两方程,得2,3b c =−=,且此时6201()12212x x S x x b x +<<⎧′′=⎨+<<⎩,(1)8(1)S S −+′′′′==,()S x 是以0,1,2为节点的三次样条函数.题35用最小二乘法解下列超定方程组:24113532627x y x y x y x y +=⎧⎪−=⎪⎨+=⎪⎪+=⎩.解记残差的平方和为2222(,)(2411)(353)(26)(27)f x y x y x y x y x y =+−+−−++−++−令00f x f y ∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,得3661020692960x y x y −−=⎧⎨−+−=⎩,解之得83027311391x y ⎧=⎪⎪⎨⎪=⎪⎩.题37用最小二乘法求形如2y a bx =+的多项式,使与下列数据相拟合:x1925313844y19.032.349.073.397.8解拟合曲线中的基函数为0()1x ϕ=,20()x x ϕ=,其法方程组为0001010001(,)(,)(,)(,)(,)(,)f a f b ϕϕϕϕϕϕϕϕϕϕ⎛⎞⎛⎞⎛⎞=⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠,其中00(,)5ϕϕ=,0110(,)(,)5327ϕϕϕϕ==,11(,)7277699ϕϕ=,0(,)271.4f ϕ=,1(,)369321.5f ϕ=,解之得5320.97265472850.055696a b ⎧==⎪⎪⎨⎪==⎪⎩,20.97260.05y x ∴=+.第二章题3确定下列求积公式中的待定参数,使其代数精度尽量地高,并指明求积公式所具有的代数精度:(2)10120113()(()()424f x dx A f A f A f ≈++∫(2)从结论“在机械求积公式中,代数精度最高的是插值型的求积公式”出发,11000013()(224()11133()()4244x x A l x dx dx −−===−−∫∫,11110013()()144()11133()()2424x x A l x dx dx −−===−−−∫∫,11220011()242()31313()4442x x A l x dx dx −−===−−∫∫,10211123()()()(343234f x dx f f f ∴≈−+∫,当3()f x x =时,有左边=113001()d d 4f x x x x ==∫∫,右边=3332111232111231()()()()()()3432343432344f f f −+=⋅−⋅+⋅=,左边=右边,当4()f x x =时,有左边=114001()d d 5f x x x x ==∫∫,右边=44421112321112337()()()()()()343234343234192f f f −+=⋅−⋅+⋅=,左边≠右边,所以该求积公式的代数精度为3.题8已知数据表x 1.11.3 1.5xe3.00423.66934.4817试分别用辛甫生法与复化梯形法计算积分 1.51.1x e dx∫.解辛甫生法1.51.1xe dx ∫()1.5 1.13.00424 3.66934.4817 1.477546−≈+×+=;复化梯形法1.51.1xe dx ∫()0.23.00422 3.66934.4817 1.482452≈+×+=.题17用三点高斯公式求下列积分值12041dxx π=+∫.解先做变量代换,设)(1+21=t x ,则1204d 1x x +∫=112112418d d 124(1)1(1)4t t t t −−⋅=++++∫∫()2225888589994014141≈×+×+×++⎛⎞⎞++⎜⎟⎟⎝⎠⎠3.141068=.第三章用欧拉方法求解初值问题y ax b ′=+,(0)0y =:(1)试导出近似解n y的显式表达式;解(1)其显示的Euler 格式为:11111(,)()n n n n n n y y hf x y y h ax b −−−−−=+=+⋅+故122()n n n y y h ax b −−−=+⋅+⋯⋯100()y y h ax b =+⋅+将上组式子左右累加,得0021()n n n y y ah x x x nhb−−=+++++⋯(02(2)(1))ah h h n h n h nhb =+++−+−+⋯2(1)/2ah n n nhb=−+题10选取参数p 、q ,使下列差分格式具有二阶精度:1111(,)n n n n y y hK K f x ph y qhK +=+⎧⎨=++⎩.解将1K 在点(,)n n x y 处作一次泰勒展开,得11(,)n n K f x ph y qhK =++21(,)(,)(,)()n n x n n y n n f x y phf x y qhK f x y O h =+++()221(,)(,)(,)(,)(,)()(,)()n n x n n n n x n n y n n y n n f x y phf x y qh f x y phf x y qhK f x y O h f x y O h =++++++2(,)(,)(,)(,)()n n x n n n n y n n f x y phf x y qhf x y f x y O h =+++代入,得()21(,)(,)(,)(,)()n n n n x n n n n y n n y y h f x y phf x y qhf x y f x y O h +=++++2231(,)(,)(,)(,)()n n n n x n n n n y n n y y hf x y ph f x y qh f x y f x y O h +=++++而231()()()()()()2n n n n n h y x y x h y x hy x y x O h +′′′=+=+++23()(,())(,())(,())(,())()2n n n x n n n n y n n h y x hf x y x f x y x f x y x f x y x O h ⎡⎤=++++⎣⎦考虑其局部截断误差,设()n n y y x =,比较上两式,当12p =,12q =时,311()()n n y x y O h ++−=.第四章题2证明方程1cos 2x x=有且仅有一实根;试确定这样的区间[,]a b ,使迭代过程11cos 2k kx x +=对一切0[,]x a b ∈均收敛.解设1()cos 2f x x x=−,则()f x 在区间(,)−∞+∞上连续,且11(0)cos 0022f =−=−<,1(cos 022222f ππππ=−=>,所以()f x 在[0,]2π上至少有一根;又1()1sin 02f x x ′=+>,所以()f x 单调递增,故()f x 在[0,]2π上仅有一根.