立体图形中的距离最短问题
- 格式:doc
- 大小:202.50 KB
- 文档页数:7
第8讲 立体图形上的最短路径问题一、方法技巧解决立体图形上最短路径问题:1.基本思路:立体图形平面化,即化“曲”为“直”2.“平面化”的基本方法:(1)通过平移来转化例如:求A 、B 两点的最短距离,可通过平移,将楼梯“拉直”即可(2)通过旋转来转化例如:求'A C 、两点的最短距离,可将长方体表面展开,利用勾股定理即可求例如:求小蚂蚁在圆锥底面上点A 处绕圆锥一周回到A 点的最短距离 可将圆锥侧面展开,根据“两点之间,线段最短”即可得解(3)通过轴对称来转化例如:求圆柱形杯子外侧点B到内侧点A的最短距离,可将杯子(圆柱)侧面展开,作点A关于杯口的对称点'A,根据“两点之间,线段最短”可知'A B即为最短距离3.储备知识点:(1)两点之间,线段最短(2)勾股定理4.解题关键:准确画出立体图形的平面展开图二、应用举例类型一通过平移来转化【例题1】如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想要到B点去吃可口的食物,请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?【答案】13cm【解析】试题分析:只需将其展开便可直观得出解题思路,将台阶展开得到的是一个矩形,蚂蚁要从B 点到A 点的最短距离,便是矩形的对角线,利用勾股定理即可解出答案.试题解析:解:展开图如图所示,13AB cm ==所以,蚂蚁爬行的最短路线是13cm类型二 通过旋转来转化【例题2】如下图,正四棱柱的底面边长为5cm ,侧棱长为8cm ,一只蚂蚁欲从正四棱柱底面上的A 点沿棱柱侧面到点C’处吃食物,那么它需要爬行的最短路径的长是多少?【答案】cm 412【解析】试题分析:解这类题应将立体图形展开,转化为平面图形,把空间两点的距离转化为平面上两点间的距离,利用“同一平面内两点间的最短路线是连接这两点的线段”进行计算.试题解析:解:如图1,设蚂蚁爬行的路径是AEC’(在面ADD’A’上爬行是一样的).将四棱柱剪开铺平使矩形AA’B’B 与BB’C’C 相连,连接AC’,使E 点在AC’上(如图2))(412810')('2222cm CC BC AB AC =+=++= 所以这只蚂蚁爬行的最短路径长为cm 412【难度】一般【例题3】如下图所示,圆柱形玻璃容器高18cm ,底面周长为60cm ,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一苍蝇,试求蜘蛛捕获苍蝇充饥所走的最短路线的长度.【答案】34cm【解析】试题分析:展开后连接SF ,求出SF 的长就是捕获苍蝇的最短路径,过点S 作SE CD ⊥于E ,求出SE 、EF ,根据勾股定理求出SF 即可.试题解析:解:如下图所示,把圆柱的半侧面展开成矩形,点S ,F 各自所在的母线为矩形的一组对边上下底面圆的半周长为矩形的另一组对边.该矩形上的线段SF 即为所求的最短路线. 过点S 作点F 所在母线的垂线,得到SEF Rt ∆.34SF cm ==【难度】较易【例题4】(2015·红河期末)如下图,有一圆锥形粮堆,其主视图是边长为6m 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是__________m (结果不取近似值)【答案】【解析】试题分析:求小猫经过的最短距离,首先应将其侧面展开,将问题转化为平面上两点间的距离的问题,根据展开图中扇形的弧长与圆锥底面周长相等可求展开图的扇形圆心角度数,故可得出展开图中90BAP ∠=︒,即可用勾股定理求出小猫经过的最短距离BP 长.试题解析:解:作出圆锥侧面展开后的扇形图如下图,设该扇形的圆心角度数为n , 由展开扇形圆弧长等于底面圆周长,可得180n AC BC ππ⋅=⋅, 再由6AC BC m ==,可得180n =︒, 故在展开的平面图形中,1180902BAC ∠=⨯︒=︒点B 到P 的最短距离为 )BP m ===【难度】一般类型三 通过轴对称来转化【例题5】桌上有一个圆柱形玻璃杯(无盖),高为12厘米,底面周长18厘米,在杯口内壁离杯口3厘米的A 处有一滴蜜糖,一只小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3厘米的B 处时,突然发现了蜜糖,问小虫至少爬多少厘米才能到达蜜糖所在位置?【答案】15厘米【解析】试题分析:把圆柱展开,得到矩形形状,A B 、的最短距离就是线段'BA 的长,根据勾股定理解答即可 试题解析:解:如图所示,作A 点关于杯口的对称点'A则'15BA ==厘米【难度】较易三、实战演练类型一 通过平移来转化1.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm .A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为 dm .【答案】25dm【解析】试题分析:先将图形平面展开,再根据勾股定理进行解答试题解析:解:如图,三级台阶平面展开图为长方形,长为20dm ,宽为(2+3)×3dm ,则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B 点最短路程为xdm ,由勾股定理可得x 2=202+[(2+3)×3]2,解得x =25.即蚂蚁沿着台阶面爬行到点B 的最短路程为25dm .【难度】较易类型二 通过旋转来转化2.(2015·陕西)有一个圆柱形油罐,已知油罐周长是12m ,高AB 是5m ,要从点A 处开始绕油罐一周造梯子,正好到达A 点的正上方B 处,问梯子最短有多长?【答案】13m【解析】试题分析:把圆柱沿AB 侧面展开,连接AB ,再根据勾股定理得出结论试题解析:解:展开图如图所示,12AC m =,5BC m =13AB m ===【难度】较易3.有一个圆柱体,如图,高4cm ,底面半径5cm ,A 处有一小蚂蚁,若蚂蚁欲爬行到C 处蚂蚁爬行的最短距离 .)cm【解析】试题分析:圆柱展开就是一个长方形,根据两点之间线段最短可求试题解析:解:∵4AB =,BC 为底面周长的一半,即5BC π=∴)AC cm ===【难度】较易4.葛藤是一种刁钻的植物,它的腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线总是沿最短路线-螺旋前进的,难道植物也懂得数学? 阅读以上信息,解决下列问题:(1)如果树干的周长(即图中圆柱体的底面周长)为30cm ,绕一圈升高(即圆柱的高)40cm ,则它爬行一周的路程是多少?(2)如果树干的周长是80cm ,绕一圈爬行100cm ,它爬行10圈到达树顶,则树干高多少?【答案】(1)50cm ;(2)6m【解析】试题分析:(1)如下图,将圆柱展开,可知底面圆周长,即为AC 的长,圆柱的高即为BC 的长,求出AB 的长即为葛藤树的最短路程(2)先根据勾股定理求出绕行1圈的高度,再求出绕行10圈的高度,即为树干高 试题解析:解:(1)如图,O 的周长为30cm ,即AC =30cm高是40cm ,则BC =40cm ,由勾股定理得50AB cm ==故爬行一周的路程是50cm(2)O 的周长为80cm ,即AC =80cm绕一圈爬行100cm ,则AB=100cm ,高BC =60cm∴树干高=60×10=600cm =6m故树干高6m【难度】一般5.(2015·江阴市)如图,一个无盖的正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从盒外的B 点沿正方形的表面爬到盒内的M 点,蚂蚁爬行的最短距离是 ( )A B C .1 D .2+【答案】B【解析】试题分析:根据已知得出蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是如图BM的长度,进而利用勾股定理求出试题解析:解:∵蚂蚁从盒外的B点沿正方体的表面爬到盒内的M点∴蚂蚁爬行的最短距离是如图BM的长度∵无盖的正方体盒子的棱长为2,BC的中点为M∴1224A B=+=11A M=∴BM=故选:B【难度】较易6.