线性分组码(7,4)码设计说明书
- 格式:pdf
- 大小:377.86 KB
- 文档页数:25
第3 章 循环码编码和译码3.1 循环码概念循环码是线性分组码中一个重要的分支。
它的检、纠错能力较强,编码和译码设备并不复杂,而且性能较好,不仅能纠随机错误,也能纠突发错误。
循环码是目前研究得最成熟的一类码,并且有严密的代数理论基础,故有许多特殊的代数性质,这些性质有助于按所要求的纠错能力系统地构造这类码,且易于实现,所以循环码受到人们的高度重视,在FEC 系统中得到了广泛应用。
3.1.1、循环码定义定义:一个线性分组码,若具有下列特性,则称为循环码。
设码字(3-1) 若将码元左移一位,得(3-2)A (1)也是一个码字。
注意:循环码并非由一个码字的全部循环移位构成。
3.1.2 循环码的特点表3-1列出了某(7,4)循环码的全部码组循环码有两个数学特征:1.线性分组码的封闭型:即如果c1,c2,是与消息m1,m2对应的码字,则c1+c2必定是与m1+m2对应的码字。
)...(0121a a a a A n n --=)...(10112)1(---=n n n a a a a a A2.循环性,即任一许用码组经过循环移位后所得到的码组仍为该许用码组集合中的一个码组。
即若(a n-1 a n-2 … a 1 a 0)为一循环码组,则(a n-2 a n-3 … a n a n-1)、(a n-3 a n-2 … a n-1 a n-2)、……还是许用码组。
也就是说,不论是左移还是右移,也不论移多少位,仍然是许用的循环码组。
以3号码组(0010111)为例,左移循环一位变成6号码组(0101110),依次左移一位构成的状态图如图1.1-2所示。
图3-1 (7,4)循环码中的循环圈可见除全零码组外,不论循环右移或左移,移多少位,其结果均在该循环码组的集合中(全零码组自己构成独立的循环圈)。
3.2 码多项式为了用代数理论研究循环码,可将码组用多项式表示,循环码组中各码元分别为多项式的系数。
长度为n 的码组)...(0121a a a a A n n --=用码多项式表示则为(3-3)式中,x 的幂次是码元位置的标记。
8.4 循环码时间:2012年09月01日信息来源:《通信原理》精品课程网站点击:2452次我要评论(0) 【字体:大中小】循环码是线性分组码重要的一个子类,现有的重要线性分组码都是循环码或与循环码密切相关。
与其他大多数码相比,循环码的编码及译码易于用简单的具有反馈连接的移位寄存器来实现,这是它的优势所在。
另外,对它的研究是建立在比较严密的数学方法基础之上,因此比较容易获得有效的译码方案。
循环码在实际中应用很广。
8.4.1 循环码基本概念一个线性()分组码,如果它的任一码字经过循环移位后(左移或右移),仍然是该码的一个码字,则称该码为循环码。
上一节中表8-3所示的(7,3)分组码就是一个循环码。
为了便于观察,将(7,3)码重新排列如表8-9所示。
表8-9 循环码的循环移位在代数编码理论中,常用多项式(8.4-1)来描述一个码字。
表8-9中的任一码组可以表示为(8.4-2)这种多项式中,仅是码元位置的标记,因此我们并不关心x的取值,这种多项式称为码多项式。
例如,码字(0100111)可以表示为(8.4-3)左移一位后为(1001110),其码字多项式为(8.4-4)需要注意的是,码字多项式和一般实数域或复数域的多项式有所不同,码字多项式的运算是基于模二运算的。
(1)码多项式相加,是同幂次的系数模二加,不难理解,两个相同的多项式相加,结果系数全为0。
例如(8.4-5)(2)码多项式相乘,对相乘结果多项式作模二加运算。
例如(8.4-6)(3)码多项式相除,除法过程中多项式相减按模二加方法进行。
当被除式的幂次高于等于除式的幂次,就可以表示为一个商式和一个分式之和,即(8.4-7)其中余式的幂次低于的幂次。
把称作对取模的运算结果,并表示为(8.4-8)有了这个运算规则,就可以很方便地表示一个移位后码字多项式。
可以证明,字长为的码字多项式和经过次左移位后的码字多项式的关系为(8.4-9)例如,(7,3)循环码的码字(1001110),其多项式为,移位3次后的多项式可求得如下:(8.4-10)即,它对应的码字为11101008.4.2 循环码生成多项式由表8-9可知,(7,3)循环码的非0码字多项式是由一个多项式分别乘以得到的。
线性分组码一、原理:监督矩阵:线性分组码()k n ,中许用码组为k 2个。
定义线性分组码的加法为模二加法,乘法为二进制乘法。
即011=+、101=+、110=+、000=+;111=⨯、001=⨯、000=⨯、010=⨯。
且码组与码组的运算在各个相应比特位上符合上述二进制加法运算规则。
线性分组码具有如下性质()k n ,的性质:1. 封闭性。
任意两个码组的和还是许用的码组。
2. 码的最小距离等于非零码的最小码重。
对于码组长度为n 、信息码元为k 位、监督码元为k n r -=位的分组码,常记作()k n ,码,如果满足n r ≥-12,则有可能构造出纠正一位或一位以上错误的线性码。
下面我们通过(7,4)分组码的例子来说明如何具体构造这种线性码。
设分组码()k n ,中,4=k ,为能纠正一位误码,要求3≥r 。
取3=r ,则7=+=r k n 。
该例子中,信息组为()3456a a a a ,码字为()0123456a a a a a a a 。
