《材料性能学》第一章习题参考答案
- 格式:pdf
- 大小:149.52 KB
- 文档页数:4
完整版材料力学性能课后习题答案整理材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E弹性模量G切变模量r规定残余伸长应力0.2屈服强度gt金属材料拉伸时最大应力下的总伸长率n应变硬化指数P153、金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
完整版材料⼒学性能课后习题答案整理材料⼒学性能课后习题答案第⼀章单向静拉伸⼒学性能1、解释下列名词。
1弹性⽐功:⾦属材料吸收弹性变形功的能⼒,⼀般⽤⾦属开始塑性变形前单位体积吸收的最⼤弹性变形功表⽰。
2、滞弹性:⾦属材料在弹性范围内快速加载或卸载后,随时间延长产⽣附加弹性应变的现象称为滞弹性,也就就是应变落后于应⼒的现象。
3、循环韧性:⾦属材料在交变载荷下吸收不可逆变形功的能⼒称为循环韧性。
4、包申格效应:⾦属材料经过预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余伸长应⼒增加;反向加载,规定残余伸长应⼒降低的现象。
5、解理刻⾯:这种⼤致以晶粒⼤⼩为单位的解理⾯称为解理刻⾯。
6.塑性:⾦属材料断裂前发⽣不可逆永久(塑性)变形的能⼒。
脆性:指⾦属材料受⼒时没有发⽣塑性变形⽽直接断裂的能⼒韧性:指⾦属材料断裂前吸收塑性变形功与断裂功的能⼒。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成⼀个⾼度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动⽽相互汇合,同号台阶相互汇合长⼤,当汇合台阶⾼度⾜够⼤时,便成为河流花样。
就是解理台阶的⼀种标志。
9.解理⾯:就是⾦属材料在⼀定条件下,当外加正应⼒达到⼀定数值后,以极快速率沿⼀定晶体学平⾯产⽣的穿晶断裂,因与⼤理⽯断裂类似,故称此种晶体学平⾯为解理⾯。
10、穿晶断裂:穿晶断裂的裂纹穿过晶内,可以就是韧性断裂,也可以就是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数就是脆性断裂。
11、韧脆转变:具有⼀定韧性的⾦属材料当低于某⼀温度点时,冲击吸收功明显下降,断裂⽅式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列⼒学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应⼒ 2.0σ屈服强度 gt δ⾦属材料拉伸时最⼤应⼒下的总伸长率 n 应变硬化指数P15 3、⾦属的弹性模量主要取决于什么因素?为什么说它就是⼀个对组织不敏感的⼒学性能指标?答:主要决定于原⼦本性与晶格类型。
《材料性能学》习题1一.选择题(本题包括15小题,每小题只有一个合适选项,每小题2分,共30分)1. 断裂力学主要用来处理(d )方面的问题。
a) 低塑性材料抗断裂b) 高塑性材料抗断裂c) 含缺口材料抗断裂d) 含缺陷材料抗断裂2. 多晶体金属塑性变形的特点是(c )。
a) 同时性b) 不协调性c) 非同时性d) 独立性3. 细晶强化是非常好的强化方法,但不适用于(a )。
a) 高温b) 中温c) 常温d) 低温4. 表征脆性材料的力学性能的参量是(d )。
a) E, σ0.2b)σb , δc) ν, ψd) E, σb5. 应力状态柔度系数最大的是(a )。
a) 压b) 拉c) 扭d) 弯6. 与抗拉强度之间存在相互关系的是(a )。
a) 布氏硬度b) 洛氏硬度c) 显微硬度d) 肖氏硬度7. 下述断口哪一种是延性断口( d )。
a) 穿晶断口b) 沿晶断口c) 河流花样d) 韧窝断口8. 通常键强度高的材料,热膨胀系数;结构紧密的晶体,热膨胀系数(d)a)高小b)低小c)高大d)低大9. 疲劳裂纹最易在材料的什么部位产生( a )。
a) 表面b) 次表面c) 内部d) 不一定10. 韧性材料在什么样的条件下可能变成脆性材料(b )。
a) 增大缺口半径b) 增大加载速度c) 升高温度d) 减小晶粒尺寸11.在实用温度范围内,随温度的升高,热导率,对多晶氧化物材料,含有气孔的不密实材料(a )。
a) 减小增大b) 增大增大c) 减小减小d) 增大减小12. T为试验温度,T m为材料熔点,一般T/T m大于多少就属高温,就要考虑材料的高温力学性能(c )。
a) 0.2~0.3 b) 0.3~0.4 c) 0.4~0.5 d) 0.5~0.613. 下列不属于电介质的击穿形式有(c )。
a) 电击穿b) 热击穿c) 磁击穿d) 化学击穿14. 下列不属于铁磁性材料的是(b )。
a) Fe b) Cu c) Ni d) Co15. 陶瓷坯体的热膨胀系数和釉层的热膨胀系数满足下列哪种关系有利于提高其机械强度(a )。
《工程材料力学性能》(第二版)课后答案第一章材料单向静拉伸载荷下的力学性能一、解释下列名词滞弹性:在外加载荷作用下,应变落后于应力现象。
静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。
弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
比例极限:应力—应变曲线上符合线性关系的最高应力。
包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。
改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。
三、什么是包辛格效应,如何解释,它有什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。
包辛格效应可以用位错理论解释。
第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。
材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力.一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后.随时间延长产生附加弹性应变的现象称为滞弹性.也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形.卸载后再同向加载.规定残余伸长应力增加;反向加载.规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时.便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下.当外加正应力达到一定数值后.以极快速率沿一定晶体学平面产生的穿晶断裂.因与大理石断裂类似.故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内.可以是韧性断裂.也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展.多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时.冲击吸收功明显下降.断裂方式由原来的韧性断裂变为脆性断裂.这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P153、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小.但是不改变金属原子的本性和晶格类型。
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1 / 101-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量解:Maxwell 模型可以较好地模拟应力松弛过程:Voigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
如采用四元件模型来表示线性高聚物的蠕变过程等。
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量解:Maxwell 模型可以较好地模拟应力松弛过程:Voigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
如采用四元件模型来表示线性高聚物的蠕变过程等。
第一章材料的弹性变形一、填空题:1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂的能力。
2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。
3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。
二、名词解释1.弹性变形:去除外力,物体恢复原形状。
弹性变形是可逆的2.弹性模量:拉伸时σ=EεE:弹性模量(杨氏模数)切变时τ=GγG:切变模量3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。
4.弹性比功定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。
三、简答:1.金属材料、陶瓷、高分子弹性变形的本质。
答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。
对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。
2.非理想弹性的概念及种类。
答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。
表现为应力应变不同步,应力和应变的关系不是单值关系。
种类主要包括滞弹性,粘弹性,伪弹性和包申格效应。
3.什么是高分子材料强度和模数的时-温等效原理?答:高分子材料的强度和模数强烈的依赖于温度和加载速率。
加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。
时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。
四、计算题:气孔率对陶瓷弹性模量的影响用下式表示:E=E0 (1—1.9P+0.9P2)E0为无气孔时的弹性模量;P为气孔率,适用于P≤50 %。