迭代过程11cos 2k k x x +=,其迭代函数为1()cos 2g x x=,[0,]2x π∀∈,110()cos 222g x x π≤=≤≤,()[0,]2g x π∴∈;1()sin 2g x x ′=−,1()12g x ′≤<,由压缩映像原理知0[0,2x π∀∈,11cos 2k kx x +=均收敛.注这里取[,]a b 为区间[0,]2π,也可取[,]a b 为区间(,)−∞+∞等.题5考察求解方程1232cos 0x x −+=的迭代法124cos 3k kx x +=+(1)(1)证明它对于任意初值0x 均收敛;(2)证明它具有线性收敛性;证(1)迭代函数为2()4cos 3g x x=+,(,)x ∀∈−∞+∞,()(,)g x ∈−∞+∞;又22()sin 133g x x ′=−≤<,由压缩映像原理知0x ∀,124cos 3k k x x +=+均收敛;(2)***1*2lim ()sin 03k k k x x g x x x x +→∞−′==−≠−(否则,若*sin 0x =,则*,x m m Z π=∈,不满足方程),所以迭代124cos 3k kx x +=+具有线性收敛速度;题7求方程3210x x −−=在0 1.5x =附近的一个根,证明下列两种迭代过程在区间[1.3,1.6]上均收敛:(1)(1)改写方程为211x x =+,相应的迭代公式为1211k k x x +=+;(2)(2)改写方程为321x x =+,相应的迭代公式为1k x +=解(1)3232211011x x x x x x −−=⇔=+⇔=+,迭代公式为1211k k x x +=+,其迭代函数为21()1g x x =+[1.3,1.6]x ∀∈,2221111.3 1.3906111 1.5917 1.61.6 1.3x ≤≈+≤+≤+≈<,()[1.3,1.6]g x ∴∈;又32()g x x ′=−,333222-0.9103==-0.48831.3 1.6x −−−≤≤,()0.91031g x ′≤<,由大范围收敛定理知0[1.3,1.6]x ∀∈,1211k k x x +=+均收敛;(2)3232101x x x x x −−=⇔=+⇔=1k x +=其迭代函数为()g x =[1.3,1.6]x ∀∈,1.3 1.3908 1.5269 1.6≤≈≤≤≈<,()[1.3,1.6]g x ∴∈;又()g x ′=,00.4912≤≤≤=,()0.49121g x ′≤<,由大范围收敛定理知0[1.3,1.6]x ∀∈,1k x +=均收敛.题5分别用雅可比迭代与高斯-塞德尔迭代求解下列方程组:1231231235325242511x x x x x x x x x +−=⎧⎪−+=⎨⎪+−=−⎩(2)其雅可比迭代格式为(1)()()123(1)()()213(1)()()312253512221121555k k k k k k k k k x x x x x x x x x +++⎧⎪=−+⎪⎪=−++⎨⎪⎪=++⎪⎩,取初始向量(0)000x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,迭代发散;其高斯-塞德尔迭代格式为(1)()()123(1)(1)()213(1)(1)(1)312253512221121555k k k k k k k k k x x x x x x x x x ++++++⎧⎪=−+⎪⎪=−++⎨⎪⎪=++⎪⎩,取初始向量(0)000x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,迭代发散.第六章题2用主元消去法解下列方程组)12312312323553476335x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩解(2)对其增广矩阵进行列主元消元得23553476347634763476235501/31/3105/32/331335133505/32/3301/31/31⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟→→→⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠347605/32/33001/52/5⎛⎞⎜⎟→⎜⎟⎜⎟⎝⎠回代求解上三角方程组1232333476523331255x x x x x x ⎧⎪++=⎪⎪+=⎨⎪⎪=⎪⎩得321214x x x =⎧⎪=⎨⎪=−⎩,所以412x −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠.。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课后习题及答案第一章绪论(12)第二章插值法(40-42)2、当时,,求的二次插值多项式。
[解]。
3、给出的数值表用线性插值及二次插值计算的近似值。
X 0.4 0.5 0.6 0.7 0.8 -0.916291 -0.693147 -0.510826 -0.357765 -0.223144 [解]若取,,则,,则,从而。
若取,,,则,,,则,从而补充题:1、令,,写出的一次插值多项式,并估计插值余项。
[解]由,可知,,余项为,故。
2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。
[解]由插值余项定理,有,从而。
5、给定数据表:,1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。
[解]一阶差商二阶差商三阶差商四阶差商 1 42 1 -34 0 6 17 1 0 由差商表可得4次牛顿插值多项式为:,插值余项为。
第三章函数逼近与计算(80-82)26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。
19 25 31 38 44 19.0 32.3 49.0 73.3 97.8[解]由。
又,,,故法方程为,解得。
均方误差为。
27、观测物体的直线运动,得出以下数据:时间t(秒)0 0.9 1.9 3.0 3.9 5.0 距离s(米)0 10 30 5080 110 [解]设直线运动为二次多项式,则由。
,。
又,,,故法方程为,解得。
故直线运动为。
补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:I ……U ……试用最小二乘原理确定电阻R的大小。
[解]电流、电阻与电压之间满足如下关系:。
应用最小二乘原理,求R使得达到最小。
对求导得到:。
令,得到电阻R为。
2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。
[解]令,求x使得达到最小。
对求导得到:,令,得到,这说明取平均值在最小二乘意义下误差达到最小。