已知O为圆锥顶点,OA、OB为圆锥的母线,C为OB中点,一只小蚂蚁从点C开始沿圆锥侧面爬行到点A,另一只小蚂蚁绕着圆锥侧面爬行到点B,它们所爬行的最短路线的痕迹如右图所示,若沿OA剪开,则得到的圆锥侧面展开图为()【答案】C【解析】试题分析:要求小蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果,再利用做对称点作出另一只小蚂蚁绕着圆锥侧面爬行到点B ,它们所爬行的最短路线. 试题解析:解:∵C 为OB 中点,一只小蚂蚁从点C 开始沿圆锥侧面爬行到点A∴侧面展开图BO 为扇形对称轴,连接AC 即是最短路线∵另一只小蚂蚁绕着圆锥侧面爬行到点B ,作出C 关于OA 的对称点,再利用扇形对称性得出关于BO 的另一对称点,连接即可.故选C【难度】一般7.(2014·枣庄)图①所示的正方体木块棱长为6cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A 爬行到顶点B 的最短距离为 cm .【答案】(cm【解析】试题分析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果试题解析:解:如答图,易知△BCD 是等腰直角三角形,△ACD 是等边三角形,在Rt △BCD 中,CD ==,∴12BE CD ==,在Rt △ACE 中,AE ==,∴从顶点A 爬行到顶点B 的最短距离为(cm【难度】一般8.一个圆锥的母线长为QA =8,底面圆的半径r =2,若一只小蚂蚁从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则蚂蚁爬行的最短路线长是________(结果保留根式)【答案】【解析】解:设圆锥的展开图扇形’QAA 的中心角'AQA ∠的度数为n ,则 822180n ππ⨯⨯⨯=,解得:90n = 即'90AQA ∠=在'Rt AQA 中,根据勾股定理'AA =【难度】一般9.如图,圆锥的主视图是等边三角形,圆锥的底面半径为2cm ,假若点B 有一只蚂蚁只能沿圆锥的表面爬行,它要想吃到母线AC 的中点P 处的食物,那么它爬行的最短路程是多少?【答案】【解析】试题分析:根据圆锥的主视图是等边三角形可知,展开图是半径是4的半圆,点B 是半圆的一个端点,而点P 是平分半圆的半径的中点,根据勾股定理就可求出两点B 和P 在展开图中的距离,就是这只蚂蚁爬行的最短距离试题解析:解:设圆锥的展开图的圆心角为n , 则422180n ππ⨯⨯⨯=, 解得:180n =︒ 即'180CAC ∠=︒在展开图中,'BA CC ⊥,4BA =,2AP =由勾股定理得,BP =点评:本题主要考查了圆锥的侧面展开图的计算,正确判断蚂蚁爬行的路线,把曲面的问题化为平面的问题是解题的关键【难度】较难10.(1)如图○1,一个无盖的长方体盒子的棱长分别为3BC cm =,4AB cm =,15AA cm =,盒子的内部顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙(盒壁的厚度忽略不计)假设昆虫甲在顶点1C 处静止不动,请计算A 处的昆虫乙沿盒子内壁爬行到昆虫甲1C 处的最短路程,并画出其最短路径,简要说明画法(2)如果(1)问中的长方体的棱长分别为6AB BC cm ==,114AA cm =,如图○2,假 设昆虫甲从盒内顶点1C 以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从 盒内顶点A 以3厘米/秒的速度在盒壁的侧面上爬行,那么昆虫乙至少需要多长时间才能捕 捉到昆虫甲?【答案】(1)1A E C →→就是最短路径 (2)5秒【解析】解:(1)如图二,将上表面展开,使上表面与前表面在同一平面内,即11A A D 、、三点共线,111538AA A D +=+= 114D C =根据勾股定理得1AC =如图三,将右侧面展开,使右侧面与下面在同一平面内,即1A B B 、、三点共线 1459AB BB +=+=,113B C =根据勾股定理得1AC =如图四,将右侧面展开,使右侧面与前表面在同一平面内,即A B C 、、三点共线. 437AB BC +=+=,15CC =根据勾股定理得1AC.在图四中,∵1ABE ACC ∽ ∴1BE AB CC AC= ∴457BE =,207BE =如图一,在1BB 上取一点E ,使207BE =,连接AE ,1EC ,1A E C →→就是最短路径 (2)如图五,设1C F x =,则3AF x =,5CF x =-在Rt ACF 中,根据勾股定理得222AF AC CF =+即:()()()22236614x x =++-解得:15x =,2172x =- ∵0x >∴5x =所以,昆虫至少需要5秒才能捉到昆虫甲.点评:在长方体中,经过它的表面,从一个顶点到另一个与它相对的顶点的最短距离是:在 长、宽、高中,以较短的两条边的和作为一条直角边,最长的边作为另一条直角边,斜边即 为最短路线长【难度】较难11.如图,A 是高为10cm 的圆柱底面圆上一点,一只蜗牛从A 点出发,沿30°角绕圆柱侧面爬行,当他爬到顶上时,他沿圆柱侧面爬行的最短距离是( )A. 10cmB. 20cmC. 30cmD. 40cm【答案】B试题分析:将圆柱侧面展开,连接AB ,根据三角函数求出AB 的长即可试题解析:解:根据题意得,10BC cm =,30BAC ∠=︒ ∴13010202A BC Sin cmB =÷︒=÷= 故选B .【难度】一般12.如图,是一个长4m ,宽3m ,高2m 的有盖仓库,在其内壁的A 处(长的四等分)有一只壁虎,B 处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为( )A .4.8B .5 D【答案】C【解析】有两种展开方法:①长方体展开成如图所示,连接A B 、,②将长方体展开成如图所示,连接A B 、【难度】较易13.(2015-2016·内蒙古包头)如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B 距离C点5 cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是cm.【答案】25【解析】试题分析:要求正方体中两点之间的最短路径,最直接的作法就是将正方体展开,然后利用两点之间线段最短解答.试题解析:解:如图:(1(2(3所以需要爬行的最短距离是25.【难度】较难14.已知:如图,一个玻璃材质的长方体,其中6,4,8===BF BC AB ,在顶点E 处有一块爆米花残渣,一只蚂蚁从侧面BCSF 的中心沿长方体表面爬行到点E .则此蚂蚁爬行的最短距离为 .【解析】试题分析:要求蚂蚁爬行的最短距离,需要将立体图形转化为平面图形,将E 、O (设面BCSF 的中心为点O )所在的两个面展开,但展开图并非只有一种,而是两种,需要利用“两点之间,线段最短”,来一一求出线段EO 的长度,然后比较两种情况的结果,找出最短路径 试题解析:解:设面BCSF 的中心为点O ,根据题意,最短路径有下列两种情况:○1如图1,沿SF 把长方体的侧面展开,蚂蚁爬行的最短距离==○2如图2,沿BF 把长方体的侧面展开,蚂蚁爬行的最短距离==∵【难度】较难15.如图,圆柱形容器中,高为1.2m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,离容器上沿0.3m 与蚊子相对..