用1S ,2S ,3S 的值与错码位置的对应关系可以规定为如表1所列。
由表中规定可知,当已知信息组时,按以下规则得到三个校验元,即:⎪⎩⎪⎨⎧⊕⊕⊕=⊕⊕⊕=⊕⊕⊕=034631356224561aa a a S a a a a S a a a a S (式1.1)表1 错码位置示意表。
在发送端编码时,信息位6a ,5a ,4a 和3a 的值决定于输入信号,因此它们是随机的。
监督位2a ,1a 和0a 应根据信息位的取值按监督关系来确定,即监督位应使上三式中1S ,2S 和3S 的值为零(表示编成的码组中应无错码)。
由上式经移项运算,解出监督位:⎪⎩⎪⎨⎧⊕⊕=⊕⊕=⊕⊕=346035614562aa a a a a a a a a a a (式1.2)给出信息位后,可直接按上式算出监督位,其结果见表2。
接收端收到每个码组后先按式(1.1)计算出1S ,2S 和3S ,再按表1判断错码情况。
二、创新实验设计创新实验一:(7,4)汉明码的编码与译码实现1、实验目的实现(7,4)汉明码的编码与译码,通过这次实验不但加深了对汉明码编码和译码原理了解,而且对线性分组码有所了解。
2、实验原理线性分组码的构造方法比较简单、理论较为成熟,应用比较广泛。
汉明码是一种能够纠正一个错码的效率比较高的线性分组码,下面以(7,4)码为例就汉明码的编码与译码分别进行介绍:(1)编码原理一般来说,若汉明码长为n ,信息位数为k ,则监督位数r=n-k 。
若希望用r 个监督位构造出r 个监督关系式来指示一位错码的n 种可能位置,则要求21r n -≥或211rk r -≥++ (1)设汉明码(n,k )中k=4,为了纠正一位错码,由式(1)可知,要求监督位数r ≥3。
若取r=3,则n=k+r=7。
这样就构成了(7,4)码。
用6543210a a a a a a a 来表示这7个码元,用123s s s 的值表示3个监督关系式中的校正子,则123s s s 的值与错误码元位置的对应关系可以规定如表1所列。
表2.1 校正子和错码位置的关系则由表1可得监督关系式:16542s a a a a =⊕⊕⊕()226531s a a a a =⊕⊕⊕()3 36430s a a a a =⊕⊕⊕()4 在发送端编码时,信息位6543a a a a 的值决定于输入信号,因此它们是随机的。
监督位2a 、1a 、0a 应根据信息位的取值按监督关系来确定,为使所编的码中无错码,则123,,S S S 等于0,即65426531643000(5)0a a a a a a a a a a a a ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩方程组(5)可等效成如下矩阵形式6543210111010001101010010110010a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦(6)式(6)可简化为0T T HA =,H 为监督矩阵,则由式(6)可得到监督矩阵11101001101010=[P I ] (7)1011001r H ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦因为生成矩阵'=[I Q]=[I ]k k G P ,所以由(7)得生成矩阵G 如下:[]k 10001110100110[']00101010001011k G I Q I P ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦然后利用信息位和生成矩阵G 相乘产生整个码组,即有[][]65432106543=(8)A a a a a a a a a a a a G=其中A 为整个码组矩阵,6543a a a a 是信息位。
二、创新实验设计创新实验一:(7,4)汉明码的编码与译码实现1、实验目的实现(7,4)汉明码的编码与译码,通过这次实验不但加深了对汉明码编码和译码原理了解,而且对线性分组码有所了解。
2、实验原理线性分组码的构造方法比较简单、理论较为成熟,应用比较广泛。
汉明码是一种能够纠正一个错码的效率比较高的线性分组码,下面以(7,4)码为例就汉明码的编码与译码分别进行介绍:(1)编码原理一般来说,若汉明码长为n ,信息位数为k ,则监督位数r=n-k 。
若希望用r 个监督位构造出r 个监督关系式来指示一位错码的n 种可能位置,则要求21r n -≥或211rk r -≥++ (1)设汉明码(n,k )中k=4,为了纠正一位错码,由式(1)可知,要求监督位数r ≥3。
若取r=3,则n=k+r=7。
这样就构成了(7,4)码。
用6543210a a a a a a a 来表示这7个码元,用123s s s 的值表示3个监督关系式中的校正子,则123s s s 的值与错误码元位置的对应关系可以规定如表1所列。
表2.1 校正子和错码位置的关系则由表1可得监督关系式:16542s a a a a =⊕⊕⊕()226531s a a a a =⊕⊕⊕()3 36430s a a a a =⊕⊕⊕()4 在发送端编码时,信息位6543a a a a 的值决定于输入信号,因此它们是随机的。
