二阶线性常微分方程的幂级数解法
- 格式:doc
- 大小:610.71 KB
- 文档页数:13
二阶常微分方程解的存在问题分析摘要本文首先介绍了二阶常系数齐次线性微分方程的一般解法——特征方程法及二阶常系数非齐次线性微分方程的待定系数法,然后又介绍了一些可降阶的微分方程类型。
接着,讨论了二阶变系数微分方程的幂级数解法并论述了如何利用变量代换法将某些变系数方程化为常系数方程。
另外,本文还介绍了求解初值问题的另一种方法——拉普拉斯变换法。
最后,给出了二阶微分方程的存在唯一性定理的证明以及它在科学研究、工程技术以及数学建模中解决实际问题的一些应用。
1.引言1.1常微分方程的发展过程与研究途径二阶线性微分方程是常微分方程中一类很重要的方程。
这不仅是因为其一般理论已经研究地比较清楚,而且还因为它是研究非线性微分方程的基础,在工程技术和自然科学中有着广泛的应用。
在科学研究、工程技术中,常常需要将某些实际问题转化为二阶常微分方程问题。
因此,研究不同类型的二阶常微分方程的求解方法及探讨其解的存在唯一性问题是十分重要的。
常微分方程已有悠久的历史,而且继续保持着进一步发展的活力,主要原因是它的根源深扎在各种实际问题之中。
牛顿最早采用数学方法研究二体问题,其中需要求解的运动方程就是常微分方程。
他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。
用现在叫做“首次积分”的办法,完全解决了它的求解问题。
17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。
20世纪30年代直至现在,是常微分方程各个领城迅速发展、形成各自相对独立的而又紧密联在一起的分支学科的时期。
1927-1945年间定性理论的研究主要是跟无线电技术联系在一起的。
第二次世界大战期间由于通讯等方面的要求越来越高,大大地激发了对无线电技术的研究,特别是非线性振动理论的研究得到了迅速的发展。
40年代后数学家们的注意力主要集中在抽象动力系统的拓扑特征, 如闭轨是否存在、结构是否稳定等, 对于二维系统已证明可以通过奇点及一些特殊的闭轨和集合来判断结构稳定性与否;而对于一般系统这个问题尚未解决。
二阶线性常微分方程的幂级数解法从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。
因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程''0y xy -=的通解解:设2012n n y a a x a x a x =+++++……为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到x -∞<<∞2210a ⋅=,30320,a a ⋅-= 41430,a a ⋅-= 52540,a a ⋅-=或一般的可推得32356(31)3k a a k k =⋅⋅⋅⋅⋅-⋅,13134673(31)k a a k k +=⋅⋅⋅⋅⋅⋅+,其中1a ,2a 是任意的,因而代入设的解中可得:这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。
例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。
解 设级数2012n n y a a x a x a x =+++++……为方程的解。
首先,利用初值条件,可以得到00a =, 11a =,因而将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 因而 最后得21111(1)!!k a k k k +=⋅=- , 20k a =, 对一切正整数k 成立。
将i a (0,1,2,)i =的值代回2012n n y a a x a x a x =+++++……就得到 这就是方程的满足所给初值条件的解。
是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的形式怎样?其收敛区间又如何?这些问题,在微分方程解析理论中有完满的解答,但因讨论时需要涉及解析函数等较专门的知识,在此我们仅叙述有关结果而不加证明,若要了解定理的证明过程,可参考有关书籍。
《常微分方程》课程教学大纲一、课程基本信息二、课程教学目标常微分方程是信息与计算科学专业的基础课程之一。
通过该课程的学习,使学生掌握建立常微分方程模型的基本过程和方法,正确理解常微分方程的基本概念,掌握基本理论和主要方法,获得比较熟练的基本运算技能,对常微分方程的定性理论有初步的理解,培养学生计算能力、逻辑推理能力、空间想象能力及理论联系实际去分析问题、解决问题的能力,为学生学习后继课程打下基础。
1.学好基础知识。
理解和掌握课程中的基本概念和基本理论,知道它的思想方法、意义和用途,以及它与其它概念、规律之间的联系。
2.掌握基本技能。
能够根据法则、公式正确地进行运算。
能够根据问题的情景,寻求和设计合理简捷的运算途径。
3.培养思维能力。
能够对研究的对象进行观察、比较、抽象和概括。
能运用课程中的概念、定理及性质进行合乎逻辑的推理。
能对计算结果进行合乎实际的分析、归纳和类比。