的点A 处,则壁虎捕捉蚊子的最短距离为 m (容器厚度忽略不计).【答案】1.3m【解析】试题分析:将容器侧面展开,建立A 关于EF 的对称点A’,根据两点之间线段最短可知A ’B 的长度即为所求试题解析:解:要求壁虎捉蚊子的最短距离,实际上是求在EC 上找一点P ,使P A+PB 最短, 过点A 作EC 的对称点A ’,连结A ’B ,则A ’B 与EF 的交点P 就是所求的点P因为两点之间,线段最短,A’B 的长即为壁虎捕捉蚊子的最短距离∵底面周长为1m∴'0.5A D m =, 1.2BD m =' 1.3A B m =【难度】一般类型三 通过轴对称来转化16.一只蚂蚁欲从圆柱形桶外的A 点爬到桶内的B 点处寻找食物,已知点A 到桶口的距离AC 为12cm ,点B 到桶口的距离BD 为8cm ,CD 的长为15cm ,那么蚂蚁爬行的最短路程是多少?【答案】25cm【解析】试题分析:如图,作点B 关于CD 的对称点B’,连结AB ’, 交CD 于点P ,连结PB ,则最短路线应该 是沿AP 、PB ’ 即可试题解析:解:如下图所示,作点B 关于CD 的对称点'B ,连结'AB ,交CD 于点P ,则蚂蚁的爬 行路线'A P B →→ 为最短,且'AP PB AP PB +=+在'Rt AEB 中,15AE CD ==,''=12820EB ED DB AC BD =++=+=由勾股定理知 '25AB =所以,蚂蚁爬行的最短路程是25cm【难度】一般。
八年级数学中的最短路径问题,通常涉及到几何图形中的点、线、面等元素,需要利用一些基本的几何知识和数学原理来求解。
以下是一些常见的最短路径题型及其解题方法:1.两点之间的最短距离:题型描述:在平面上给定两点A和B,求A到B的最短距离。
解题方法:直接连接A和B,线段AB的长度即为最短距离。
2.点到直线的最短距离:题型描述:在平面上给定一点P和一条直线l,求P到l的最短距离。
解题方法:作点P到直线l的垂线,垂足为Q,则PQ的长度即为最短距离。
3.直线到直线的最短距离:题型描述:在平面上给定两条直线l1和l2,求l1到l2的最短距离。
解题方法:如果l1和l2平行,则它们之间的距离即为最短距离;如果l1和l2不平行,则作l1到l2的垂线,垂足所在的线段即为最短4.点到圆的最短距离:题型描述:在平面上给定一点P和一个圆O,求P到圆O的最短距离。
解题方法:如果点P在圆O内,则最短距离为P到圆心的距离减去圆的半径;如果点P在圆O外,则最短距离为P到圆心的距离;如果点P在圆O上,则最短距离为0。
5.圆到圆的最短距离:题型描述:在平面上给定两个圆O1和O2,求O1到O2的最短距离。
解题方法:如果两圆外离,则它们之间的最短距离为两圆的半径之和;如果两圆外切,则它们之间的最短距离为两圆的半径之差;如果两圆相交或内切,则它们之间的最短距离为0;如果两圆内含,则它们之间的最短距离为两圆的半径之差减去两圆半径之和的绝对值。
6.多边形内的最短路径:题型描述:在一个多边形内给定两个点A和B,求A到B的最短解题方法:通常需要将多边形划分为多个三角形,然后利用三角形内的最短路径(即连接两点的线段)来求解。
7.立体几何中的最短路径:题型描述:在立体图形中给定两点A和B,求A到B的最短路径。
解题方法:通常需要将立体图形展开为平面图形,然后利用平面几何中的最短路径原理来求解。
在解决最短路径问题时,需要注意以下几点:准确理解题目要求,确定需要求的是哪两点之间的最短距离。
128教育版■文/师:3cm 处吃食物,生:方体:是利用转化思想,转化成平面问题;2.方法:(1)展开;(2)运用两点之间线段最短找到最短路径;(3)运用勾股定理解决问题;3.思想:转化思想;建模思想;分类讨论思想。
三、结尾:举一反三,过关训练。
四、教学反思:本节微课是学生通过自主学习,以获得解决问题经验和培养实践能力的课程。
它可以弥补数学学科实践能力的不足,加强实践环节,重视数学思维的训练,促进学生兴趣、个性、特长等自主和谐的发展,从而全面提高学生的数学素质。
(单位:临江市宝山中学)知识点描述:《数鸭子》是一首颇具说唱风格、形象生动、活泼有趣的童谣歌曲。
歌词描述了小朋友看到鸭群游过大桥、兴奋地数鸭子的情景。
歌曲前后皆有数板,说唱结合,表现出儿童活泼可爱的天性,童趣盎然。
教学目标:1.知识:在歌曲学唱过程中,认识四分休止符,并能准确地运用;2.过程:能随音乐用轻巧活泼的声音表情演唱《数鸭子》,能积极主动、自信有表情地参与表演,从中感受乐趣;3.情感:通过歌曲《数鸭子》的教学,让学生与同伴之间友好相处,保护小动物。
适用对象:小学一年级学生。
设计思路:我本着推行教学民主的理念,从主宰变为主导,发挥学生主体作用,形成良好的合作关系。
从全面提高学生素质出发,为学生创造良好的教学氛围。
在教学方法上变繁为简,变被动为主动,做到既能促进学生智能最大限度地发展,又不加重学生负担,特别在情感上使学生的学习积极性得到激发,让每个学生享受到成功的快乐。
教学过程:一、片头(30秒以内) 大家好,我是吉林省临江市宝山中学教师吴宛姗,我带来的课程是人民音乐出版社出版,义务教育教科书音乐,一年级下册第三课手拉手,歌曲《数鸭子》。
17秒。
二、正文讲解 (8分钟左右)(一)发声练习:12345 555 小鸡怎样叫叽叽叽,小鸭怎样叫嘎嘎嘎,小猫怎样叫喵喵喵。
9分钟;(二)新课讲授:1.出示课题,欣赏歌曲播放《数鸭子》,感受音乐节奏和情绪。
立体图形中的距离最短问题根据新课程标准,培养学生的空间观念主要表现在:“能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;……”。
空间图形的建立需要有一个循序渐进的过程,从小学到初中,再到高中,渐渐加强,作为一个初、高中的知识衔接模块,让学生在初中阶段能理解空间图形,特别是空间图形的展开图,夯实基础,显得尤为重要。
立体图形上点点之间的距离最短问题,通过把立体图形转化为平面图形,然后再运用“两点之间,线段最短”来解决。
解决这一类距离最短的问题,可以利用轴对称或平移或旋转等几何图形的变换,把两条或多条线段和最短的问题转化为平面上两点之间的距离最短的问题来解决。
一、通过平移来转化1.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?析:展开图如图所示,AB= 52 + 122= 13cm二、通过旋转来转化2.有一圆柱形油罐,已知油罐周长是12m,高AB是5m,要从点A处开始绕油罐一周建造梯子,正好到达A点的正上方B处,问梯子最短有多长?析:展开图如图所示,AB= 52 + 122= 13cm3.有一圆柱体如图,高4cm,底面半径5cm,A处有一蚂蚁,若蚂蚁欲爬行到C处,求蚂蚁爬行的最短距离。
AB = 4,BC 为底面周长的一半 即BC = 5πAC = AB 2 + BC 2 = 42 + (5π)2= 16 + 25π24.葛藤是一种刁钻的植物,它的腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线总是沿最短路线--螺旋前进的,难道植物也懂数学?通过阅读以上信息,解决下列问题:(1)如果树干的周长(即图中圆柱体的底面周长)为30cm ,绕一圈升高(即圆柱的高)40cm ,则它爬行一圈的路程是多少?(2)如果树干的周长为80cm ,绕一圈爬行100cm ,它爬行10圈到达树顶,则树干高多少?(1)如图,⊙O 的周长为30cm ,即AC=30cm , 高是40cm ,则BC=40cm ,由勾股定理得AB =50cm . 故爬行一圈的路程是50cm ;(2)⊙O 的周长为80cm ,即AC=80cm ,绕一圈爬行100cm ,则AB = 100cm ,高BC = 60cm .∴树干高=60×10=600cm=6m . 故树干高6m5.已知O 为圆锥顶点,OA 、OB 为圆锥的母线,C 为OB 中点,一只小蚂蚁从点C 开始沿圆锥侧面爬行到点A ,另一只小蚂蚁绕着圆锥侧面爬行到点B ,它们所爬行的最短路线的痕迹如右图所示.若沿OA 剪开,则得到的圆锥侧面展开图为 ( )要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果,再利用做对称点作出另一只小蚂蚁绕着圆锥侧面爬行到点B ,它们所爬行的最短路线.A .B .C .D .故选C6.如图,一直圆锥的母线长为QA=8,底面圆的半径r=2,若一只小蚂蚁从A点出发,绕圆锥的侧面爬行一周后又回到A点,则蚂蚁爬行的最短路线长是______(结果保留根式)。
