材料性能学 第一章热学性能
- 格式:ppt
- 大小:7.67 MB
- 文档页数:114
第一章材料热学性能内容概要:本章讲述材料的热容、热膨胀、热传导、热稳定性等方面的内容,并简述其物理本质。
主要内容和学时安排如下:第一节材料的热容重点掌握经典热容理论和量子热容理论的内容;理解温度、相变等对热容的影响;了解热容的几种测量方法,对热分析法的原理和应用要重点理解。
第二节材料的热膨胀重点掌握线膨胀系数、体膨胀系数、热膨胀的物理本质;了解热膨胀的测量方法;理解热膨胀分析方法在材料中的应用。
第三节材料的热传导掌握热传导定律;热传导的物理本质;理解热传导的影响因素。
(共6个学时)第一节 材料的热容一、热容的定义:不同的物体升高相同的热量时其温度会不同,温度升高1K 所需要的能量定义为热容: ∆T ∆=Q C 定容热容:如果在加热过程中,体积不变,则所提供的热量全部用于粒子动能(温度)的增加,用Cv 表示 ()V V Q C ∆=∆T定压热容:如果在加热过程中保持压力不变,则物体的体积自由膨胀,这时所提供的热量一部分用于升高体系的温度,一部分用于体系对外做功,用Cp 表示()()V V V Q U P V U C T ∆∆+∆∆===∆T ∆∆T ()()()()()P P P P P P Q U P V U V H C P T T T∆∆+∆∆∆∆===+=∆T ∆∆T ∆∆ T c m H =c 为0-TK 时平均比热容,即质量为1Kg 的物质在没有化学反应条件下,温度升高1K 时所需的热量,单位为J/(Kg.K )定压热容>定容热容,一般实验测得的是恒压热容CpTQ m C P ∆∆=1 即在T T T -+∆温度范围内的平均热容: 当0T ∆→时,P C 即可认为是TK 时的热容dTdQ m C P 1= 摩尔恒压热容:1mol 物质在没有化学反应和相改变条件下,升高1K 所需的能量,用C pm 表示 摩尔恒容热容:KT V v C C m Vm Pm 2∂=- M C C P Pm =(M 为摩尔质量)二、热容理论实验发现:在不发生相变条件下,多数物质的热容Cv 在高温下,逐于一恒定值;低温区3V C T ∝;0T →时,0V C =。
材料物理性能第一章、材料的热学性能一、基本概念1.热容:物体温度升高1K 所需要增加的能量。
(热容是分子热运动的能量随温度变化的一个物理量)T Qc ∆∆= 2.比热容:质量为1kg 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。
[与物质的本性有关,用c 表示,单位J/(kg ·K)]T Q m c ∂∂=1 3.摩尔热容:1mol 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。
用Cm 表示。
4.定容热容:加热过程中,体积不变,则所供给的热量只需满足升高1K 时物体内能的增加,不必再以做功的形式传输,该条件下的热容:5.定压热容:假定在加热过程中保持压力不变,而体积则自由向外膨胀,这时升高1K 时供给物体的能量,除满足内能的增加,还必须补充对外做功的损耗。
6.热膨胀:物质的体积或长度随温度的升高而增大的现象。
7.线膨胀系数αl :温度升高1K 时,物体的相对伸长。
t l l l ∆=∆α08.体膨胀系数αv :温度升高1K 时,物体体积相对增长值。
t V V tt V ∂∂=1α9.热导率(导热系数)λ:在单位温度梯度下,单位时间内通过单位截面积的热量。
(标志材料热传导能力,适用于稳态各点温度不随时间变化。
)q=-λ△T/△X 。
10.热扩散率(导温系数)α:单位面积上,温度随时间的变化率。
α=λ/ρc 。
α表示温度变化的速率(材料内部温度趋于一致的能力。
α越大的材料各处的温度差越小。
适用于非稳态不稳定的热传导过程。
本质仍是材料传热能力。
)。
二、基本理论1.德拜理论及热容和温度变化关系。
答:⑴爱因斯坦没有考虑低频振动对热容的贡献。
⑵模型假设:①固体中的原子振动频率不同;处于不同频率的振子数有确定的分布函数;②固体可看做连续介质,能传播弹性振动波;③固体中传播的弹性波分为纵波和横波两类;④假定弹性波的振动能级量子化,振动能量只能是最小能量单位h ν的整数倍。
⑶结论:①当T 》θD 时,Cv,m=3R ;在高温区,德拜理论的结果与杜隆-珀蒂定律相符。
材料物理性能第一章材料热学性能一(热容的定义,热容的来源以及热容随温度的变化规律热容:是问题温度每升高1K,物质所需要增加的能量被称为热容。
热容的来源:温度升高导致原子热振动加剧,点阵离子振动以及体积膨胀需要向外做功,同时自由电子对热容也有贡献,但只在温度极端的情况下才发生。
热容随温度的变化规律:热容反映了材料从周围环境吸收能量的能力,不同温度时,热容不同。
定容热容与定压热容有相似规律。
当温度较高时,定压热容变化趋势平缓当温度较低时,定压热容与T3成正比;当温度趋于0K时,定压热容与T成正比;当温度等于0K是,定压热容也等于0K。
二(热容的德拜模型以及其局限性答:晶格点阵结构对热容的作用主要表现在弹性波的振动上,即波长较长的声频支的振动在低温下起主导作用,由于声频支的波长大于晶格常数,故可以将晶格看成是连续的介质,声频支也可以看成是连续的具有0-Wmax的谱带的振动。