监督位2a 、1a 、a 应根据信息位的取值按监督关系来确定,为使所编的码中无错码,则123,,S S S 等于0,即65426531643000(5)0a a a a a a a a a a a a ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩方程组(5)可等效成如下矩阵形式6543210111010001101010010110010a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦(6)式(6)可简化为0T T HA =,H 为监督矩阵,则由式(6)可得到监督矩阵11101001101010=[P I ] (7)1011001r H ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦因为生成矩阵'=[I Q]=[I ]k k G P ,所以由(7)得生成矩阵G 如下:[]k 10001110100110[']00101010001011k G I Q I P ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦然后利用信息位和生成矩阵G 相乘产生整个码组,即有[][]65432106543=(8)A a a a a a a a a a a a G=其中A 为整个码组矩阵,6543a a a a 是信息位。
竭诚为您提供优质文档/双击可除74线形分组码实验报告篇一:线性分组码实验报告综合性设计性实验报告专业:学号:姓名:实验所属课程:实验室(中心):信息技术软件实验室指导教师:2一、题目线性分组码编译码实验二、仿真要求1.分别用不同的生成矩阵进行(7,4)线性分组码的编码,经调制解调后译码,并比较两种线性分组码的纠错能力。
2.掌握线性分组码的编码原理、编码步骤和译码方法。
3.熟悉matlab软件的基本操作,学会用matlab软件进行线性分组码的编码和译码。
三、仿真方案详细设计编码:本实验采用的是(7,4)线性分组码,线性分组码的编码由监督矩阵和生成矩阵实现,监督矩阵h为(3×4)的矩阵,由监督方程和(4×4)的单位矩阵构成,生成矩阵g为(4×7)的矩阵,由(4×4)的单位矩阵和监督矩阵的转置矩阵构成。
实现过程为:1、将要编码的序列先整形,整为4列2、如果序列不能被4整除在后边补0使其能被4整除3、将整形后的序列与生成矩阵g相乘即得到编码后的码字在本实验中,分别生成两种生成矩阵,在产生了生成矩阵后根据输入的四位信息位和生成矩阵相乘即可得到编码矩阵。
译码:在译码过程中,我们利用错误图样和伴随式来进行纠错。
1、设一个接收码字矩阵为R,R*h=s(模2乘),则s为码字对应的伴随式矩阵如果s=0则说明接受码字无差错;2、如果s不为0,查看矩阵s中不为0的那行所在行数,该行即收码字错误所在行i;3、将s转置,将不为0的一列与h每一列进行比较,找到h中相同列,该列的列数即为错误所在列;4、由步骤2和3得到错误具体位置,模2加对应的错误图样就可得到正确码字。
bpsK调制:bpsK调制利用载波的相位变化来传递数字信息,振幅和频率保持不变。
双极性的全占空矩形脉冲序列与正弦载波相乘就得到调制信号。
因此进行调制时首先进行码形变换变为双极性的,再经乘法器与载波相乘得到调制信号。
其具体实现方法如下:1、将0、1序列变为-1、1序列;2、将序列与载波相乘,为‘1’时与载波相位相同,为‘-1’时与载波相位相反。
(7,4)汉明码编译码原理程序说明书1、线性分组码假设信源输出为一系列二进制数字0和1.在分组码中,这些二进制信息序列分成固定长度的消息分组(message blocks )。
每个消息分组记为u ,由k 个信息位组成。
因此共有2k 种不同的消息。
编码器按照一定的规则将输入的消息u 转换为二进制n 维向量v ,这里n>k 。
此n 维向量v 就叫做消息u 的码字(codeword )或码向量(code vector )。
因此,对应于2k 种不同的消息,也有2k 种码字。
这2k 个码字的集合就叫一个分组码(block code )。
一个长度为n ,有2k 个码字的分组码,当且仅当其2k 个码字构成域GF (2)上所有n维向量空间的一个k 维子空间时被称为线性(linear )(n ,k )码。
对于线性分组码,希望它具有相应的系统结构(systematic structure ),其码字可分为消息部分和冗余校验部分两个部分。
消息部分由k 个未经改变的原始信息位构成,冗余校验部分则是n-k 个奇偶校验位(parity-check )位,这些位是信息位的线性和(linear sums )。
具有这样的结构的线性分组码被称为线性系统分组码(linear systematic block code )。
本实验以(7,4)汉明码的编译码来具体说明线性系统分组码的特性。
其主要参数如下:码长:21mn =-信息位:21mk m =-- 校验位:m n k =-,且3m ≥ 最小距离:min 03d d ==由于一个(n ,k )的线性码C 是所有二进制n 维向量组成的向量空间n V 的一个k 维子空间,则可以找到k 个线性独立的码字,0,1,1k g g g -…… ,使得C 中的每个码字v 都是这k 个码字的一种线性组合。
(7,4)汉明码的生成矩阵如下,前三位为冗余校验部分,后四位为消息部分。