立体几何最值问题立体几何是数学中的一个重要分支,它研究的是空间图形的性质和数量关系。
在立体几何中,我们经常遇到最值问题,即寻找某个量的最大值或最小值。
本文将介绍立体几何中最值问题的几个方面:1.立体几何位置关系立体几何中的位置关系是指空间中点、线、面之间的相对位置。
解决位置关系问题需要运用空间想象和逻辑推理。
在立体几何中最值问题中,位置关系往往与距离、角度等问题交织在一起,需要综合考虑多种因素。
2.立体几何中的距离立体几何中的距离是指空间中两点之间的直线距离,或者是点与线、线与面之间的距离。
在解决最值问题时,我们需要考虑如何利用距离公式来计算最短路径、最大距离等。
3.立体几何中的体积立体几何中的体积是指空间中封闭图形的体积,或者是两个平面图形之间的距离。
计算体积需要运用体积公式,而解决最大或最小面积问题则需要考虑如何调整图形的形状和大小。
4.立体几何中的最短路径立体几何中的最短路径问题是指寻找空间中两点之间的最短距离。
解决这类问题需要运用距离公式和几何定理,有时还需要借助对称、旋转等技巧。
5.立体几何中的最大/最小面积立体几何中的最大/最小面积问题通常涉及到平面图形在空间中的展开和折叠。
解决这类问题需要运用面积公式和平面几何定理,同时要注意图形的对称性和边长之间的关系。
6.立体几何中的角度问题立体几何中的角度问题是指空间中两条直线或两个平面之间的夹角。
解决这类问题需要运用角度公式和空间向量,同时要注意图形的对称性和边长之间的关系。
7.立体几何中的轨迹问题立体几何中的轨迹问题是指一个点或一条线在空间中按照一定规律移动所形成的轨迹。
解决这类问题需要运用轨迹方程和运动学原理,同时要注意轨迹的形状和大小随时间的变化情况。
人教版八下数学第17章勾股定理微专题三立体图形中的最短线路问题1.如图,圆柱的底面半径为6cm,高为10cm,蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是多少厘米(结果保留小数点后一位)?2.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为( )A.14cm B.15cm C.24cm D.25cm3.如图,透明的圆柱形容器(容器厚度忽路不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且在离容器上部3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路程是( )A.13cm B.2√61cm C.√61cm D.2√34cm4.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为( )A.13cm B.12cm C.10cm D.8cm5.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.6.如图①,圆柱的底面半径为4cm,圆柱高AB为2cm,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图①所示,设长度为l1.路线2:侧面展开图中的线段AC,如图②所示,设长度为l2.请按照小明的思路补充下面解题过程:(1) 解:l1=AB+BC=2+8=10,l2=√AB2+BC2=√22+(4π)2=√4+16π2;∵l12−l22=.(2) 小明对上述结论有些疑惑,于是他把条件改成:“圆柱底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)①此时,路线1:l1=;路线2:l2=.②选择哪条路线较短?试说明理由.答案1. 【答案】答图略,将圆柱展开,侧面为矩形,∴AB=√(6π)2+102≈21.3(cm).答:蚂蚁从点A爬到点B的最短路程约是21.3cm.2. 【答案】D3. 【答案】A4. 【答案】A5. 【答案】256. 【答案】(1) 96−16π2(2) ① 8;2√4+π2② ∵l12−l22=82−(16+4π2)=48−4π2=4(12−π2)>0.∴l12>l22,即l1>l2.所以选择路线2较短.【解析】(1) l1=AB+BC=2+8=10,l2=√AB2+BC2=√22+(4π)2=√4+16π2,∵l12−l22=102−(4+16π2)=96−16π2=16(6−π2)<0,∴l12<l22,即l1<l2,所以选择路线1较短.。
立体图形最短距离问题1.在一个圆柱石凳上,若小明在吃东西时留下了一点食物在C 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从圆柱侧面从A 处爬向B 处,你们想一想,蚂蚁怎么走最近?2.在一个圆柱石凳上,若小明在吃东西时留下了一点食物在C 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从圆柱侧面从A 处爬向C 处,你们想一想,蚂蚁怎么走最近?3.有一圆形油罐底面圆的周长为16m,高为7m,一只蚂蚁从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为多少?4.圆柱形玻璃杯,高为12cm,底面圆的周长为18cm,在杯子内壁离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯子外壁,距离杯子上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为多少?C A ABBAB A CACA5.如图,在棱长为10厘米的正方体的一个顶点A 处有一只蚂蚁,现要向顶点B 处爬行,已知蚂蚁爬行的速度是1厘米/秒,且速度保持不变,问蚂蚁能否在20秒内从A 爬到B?6.已知长方体的长为AC=2cm,宽BC=1cm,高AA′=4.一只蚂蚁如果沿长方体的表面从A 点爬到B′点,那么沿哪条路最近?最短路程是多少?7..如图是一个三级台阶,它的每一级的长宽和高分别为20dm、3dm、2dm,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是多少?8.有一个如图示的长方体的透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深为AE=40cm,在水面上紧贴内壁G 处有一鱼饵,G 在水面线EF 上,且EG=60cm;一小虫想从鱼缸外的A 点沿壁爬进鱼缸内G 处吃鱼饵.(1)小动物应该走怎样的路线才使爬的路线最短呢?请你在图中画出它爬行的路线,并用箭头标注.(2)求小动物爬行的最短路线长?AB。
立体图形上最短距离问题金水初中刘彬在北师大版数学的七年级和八年级的教材中都涉及到了物体在几何体表面爬行时的最短距离问题,这对于一些刚刚接触几何体的同学是个很难理解的问题。
实际在数学上就是在几何体表面点到点的最短距离的问题。
结合教学实际,我总结了教材和练习中最常见的几种最短距离问题,主要涉及到了正方体、长方体和圆柱,以及它们几种简单的变形,特总结如下,希望能对这方面的问题,帮助解决学生的困惑,能使学生掌握这方面的知识.同一个面最短距离最简单,主要是连线,借助勾股定理来解决,在下面的介绍简单介绍,重点说不在同一个面的问题。