由此,可导出定压热容的公式:Cv,m=12/5π4R(T/θD)3由此公式可得:1)当温度大于德拜温度时,即处于高温区,定压热容=3R,与实验结果相符合;2)当温度小于德拜温度时,定压热容与T3成正比,比爱因斯坦模型更接近于实验结果;3)当温差极低时(趋近于0K时),定压热容趋近于0,大体与实验结果相符。
德拜模型的局限性:因为德拜模型把晶格点阵考虑成连续的介质,故对于原子振动频率较高的部分并不适用,故德拜模型对于一些化合物的计算与实验结果不相符;2)对于金属类晶体,忽略了自由电子的贡献,所以在极端温度条件下与实验结果不符;3)解释不了超导现象。
三(热膨胀的定义及其物理机制热膨胀:热膨胀是指随着温度的升高,材料发生体积或者长度增大的现象。
热膨胀的物理机制:随着温度的升高,晶体中的的原子振动加剧,相邻原子之间的平衡间距也随温度的变化而变化,因此温度升高产生热膨胀的现象。
四(热膨胀与其他物理量之间的关系。
热膨胀是原子间结合力的体现,原子间的结合力越大,热膨胀系数越小。
第一章热学性能1、热容热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1k所需要增加的能量2、金属高聚物的热容本质及比较大小高聚物多为部分结晶或无定形结构,热容不一定符合理论式。
大多数高聚物的比热容在玻璃化温度以下比较小,温度升高至玻璃化转变点时,分子运动单位发生变化,热运动加剧,热容出现阶梯式变化。
高分子材料的比热容由化学结构决定,温度升高,使链段振动加剧,而高聚物是长链,使之改变运动状态较困难,因而需提供更多的能量。
一般而言,高聚物的比热容比金属和无机材料大。
3、热膨胀的物理本质物体的体积或长度随温度的升高而增大的现象称为热膨胀。
材料的热膨胀是由于原子间距增大的结果,而原子间距是指晶格结点上原子振动的平衡位置间的距离。
材料温度一定时,原子振动但平衡位置保持不变,材料不随温度升高而发生膨胀;而温度升高,振动中心右移,原子间距增大,材料产生热膨胀。
4、化学键对热膨胀的影响材料的膨胀系数与化学键强度密切相关。
对分子晶体而言,膨胀系数大;而由共价键相连接的材料,膨胀系数小的多。
对于高聚物来说,长链分子中的原子沿链方向是共价键相连接的,近邻分子间的相互作用是弱的范德华力,因此结晶高聚物和取向高聚物的热膨胀具有很大的各向异性。
5、从化学键角度比较高聚物的膨胀系数对于高聚物来说,长链分子中的原子沿链方向是共价键相连接的,近邻分子间的相互作用是弱的范德华力,因此结晶高聚物和取向高聚物的热膨胀具有很大的各向异性。
6、热膨胀与熔点、热容的关系(1)热膨胀与熔点的关系当固体晶体温度升高至熔点时,原子热运动将突破原子间结合力,使原有的固态晶体结构被破坏,物体从固态变成液态,所以,固态晶体的膨胀有极限值。
因此,固态晶体的熔点越高,其膨胀系数就越低。
(2)热膨胀与热容的关系热膨胀是固体材料受热以后晶格振动加剧而引起的容积膨胀,而晶格振动的激化就是热运动能量的增大,每升高单位温度时能量的增量也就是热容的定义。
由于材料和制品往往要应用于不同的温度环境中,很多使用场合还对它们的热性能有着特定的要求,因此热学性能也是材料重要的基本性质之一。
固体材料的一些热性能如比热,热膨胀、热传导等都直接与晶格振动有关,因此我们首先介绍热力学与统计力学一些概念和晶格振动的有关内容。
1 材料的热容热容的概念:热容的定义:物体在温度升高1K 时所吸收的热量称作该物体的热容.摩尔热容:使1摩尔物质在没有相变和化学反应的条件下,温度升高1K 所需要的能量,它反映材料从周围环境吸收热量的能力.它与温度,质量,过程有关。
通常工程上所用的平均热容是指物体从温度T 1到T 2所吸收的热量的平均值:平均热容是比较粗略的,T 1~T 2的范围愈大,精确性愈差, 而且应用时还特别要注意到它的适用范围(T 1~T 2)。
另外物体的热容还与它的热过程性质有关,假如加热过程是恒压条件下进行的,所测定的热容称为恒压热容(C P )。
假如加热过程是在保持物体容积不变的条件下进行的,则所测定的热容称为恒容热容(C V )。
由于恒压加热过程中,物体除温度升高外,还要对外界作功(膨胀功),所以每提高1K 温度需要吸收更多的热量,即C P >C V ,1.1晶态固体热容的经验定律和经典理论晶体的热容,元素的热容定律——杜隆—珀替定律:“恒压下元素的原子热容等于25J/K·mol ”。
实际上大部分元素的原子热容都接近25 J/K·mol ,特别在高温时符合得更好。
化合物热容定律——柯普定律:“化合物分子热容等于构成此化合物各元素原子热容之和”。
根据晶格振动理论,一个摩尔固体中有N 个原子,总能量为:E = 3NkT=3RT 式中 N —阿佛加德罗常数;T —绝对温度(‘K);k —波尔茨曼常数;R =8.314(J/k·mol)—气体普适常数。
按热容的定义,有: Cv= (dE/dT)v = 3NkB = 3R =24.91 J/(mol.K)1.2晶态固体热容的量子理论1.2.1 爱因斯坦模型爱因斯坦提出的假设是:晶体中所有的原子都以相同的频率振动.爱因斯坦模型:晶体中所有原子都以相同的频率振动,振动的能量是量子化的,且每个振子都是独立的振子。