0123 1 1 0 1 0 0 00 1 1 0 1 0 01 1 1 0 0 1 01 0 1 0 0 0 1g g G g g ⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭如果()0123u u u u u =是待编码的消息序列,则相应的码字可如下给出:()0101230011223323g g v u G u u u u u g u g u g u g g g ⎧⎫⎪⎪⎪⎪===+++⎨⎬⎪⎪⎪⎪⎩⎭编码结构即码字()0123456v v v v v v v v =,对于(7,4)线性分组码汉明码而言,3456,,,v v v v 为所提供的消息序列,而0356v v v v =⊕⊕,1345v v v v =⊕⊕,2456v v v v =⊕⊕。
(7,4)汉明码信道编码1.课程设计目的(1)通过利用matlab simulink,熟悉matlab simulink仿真工具。
(2)通过课程设计来更好的掌握课本相关知识,熟悉汉明码的纠错与检错方法。
(3)更好的了解通信原理的相关知识,磨练自己分析问题、查阅资料、巩固知识、创新等各方面能力。
2.课程设计要求(1)掌握课程设计的相关知识、概念清晰。
(2)程序设计合理、能够正确运行。
3.相关知识3.1汉明码的概念汉明码是1950年由Hamming首先构造的,它是一种能够自动检测并纠正一重错的线性纠错码,即SEC(Single Error Correcting)码,它不仅性能好,而且编译码电路非常简单,易于实现。
从20世纪50年代问世以来,在提高系统可靠性方面获得了广泛的应用。
最先用于磁芯存储器,60年代初用于大型计算机,70年代在MOS存储器中得到应用,后来在中小型计算机中普遍采用,目前常用于RFID系统中多位错误的纠正。
3.2 汉明码的校验与其他的错误校验码类似,汉明码也利用了奇偶校验位的概念,通过在数据位后面增加一些比特,可以验证数据的有效性。
利用一个以上的校验位,汉明码不仅可以验证数据是否有效,还能在数据出错的情况下指明错误位置。
3.2 汉明码的纠错在接受端通过纠错译码自动纠正传输中的差错来实现码纠错功能,称为前向纠错FEC。
在数据链路中存在大量噪音时,FEC可以增加数据吞吐量。
通过在传输码列中加入冗余位(也称纠错位)可以实现前向纠错。
但这种方法比简单重传协议的成本要高。
汉明码利用奇偶块机制降低了前向纠错的成本。
在接受端通过纠错译码自动纠正传输中的差错来实现码纠错功能,称为前向纠错FEC。
在数据链路中存在大量噪音时,FEC可以增加数据吞吐量。
通过在传输码列中加入冗余位(也称纠错位)可以实现前向纠错。
但这种方法比简单重传协议的成本要高。
汉明码利用奇偶块机制降低了前向纠错的成本。
3.3 汉明码的编码方法设原代码的码长为 k比特,附加纠错编码部分为r比特,当码字长度n = 2 r -1,r=n-k,r = 1 ,2 …时就称这种线性分组码为汉明码。
单片机实现(7,4)汉明码的编码摘要在当今和未来的信息化社会中,数字通信已成为信息传输的重要手段,全球数字化已成为当今世界的主要潮流。
但是,数字信号在传输过程中,加性噪声,码间串扰等都会产生误码,因此需要用信道编码来降低误码率,提高数字通信的可靠性。
随着差错控制编码技术的蓬勃发展,作为信道传输过程抗干扰的有效手段,其中较为成熟的编码方法如汉明码、奇偶校验码、循环冗余码等编码技术,被广泛应用于计算机、电子通信、控制等领域。
其中汉明码是一种能够纠正一位错误且编码效率较高的线性分组码。
由于它的编译码在工程上较易实现,所以应用广泛。
与其他的错误校验码类似,汉明码也利用了奇偶校验位的概念,通过在数据位后面增加一些比特,可以验证数据的有效性。
利用一个以上的校验位,汉明码不仅可以验证数据是否有效,还能在数据出错的情况下指明错误位置。
在接受端通过纠错译码自动纠正传输中的差错来实现码纠错功能,称为前向纠错FEC。
在数据链路中存在大量噪音时,FEC可以增加数据吞吐量。
通过在传输码列中加入冗余位(也称纠错位)可以实现前向纠错。
但这种方法比简单重传协议的成本要高。
汉明码利用奇偶块机制降低了前向纠错的成本。
软件实现下面给出基于最常用的MCS-51单片机汇编语言的汉明码测试程序。
它的有效信息占到了总编码长度的70%,测试程序中自动生成11个字节的原始数据。
原始数据块的长度、存放地址可根据实际情况由用户自己确定,只要将本测试程序的汉明码编码、解码子程序嵌入用户应用程序中,就可直接使用。
本课题就是研究利用C8051F系列单片机来实现(7,4)汉明码的编码。
关键词:单片机;线性分组码;(7,4)汉明码C8051F series MCU(7,4)hamming code encodingABSTRACTIn today's and future information society, digital communication has become an important means of information transmission, the global digital has become a major trend in today's world. However, the digital signal in the transmission process, the additive noise, intersymbol interference, and this will result in error, channel coding, therefore need to