这几个几何体中正方体最简单,下面先从正方体开始说起.一、正方体和长方体中最短距离例1、如图,一只蚂蚁在正方体表面爬行(1)、当蚂蚁从正方体的一个顶点A Array爬到顶点B,怎样爬距离最短?分析:由于顶点A和顶点B在同一个平面上,所以连接,利用勾股定理直接求解即可。
(2)如图,如果蚂蚁要从边长为1 cm的正方体顶点A爬到顶点C分析:由于顶点A和顶点C不在同一个平面上,所以要求最短距离需要将正方体展开,在展开的表面上利用勾股定理求出最短距离. 解:将正方体展开,下面是其四连面的一部分,这是A与C的位置如图所示,这时AC的长度就是长方形的对角线的长度。
所以 AC的长所以在正方体中求最短距离相对来说还是比较简单的。
(3)如果将正方体换成边长AD=2CM,宽DF=3cm,高AB=1cm的长方体,蚂蚁仍需从顶点A沿表面爬到顶点E的位置,请你说明这只蚂蚁沿怎样的路线爬行距离最短?为什么?分析:由于长方体每边的长短不一样,所以在展开图中就有三种不同的形式,三种情况下结果就会不一样解:方案一:将面ABCD沿DC展开和面CDEF在同一个平面中,如图,这时BE的长度为2+3=5,EF的长度为1,所以AE==方案二:将面ADCF沿DF展开和面CDEF在同一个平面,如图,这时AC=2+1=3,EF=3所以AE=BABA方案三:将面ADFG 沿FG 展开 和面EFGH 在同一个平面中,如图,这时DE=3+1=4,EH=2。
专题05勾股定理的应用十种最常考类型(解析版)类型一大树折断问题【典例1】(2023春•德庆县期末)如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地面上,此处离树底部8m处.【思路引领】首先设树顶端落在离树底部x米处,根据勾股定理可得62+x2=(16﹣6)2,再解即可.【解答】解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.【总结提升】此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.【变式训练】1.(2023•南宁模拟)在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4B.3.6C.4.5D.4.55【思路引领】画出图形,设折断处离地面x尺,则AB=(10﹣x)尺,由勾股定理得出方程,解方程即可.【解答】解:如图,由题意得:∠ACB=90°,BC=3尺,AC+AB=10尺,设折断处离地面x尺,则AB=(10﹣x)尺,在Rt△ABC中,由勾股定理得:x2+32=(10﹣x)2,解得:x=4.55,即折断处离地面4.55尺.故选:D.【总结提升】此题主要考查了勾股定理的应用,正确应用勾股定理得出方程是解题的关键.类型二水杯中的筷子问题及类似问题【典例2】(2023春•陕州区期中)如图是一个饮料罐,下底面半径是5,上底面半径是8,高是12,上底面盖子的中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)的取值范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13【思路引领】如图,过A作AB⊥BC于B,根据勾股定理即可得到结论.【解答】解:如图,过A作AB⊥BC于B,∵下底面半径是5,高是12,∴AB=12,BC=5,∴AC=B2+B2=122+52=13,∴a的长度的取值范围是12≤a≤13,故选A.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息,正确理解题意是解题的关键.【变式训练】1.(2023春•盐山县期末)如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【思路引领】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.2.(2022秋•安阳县期末)从前有一个人拿着竹竿进城,横拿竖拿都进不去,横着比城门宽43,竖着比城门高23,另一个人告诉他沿着城门的两对角斜着拿竿,这个人一试,不多不少刚好进去了,则竹竿的长度为103.【思路引领】设竹竿的长为x米,根据门框的边长的平方和等于竹竿的长的平方列方程,解一元二次方程即可.【解答】解:设竹竿的长为x米,由题意得:(−43)2+(−23)2=2,解得:1=103,2=23(舍去),故答案为:103.【总结提升】本题考查一元二次方程的应用;得到门框的边长和竹竿长的等量关系是解决本题的关键.类型三梯子滑动问题【典例3】(2020春•硚口区期中)如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为()A.10米B.6米C.7米D.8米【思路引领】首先设BO=x米,则DO=(x+2)米,利用勾股定理可列出方程,再解可得BO长,然后再利用勾股定理计算出AB长.【解答】解:由题意得:AC=BD=2米,∵AO=8米,∴CO=6米,设BO=x米,则DO=(x+2)米,由题意得:62+(x+2)2=82+x2,解得:x=6,AB=82+62=10(米),故选:A.【总结提升】此题主要考查了勾股定理的应用,关键是掌握直角三角形两直角边的平方和等于斜边的平方.【变式训练】1.(2023秋•新泰市期中)如图,一架梯子若靠墙直立时比窗户的下沿高1m.若斜靠在墙上,当梯子的下端离墙5m时,梯子的上端恰好与窗户的下沿对齐.则梯子的长度为()A.13m B.12m C.15m D.172【思路引领】设梯子的长度为x m,根据勾股定理列方程即可得到结论.【解答】解:设梯子的长度为x m,根据勾股定理得,52+(x﹣1)2=x2,解得x=13,答:梯子的长度为13m,故选:A.【总结提升】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.2.(2023秋•北京期末)如图,小巷左右两侧是竖直的墙,已知小巷的宽度CE是2.2米.一架梯子AB斜靠在左墙时,梯子顶端A与地面点C距离是2.4米.如果保持梯子底端B位置不动,将梯子斜靠在右墙时,梯子顶端D与地面点E距离是2米.求此时梯子底端B到右墙角点E的距离是多少米.【思路引领】设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,在Rt△ABC和Rt △DBE中,根据勾股定理列出方程,解方程即可.【解答】解:设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,由题意可知,AC=2.4米,DE=2米,AB=DB,在Rt△ABC和Rt△DBE中,由勾股定理得:AB2=BC2+AC2,DB2=BE2+DE2,∴BC2+AC2=BE2+DE2,即(2.2﹣x)2+2.42=x2+4,解得:x=1.5,答:此时梯子底端B到右墙角点E的距离是1.5米.【总结提升】本题考查了勾股定理的应用,根据勾股定理列出方程是解题的关键.3.(2023秋•宝丰县期末)如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA,如果梯子的底端P不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB.(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B处,若MA=1.6米,AP=1.2米,则甲房间的宽度AB= 3.2米.(2)当他在乙房间时,测得MA=2.4米,MP=2.5米,且∠MPN=90°,求乙房间的宽AB;(3)当他在丙房间时,测得MA=2.8米,且∠MPA=75°,∠NPB=45°.