4.提高解决实际问题的能力。
对于简单应用问题会列出定解问题求解,能够将本课程与相关课程有机地联系起来,提出并解决相关学科中与本课程有关的问题。
能够自觉地用所学知识去观察生活,建立简单的数学模型,提出和解决生活中有关的数学问题。
三、教学学时分配《常微分方程》课程理论教学学时分配表*理论学时包括讨论、习题课等学时。
四、教学内容和教学要求第一章绪论(4学时)(一)教学要求1.了解微分方程的背景即某些物理过程的数学模型;2. 掌握由简单的物理、几何等问题建立简单微分方程;3. 理解微分方程的基本概念;4. 掌握如何由通解求特解。
(二)教学重点与难点教学重点:微分方程的基本概念;教学难点:建立微分方程模型的思想、方法和例子。
(三)教学内容 第一节 常微分方程模型第二节 基本概念和常微分方程的发展历史1.常微分方程基本概念本章习题要点:微分方程基本概念题;建立微分方程的题。
第二章 一阶微分方程的初等解法(14学时)(一)教学要求1. 掌握变量可分离方程、一阶线性方程以及恰当微分方程的求解方法; 2.掌握齐次方程、Bernoulli 方程的求解; 3. 掌握用变量代换的方法求解微分方程;4. 掌握从积分因子满足的充分必要条件导出某些特殊形式积分因子存在的条件及计算公式,并用于解相应的微分方程;5. 掌握已解出y 或x 的微分方程)',(),',(y y f x y x f y ==的计算方法;6. 了解微分方程0)',(,0)',(==y y F y x F 的求解;7. 掌握一阶微分方程的应用方法,能建立一些简单的模型进行简单分析。
第九章二阶常微分方程级数解法•§9.1 特殊函数常微分方程•§9.2 常点邻域上的级数解法•§9.3 正则奇点邻域上的级数解法•§9.4 施图姆-刘维尔本征值问题•前面讨论的都是两个自变量的偏微分方程,涉及到的本征函数都是三角函数,除了圆形泊松问题外,大多是反射对称的问题;•从现在开始,我们要讨论三维的定解问题。
实际的边界问题可能具有其它对称性,比如球或柱对称边界,这时的本征函数采用三角函数就不方便了,我们将发现新的本征函数和本征值,并且用它们做级数展开来求解偏微分方程。
•本章主要讨论拉普拉斯方程、亥姆霍兹方程等在球坐标系、柱坐标系满足的常微分方程及其定解。
我们依然采用分离变量法。
§9.2 常点邻域上的级数解法•前面我们通过分离变量法得到了一些特殊的二阶常微分方程,本节讨论这些方程在特定的边界条件下的定解问题。
•这些二阶常微分方程大多不能用通常的方法,比如直接积分的方法求解;•通常采用幂级数解法,即在某一选定的点的邻域上将待求的解表示成系数待定的级数,得到系数之间的递推关系,然后利用边界条件确定所有系数的值。
•级数求解问题的关键在于收敛性。
•考虑一般的复变函数w(z)的线性二阶常微分方程:w’’+p(z)w’+q(z)w=0, w(z 0)=C 0, w’(z 0)=C 1. 其中z 为复变数,z 0为选定的点。
•(一)方程的常点和奇点:在z 0邻域,如果p(z)和q(z)是解析的,则z 0称作方程的常点;如果p(z)和q(z)是奇异的,则z 0称作方程的奇点。
•(二)常点邻域上的级数解:如果线性二阶常微分方程的系数p(z)和q(z)在点z 0的邻域|z-z 0|<R 是解析函数,则方程在这个圆中存在满足初值条件的唯一解析解。
•因此可以把解表示成此邻域上的泰勒级数形式:•后面的任务就是确定这些级数解的系数a k ,通常会得到它们之间的一些递推关系。
幂级数解法幂级数解法是求解微分方程的一种技术,它可用于求解普通微分方程的无穷多解,也可用于求解常微分方程的特解,以及线性微分方程的非独立解。
因此,在研究微分方程的求解过程中,对“幂级数解法”的研究具有重要的实际意义。
一、幂级数的概念幂级数是由不同幂次的可积函数的和所组成的级数,可以表示为: $$sum_{k=0}^{infty}a_{k}x^{k}$$其中,$a_{k}$叫做幂级数的系数,$x$叫做幂级数的变量,$k$叫做幂级数的项次,$infty$叫做幂级数的项数。
幂级数不仅可用于数学上的应用,也可用于物理学上的应用,像振动波、涡旋波、周期性复原函数等物理概念都可以用幂级数来表示。
二、幂级数解法的内容1.入一类特殊的线性微分方程:$$y^{(n)}+p_{n-1}(x)y^{(n-1)}+cdots+p_{1}(x)y+p_{0}(x)y=Q(x)$$式中,$y^{(n)}$表示微分方程的最高次导数,$p_{n-1}(x)$,$cdots$,$p_{1}(x)$,$p_{0}(x)$表示微分方程的n-1次,$cdots$,1次,0次项的系数函数,$Q(x)$表示微分方程右端项的函数。
2.先检查保守性,判断微分方程是否具有定常解。
微分方程具有定常解的充要条件是$p_{n-1}(x)=p_{n-2}(x)=cdots=p_{2}(x)=0$,此时微分方程可以化简为:$$y^{(n)}+p_{1}(x)y+p_{0}(x)y=Q(x)$$无论$p_{1}(x)$、$p_{0}(x)$是否全等于0,都可以说明它具有定常解。
3.后利用相关定理,在特定条件下构造一个“幂级数解”,其形式为:$$y=sum_{k=0}^{infty}c_{k}x^k$$其中$c_{k}$是待求的系数,由解法的特殊条件所确定。