reduce the error rate and improve the reliability of digital communications. With the error control coding techniques flourished as the transmission channel interference and effective means by which the more mature coding methods, such as Hamming codes, parity bits, cyclic redundancy code and other coding techniques are widely used in computers, electronics communication, control and other fields. Hamming code which is able to correct a mistake and the code more efficient linear block codes. Encoding and decoding in the project because of its easier to achieve, so widely used. With other similar error check code, Hamming code parity bit also use the concept, followed by an increase in the number of bits of data bits, the validity of data can be verified. Use more than one parity bit, Hamming codes can not only verify the data is valid, but also in the caseof data error location specified in the error. By error correction decoding in a receiver automatically correct the transmission errors to achieve error correction code, known as forward error correction FEC. There are a lot of data-link noise, FEC can increase data throughput. Transmission code in the column by adding redundant bits (also known as error correction bits) can be achieved FEC. However, this method than a simple retransmission protocol to the high cost. Hamming code parity block mechanism reduces the use of forward error correction costs. Software are given below based on the most popular MCS-51 microcontroller Hamming code assembly language test program. It accounts for effective information length of 70% of the total coding and testing program automatically generates 11 bytes of raw data. The length of the original data block, or hold the actual situation according to the user to determine if the Hamming code of the test program encoding and decoding routines embedded in user applications, can be used directly.This topic is to study the use of C8051F MCU to achieve (7,4) hamming code encoding.Keywords:MCU;linear block codes; (7,4) hamming code目录第1章绪论 (1)第2章实验的软硬件环境 (2)VHDL语言的概述 (2)VHDL语言的发展历史 (2)VHDL语言的特点 (2)VHDL语言的开发流程 (3)VHDL的程序结构 (4)逻辑芯片的分类 (5)MAX+plusⅡ的使用 (8)第3章基于CPLD的PCM解码电路的设计 (11)PCM的概述 (12)解调PCM码的基本原理 (17)位同步的实现 ............................................................................ 错误!未定义书签。