①求∠MPN的度数;②求丙房间的宽AB.【思路引领】(1)根据勾股定理即可得到结论;(2)证明△AMP≌△BPN,从而得到MA=PB=2.4米,PA=NB=0.7米,即可求出AB=PA+PB;(3)①根据平角的定义即可求出∠MPN=60°;②根据PM=PN以及∠MPN的度数可得到△PMN为等边三角形.利用相应的三角函数表示出MN,MP的长,可得到房间宽AB和AM长相等.【解答】解:(1)在Rt△AMP中,∵∠A=90°,MA=1.6米,AP=1.2米,∴PM=B2+B2=1.62+1.22=2,∵PB=PM=2,∴甲房间的宽度AB=AP+PB=3.2米,故答案为:3.2;(2)∵∠MPN=90°,∴∠APM +∠BPN =90°,∵∠APM +∠AMP =90°,∴∠AMP =∠BPN .在△AMP 与△BPN 中,∠B =∠B ∠B =∠B =90°B =B,∴△AMP ≌△BPN ,∴MA =PB =2.4,∵PA =B2−B 2=0.7,∴AB =PA +PB =0.7+2.4=3.1;(3)①∠MPN =180°﹣∠APM ﹣∠BPN =60°;②过N 点作MA 垂线,垂足点D ,连接NM .设AB =x ,且AB =ND =x .∵梯子的倾斜角∠BPN 为45°,∴△BNP 为等腰直角三角形,△PNM 为等边三角形(180°﹣45°﹣75°=60°,梯子长度相同),∠MND =15°.∵∠APM =75°,∴∠AMP =15°.∴∠DNM =∠AMP ,∵△PNM 为等边三角形,∴NM =PM .∴△AMP ≌△DNM (AAS ),∴AM =DN ,∴AB =DN =AM =2.8米,即丙房间的宽AB 是2.8米.【总结提升】此题考查了勾股定理的应用,全等三角形的应用,解直角三角形的应用,根据PM=PN以及∠MPN的度数得到△PMN为等边三角形是解题的关键.类型四立体图形中的最短距离问题【典例4】(2021春•饶平县期末)如图,长方体的底面边长均为3cm,高为5cm,如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要13cm.【思路引领】把立体图形转化为平面图形解决即可.【解答】解:将长方体展开,连接AB,根据两点之间线段最短,AB=52+122=13cm;故答案为:13【总结提升】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.【变式训练】1.(2023秋•沙坪坝区期中)如图,圆柱形容器中,高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为20cm.(容器厚度忽略不计)【思路引领】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,∴A′D=16cm,BD=12cm,∴在直角△A′DB中,A′B=162+122=20(cm).故答案为:20.【总结提升】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.(2022春•桦甸市期末)如图,是一块长,宽,高分别为6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的外表面,到长方体的另一个顶点B处吃食物,则它需要爬行的最短路径长是85cm.【思路引领】把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.【解答】解:第一种情况:把我们所看到的左面和上面组成一个平面,则这个长方形的长和宽分别是9和4,则所走的最短线段是AB=92+42=97(cm).第二种情况:把我们看到的前面与上面组成一个长方形,则这个长方形的长和宽分别是7和6,所以走的最短线段是AB=72+62=85(cm).第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是10和3,所以走的最短线段是AB=102+32=109(cm).∴它需要爬行的最短路径是85cm.故答案为:85cm.【总结提升】本题主要考查的是平面展开﹣最短路径问题,解决此题的关键是明确线段最短这一知识点,然后把长方体的一些面展开到一个平面内,求出最短的线段.3.(荆州中考)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm【思路引领】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=22dm,∴这圈金属丝的周长最小为2AC=42dm.故选:A.【总结提升】本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.类型五选址满足条件问题【典例5】(2023春•永善县期中)如图,河CD的同侧有A、B两个村,且AB=213km,A、B两村到河的距离分别为AC=2km,BD=6km.现要在河边CD上建一水厂分别向A、B两村输送自来水,铺设水管的工程费每千米需2000元.请你在河岸CD上选择水厂位置0,使铺设水管的费用最省,并求出铺设水管的总费用w(元).【思路引领】作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,分别利用勾股定理求出AF和A'B的长即可.【解答】解:如图所示,作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,此时AO+BO最小,∵AC=2km,BD=6km,∴BF=4km,DE=2km,∵AB=213km,∴AF=(213)2−42=6(km),在Rt△BA'E中,由勾股定理得:A'B=′2+B2=62+(6+2)2=10(km),∴AO+BO=10(km),∴铺设水管的总费用W=10×2000=20000(元).【总结提升】本题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解题的关键.【变式训练】1.(2023春•红塔区期中)如图,在笔直的铁路上A,B两点相距20km,C、D为两村庄,DA=8km,CB=14km,DA⊥AB于点A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求AE=13.3km.【思路引领】设AE=x km,即可得到EB=(20﹣x)km,结合DA⊥AB于点A,CB⊥AB于B根据勾股定理列式求解即可得到答案.【解答】解:设AE=x km,则EB=(20﹣x)km,∵DA⊥AB,CB⊥AB,DA=8km,CB=14km,∴DE2=x2+82=x2+64,DE2=(20﹣x)2+142=x2﹣40x+596,∵C、D两村到E站的距离相等,∴x2﹣40x+596=x2+64,解得:x=13.3,故答案为:13.3.【总结提升】本题考查勾股定理的应用,解题的关键是根据相等列等式求解.类型六航海问题【典例6】(2023春•黄陂区期中)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一小时后分别位于点Q,R处,且相距20海里.如果知道“远航”号沿北偏东50°方向航行,你能判断“海天”号沿哪个方向航行吗?请说明理由.【思路引领】利用勾股定理逆定理以及方向角得出答案.【解答】解:由题意可得:RP=12海里,PQ=16海里,QR=20海里,∵162+122=202,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿北偏东50°方向航行,∴∠RPN=40°,∴“海天”号沿北偏西40°方向航行.【总结提升】此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.