4.所得“幂级数解”代入微分方程,并根据其定义,求出$c_{0}$,$c_{1}$,$c_{2}$,$cdots$,$c_{n-1}$的值,即求出微分方程的解的系数。
二阶线性常微分方程的幂级数解法从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。
因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程''0y xy -=的通解解:设2012n n y a a x a x a x =+++++……为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有''212312132(1)(1)n n n n y a a x n n a x n na x --+=⋅+⋅++-+++将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到x -∞<<∞2210a ⋅=,30320,a a ⋅-= 41430,a a ⋅-= 52540,a a ⋅-=或一般的可推得32356(31)3k a a k k =⋅⋅⋅⋅⋅-⋅,13134673(31)k a a k k +=⋅⋅⋅⋅⋅⋅+,320k a +=其中1a ,2a 是任意的,因而代入设的解中可得:3634701[1][]2323562356(31)33434673(31)nx x x x x y a a x n nn n =+++++++++⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅+这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。
例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。
解 设级数2012n n y a a x a x a x =+++++……为方程的解。
首先,利用初值条件,可以得到00a =, 11a =,因而2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+⋅++-+将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到214220,1,0,,,1n n a a a a a n -====-因而567891111,0,,0,,2!63!4!a a a a a ======最后得21111(1)!!k a k k k +=⋅=- , 20k a =, 对一切正整数k 成立。
将i a (0,1,2,)i =的值代回2012n n y a a x a x a x =+++++……就得到52132!!k x x y x x k +=+++++2422(1),2!!k x x x x x xe k =+++++=这就是方程的满足所给初值条件的解。
是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的形式怎样?其收敛区间又如何?这些问题,在微分方程解析理论中有完满的解答,但因讨论时需要涉及解析函数等较专门的知识,在此我们仅叙述有关结果而不加证明,若要了解定理的证明过程,可参考有关书籍。
考虑二阶齐次线性微分方程22()()0d y dyp x q x y dx dx++= 及初值条件00()y x y =及''00()y x y =的情况。
不失一般性,可设 00x =,否则,我们引进新变量0t x x =-,经此变换,方程的形状不变,在这时对应于0x x =的就是00t =了,因此,今后我们总认为00x =。
定理10 若方程22()()0d y dyp x q x y dx dx++=中系数()p x 和()q x 都能展成x 的幂级数,且收敛区间为||x R <,则方程22()()0d y dyp x q x y dx dx++=有形如nn n y a x∞==∑的特解,也以||x R <为级数的收敛区间。
在上两例中方程显然满足定理的条件,系数x -,2x -和4-可看作是在全数轴上收敛的幂级数,故方程的解也在全数轴上收敛。
但有些方程,例如n 阶贝赛尔方程22222()0d y dyx x x n y dx dx++-=这里n 为非负常数,不一定是正整数,(22()()0d y dyp x q x y dx dx ++=)在此1()p x x=,22()1n q x x =-,显然它不满足定理10 的条件,因而不能肯定有形如0nn n y a x ∞==∑的特解。
但它满足下述定理11的条件,从而具有别种形状的幂级数解。
定理11 若方程22()()0d y dyp x q x y dx dx++=中系数()p x ,()q x 具有这样的性质,即()xp x 和2()x q x 均能展成x 的幂级数,且收敛区间为||x R <,若00a ≠,则方程22()()0d y dyp x q x y dx dx++=有形如0nn n y xa x α∞==∑ 即n n n y a x α∞+==∑的特解,α是一个特定的常数,级数0n n n y a x α∞+==∑也以||x R <为收敛区间。