【变式训练】1.(2023秋•泰山区期末)如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时30分,我国反走私A艇发现正东方有一走私艇C以8海里/时的速度偷偷向我领海驶来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是20海里,A、B两艇的距离是12海里;反走私艇B测得距离C艇16海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?【思路引领】由勾股定理的逆定理得△ABC为直角三角形,且∠ABC=90°,再由三角形面积求出BE=485海里,然后由勾股定理得CE=645海里,即可解决问题.【解答】解:由题意可知,∠BEC=90°,∵AB2+BC2=122+162=202=AC2,∴△ABC为直角三角形,且∠ABC=90°,∵MN⊥AC,∴走私艇C进入我国领海的最短距离是CE,=12AB•BC=12AC•BE,∵S△ABC∴BE=B⋅B B=12×1620485(海里),∴CE=B2−B2==645(海里),∴645÷8=85(小时)=96分,∴9时30分+96分=11时6分.答:走私艇C最早在11时6分进入我国领海.【总结提升】本题考查了勾股定理的应用、勾股定理的逆定理以及三角形面积等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.类型七受台风或噪声影响问题【典例7】(2022秋•清水县月考)如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时107千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域.(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?【思路引领】(1)作AC⊥BF,则距点A最近的点即为C点,计算AC的长,若AC>200千米,则不受影响,反之,则受影响.(2)求出A城所受影响的距离DE,又有台风移动的速度,即可求解出其影响的时间.【解答】解:(1)A城市受影响.如图,过点A作AC⊥BF,则距离点C最近的距离为AC,∵AB=300,∠ABC=30°,∴AC=12AB=150<200,所以A城会受到这次台风的影响;(2)如图,∵距台风中心200千米的范围内是受这次台风影响的区域,则AD=AE=200,即DE为A城遭受这次台风的距离,CD=A2−B2=507,∴DE=1007,则t===10小时.故A城遭受这次台风影响的时间10小时.【总结提升】本题主要考查了方向角问题以及解直角三角形的简单运用,能够熟练掌握.【变式训练】1.(2022春•紫云县期末)如图,有两条公路OM,ON相交成30°,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON的方向行驶时,以P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大,若重型运输卡车P沿道路ON方向行驶的速度为5米/秒.(1)求卡车P对学校A的噪声影响最大时,卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间.【思路引领】(1)过点A作AH⊥ON于H,利用含30°角的直角三角形的性质可得答案;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,利用勾股定理求出CH的长,再根据等腰三角形的性质可得CD的长,从而求出时间.【解答】解:(1)过点A作AH⊥ON于H,∵∠O=30°,OA=80米,∴AH=12OA=40米,∴卡车P对学校A的噪声影响最大时,卡车P与学校A的距离为40米;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,由(1)知AH=40米,∴CH=B2−B2=502−402=30(米),∴CN=2CH=60(米),∴t=60÷5=12(秒),∴卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间为12秒.【总结提升】本题主要考查了勾股定理的实际应用,含30°角的直角三角形的性质,等腰三角形的性质,垂线段最短等知识,根据题意,构造出直角三角形是解题的关键.类型八求旗杆(大树)高度问题【典例8】(2023秋•开封期末)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A.14m B.15m C.16m D.17m【思路引领】根据题意画出示意图,设旗杆高度为x m,可得AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x m,过点C作CB⊥AD于B,则AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.【总结提升】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.【变式训练】1.(2023春•岳阳楼区期末)小华和小侨合作,用一块含30°的直角三角板,旗杆顶端垂到地面的绳子,测量长度的工具,测量学校旗杆的高度,如图,测得AD=0.5米,绳子部分长CD=6米,则学校旗杆AB的高度为()A.6.5米B.(63+0.5)米C.12.5米D.(65+0.5)米【思路引领】根据含30°角的直角三角形的性质得出2DC=BC,进而利用勾股定理解答即可.【解答】解:由题意知∠ABC=30°,CD⊥AB,∴BC=2CD=12米,A=63米,∵AD=0.5米,∴B=(63+0.5)米,故选:B.【总结提升】本题考查了含30度直角三角形的性质及勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.2.(2023秋•岱岳区期中)学习完《勾股定理》后,张老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为2米,将绳子拉直,且绳子底端与地面接触,此时绳子端点距离旗杆底端5米,则旗杆的高度为214米.【思路引领】在Rt△ABC中,由勾股定理得出关于AB的方程求解即可.【解答】解:如图,由题意可知,BD=2米,BC=5米,AC=AB+BD=(AB+2)米,在Rt△ABC中,由勾股定理得,AB2+BC2=AC2,即AB2+52=(AB+2)2,解得AB=214,∴旗杆的高度为214米.故答案为:214.【总结提升】本题考查了勾股定理的应用,熟记勾股定理是解题的关键.3.(2023秋•秦安县期末)如图,在一棵树的10米高B处,有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树的高度为15米.【思路引领】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【总结提升】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.类型九小鸟飞行距离问题【典例9】(2022秋•嵩县期末)如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.6B.8C.10D.12【思路引领】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为8﹣2=6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离=82+62=10m.故选:C.