若00a =,或更一般的,0(0,1,2,1)i i m α==-,但0ma ≠,则引入记号m βα=+,k m k b a +=,则n m k k n m k k n mk k y x a x x a x x b x ααβ∞∞∞++======∑∑∑,这里00m b a =≠,而β仍为待定常数。
例7 求解n 阶贝赛尔方程22222()0d y dyx x x n y dx dx++-=。
解 将方程改写成2222210d y dy x n y dx x dx x-++=, 易见,它满足定理11的条件(()xp x 和2()x q x 均能展成x 的幂级数,且收敛区间为||x R <),且()()2221,xp x x q x x n ==-,按展成的幂级数收敛区间为x -∞<<∞,由定理11,方程有形如a k k k y a x ∞+==∑的解,这里00a ≠,而k a 和α是待定常数,将a kk k y a x ∞+==∑代入:22222()0d y dy x x x n y dx dx ++-=中,得 221()(1)a k kk xa k a k a x∞+-=++-∑11()a k k k x a k a x ∞+-=++∑220()0a k k k x n a x ∞+=+-=∑,把x 同幂次项归在一起,上式变为220[()(1)()]0a ka k k k k k k k k n a xa x ααα∞∞+++==++-++-+=∑∑令各项的系数等于0,得一系列的代数方程220221222[]0[(1)]0[()]02,3,kk a n a n a k n a k ααα-⎧-=⎪+-=⎪⎨+-+=⎪⎪=⎩因为00a ≠,故从22[]0a n α-=解得α的两个值 n α=和n α=-先考虑n α=时方程22222()0d y dy x x x n y dx dx++-=的一个特解,这时我们总可以从以上方程组中逐个地确定所有的系数k a 。
把n α=代入以上方程组,得到10a =2(2)k k a a k n k -=-+,2,3k =或按下标为奇数或偶数,我们分别有()()()212122*********k k k k a a k n k a a k n k -+--⎧=⎪+++⎪⎨-⎪=⎪+⎩1,2,k=从而求得210k a -= 1,2,k=()022211a a n =-⋅+()()()244122!12a a n n =-⋅++()()()()366123!123a a n n n =-⋅+++一般地()()()()2212!12kk ka a k n n n k =-⋅+++1,2,k =将k a 各代入a kk k y a x ∞+==∑得到方程22222()0d y dyx x x n y dx dx++-=的一个解()()()()02102112!12knk n kk a y a x x k n n n k ∞+=-=+⋅+++∑既然是求22222()0d y dy x x x n y dx dx++-=的特解,我们不妨令 ()0121na n =Γ+其中函数()s Γ定义如下: 当s >0时,()10s x s x e dx +∞--Γ=⎰;当s <0且非整数时,由递推公式()1()1s s sΓ=Γ+定义。
()s Γ具有性质()()1s s s Γ+=Γ; ()1!n n Γ+=n 为正整数而()()()()02102112!12knk n k k a y a xx k n n n k ∞+=-=+⋅+++∑变为()()()()2101!112kk nk x y k n k n n +∞=-⎛⎫= ⎪++Γ+⎝⎭∑注意到Γ函数的性质,即有()()()2101!1`2kk nn k x y J x k n k +∞=-⎛⎫=≡ ⎪Γ++⎝⎭∑()n J x 是由贝塞尔方程22222()0d y dy x x x n y dx dx++-=定义的特殊函数,称为n 阶贝赛尔函数。
因此,对于n 阶贝塞尔方程,它总有一个特解()n J x 。
为了求得另一个与()nJ x 线性无关的特解,我们自然想到,求an=-时方程22222()0d y dy x x x n y dx dx++-=的形如 20n kk k y a x∞-+==∑的解,我们注意到只要n 不为非负整数,像以上对于n α=时的求解过程一样,我们总可以求得210k a -= 1,2,k=()()()()221,2!12kkk a a k n n n k =-⋅-+-+-+1,2,k =使之满足220221222[]0[(1)]0[()]02,3,kk a n a n a k n a k ααα-⎧-=⎪+-=⎪⎨+-+=⎪⎪=⎩中的一系列方程,因而()()()()02202112!12knk n k k a y a xx k n n n k ∞--=-=+⋅-+-+-+∑是22222()0d y dy x x x n y dx dx++-=的一个特解。
此时,若令 ()0121na n -=Γ-+则()()()()02202112!12knk nk k a y a xx k n n n k ∞--=-=+⋅-+-+-+∑变为()()()2201!12k nkn k x y J x k n k -∞-=-⎛⎫=≡ ⎪Γ-++⎝⎭∑称()nJ x -为阶贝赛尔函数。