【总结提升】本题主要考查了勾股定理的应用,解题的关键是将现实问题建立数学模型,运用数学知识进行求解.【变式训练】1.(2023秋•青羊区期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C 点(B,C两点处于同一水平面)的距离AC=25米.(1)求出BC的长度;(2)若小鸟竖直下降到达D点(D点在线段AB上),此时小鸟到地面C点的距离与下降的距离相同,求小鸟下降的距离.【思路引领】(1)在直角三角形中运用勾股定理即可求解;(2)在Rt△BDC中,根据勾股定理即可求解.【解答】解:(1)由题意知∠B=90°,∵AB=20米,AC=25米.∴BC=252−202=15米,(2)设AD=x,则CD=x,BD=20﹣x,在Rt△BDC中,DC2=BD2+BC2,∴x2=(20﹣x)2+152,解得x=1258,∴小鸟下降的距离为1258米.【总结提升】本题考查勾股定理,熟练掌握勾股定理是解题关键.类型十利用勾股定理表示无理数【典例10】(2022春•武昌区期末)平面直角坐标系中,点P(﹣4,2)到坐标原点的距离是()A.2B.4C.23D.25【思路引领】利用勾股定理计算可得结论.【解答】解:由题意得,点P到坐标原点的距离为:42+22=20=25.故选:D.【总结提升】本题考查了勾股定理,掌握勾股定理的内容是解决本题的关键.【变式训练】1.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是+1.【思路引领】由勾股定理求出AB的长,进而得到AC的长,再求出OC的长,得出点C的坐标,即可解决问题.【解答】解:∵点A,B的坐标分别为(1,0)和(0,2),∴OA=1,OB=2,∵∠AOB=90°,∴AB=B2+B2=12+22=5,∵以点A为圆心,以AB长为半径画弧,∴AC=AB=5,∴OC=AC+OA=5+1,∵交x轴正半轴于点C,∴点C的坐标为(5+1,0).故答案为:5+1.【总结提升】本题考查了勾股定理以及坐标与图形性质等知识,熟练掌握勾股定理是解题的关键.2.(2022秋•芗城区月考)用尺规作图在数轴上作出表示实数=10的点P(保留作图痕迹,不写作法).【思路引领】过表示1的点A作数轴的垂线AB,在垂线上截取AB=3,连接OB,以O为圆心,OB为半径作弧交数轴于P,则P即为所求的点.【解答】解:如图:点P表示的数即为10.【总结提升】此题主要考查了勾股定理以及作图,关键是掌握10是两直角边长分别为1和3的直角三角形的斜边长.3.(2023•长阳县一模)如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C,D均为格点,以A为圆心,AB长为半径作弧,交网格线CD于点E,则C,E两点间的距离为()A.3B.3−3C.3+12D.3−12【思路引领】如图:连接AE,则AE=2、AD=1,由勾股定理可求出DE,然后运用线段的和差即可解答.【解答】解:如图:连接AE,则AE=2,AD=1,∴DE=B2−A2=22−12=3,∴CE=CD﹣DE=3−3.故选B.【总结提升】本题主要考查了勾股定理的应用以及线段的和差,根据题意运用勾股定理求得DE是解答本题的关键.4.(2022秋•埇桥区期中)如图,网格中每个小正方形的边长均为1,点A、B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.3−1B.3−5C.5D.22【思路引领】连接AD,则AD=AB=3,在Rt△AED中,利用勾股定理求出DE即可得出答案.【解答】解:连接AD,由题意知:AD=AB=3,在Rt△AED中,由勾股定理得:ED=A2−B2=32−22=5,∴CD=CE﹣DE=3−5,故选:B.【总结提升】本题主要考查了勾股定理,求出DE的长是解题的关键.。
立体图形中的距离最短问题
根据新课程标准,培养学生的空间观念主要表现在:“能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;……”。
空间图形的建立需要有一个循序渐进的过程,从小学到初中,再到高中,渐渐加强,作为一个初、高中的知识衔接模块,让学生在初中阶段能理解空间图形,特别是空间图形的展开图,夯实基础,显得尤为重要。
立体图形上点点之间的距离最短问题,通过把立体图形转化为平面图形,然后再运用“两点之间,线段最短”来解决。
解决这一类距离最短的问题,可以利用轴对称或平移或旋转等几何图形的变换,把两条或多条线段和最短的问题转化为平面上两点之间的距离最短的问题来解决。
一、通过平移来转化
1.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?
析:展开图如图所示,AB= 52 + 122= 13cm
二、通过旋转来转化
2.有一圆柱形油罐,已知油罐周长是12m,高AB是5m,要从点A处开始绕油罐一周建造梯子,正好到达A点的正上方B处,问梯子最短有多长?
析:展开图如图所示,AB= 52 + 122= 13cm
3.有一圆柱体如图,高4cm,底面半径5cm,A处有一蚂蚁,若蚂蚁欲爬行到C处,求蚂蚁爬行的最短距离。
AB = 4,
BC 为底面周长的一半 即BC = 5π
AC = AB 2 + BC 2 = 42 + (5π)2
= 16 + 25π2
4.葛藤是一种刁钻的植物,它的腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线总是沿最短路线--螺旋前进的,难道植物也懂数学?
通过阅读以上信息,解决下列问题:
(1)如果树干的周长(即图中圆柱体的底面周长)为30cm ,绕一圈升高(即圆柱的高)40cm ,则它爬行一圈的路程是多少?
(2)如果树干的周长为80cm ,绕一圈爬行100cm ,它爬行10圈到达树顶,则树干高多少?
(1)如图,⊙O 的周长为30cm ,即AC=30cm , 高是40cm ,则BC=40cm ,由勾股定理得AB =50cm . 故爬行一圈的路程是50cm ;
(2)⊙O 的周长为80cm ,即AC=80cm ,
绕一圈爬行100cm ,则AB = 100cm ,高BC = 60cm .∴树干高=60×10=600cm=6m . 故树干高6m
5.已知O 为圆锥顶点,OA 、OB 为圆锥的母线,C 为OB 中点,一只小蚂蚁从点C 开始沿圆锥侧面爬行到点A ,另一只小蚂蚁绕着圆锥侧面爬行到点B ,它们所爬行的最短路线的
痕迹如右图所示.若沿OA 剪开,则得到的圆锥侧面展开图为 ( )
要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果,再利用做对称点作出另一只小蚂蚁绕着圆锥侧面爬行到点B ,它们所爬行的最短路线.
B
C
B
A
C
A A .
B .
C .
D .
故选C
6.如图,一直圆锥的母线长为QA=8,底面圆的半径r=2,若一只小蚂蚁从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则蚂蚁爬行的最短路线长是______(结果保留根式)。
设圆锥的展开图扇形QAA ’的中心角∠AQA ’ 的度数
为n ,则
2×2×π =
n π×8
180
,解得:n = 90° 即∠AQA ’ = 90°
在Rt △AQA ’中,根据勾股定理,
AA ’ = 8 2 错误!未定义书签。
7.如图,圆锥的主视图是等边三角形,圆锥的底面半径为2cm ,假若点B 有一蚂蚁只能沿圆锥的表面爬行,它要想吃到母线AC 的中点P 处的食物,那么它爬行的最短路程是多少?
设圆锥的展开图的圆心角为n ,则 .
8.
已知,圆锥底面半径为10cm ,高为1015 cm , (1) 求圆锥的表面积;
(2) 若一只蚂蚁从底面一点A 出发绕圆锥一周回到SA 上一点M 处,且SM=3AM ,求它所走的最短距离。
利用底面半径、高及母线组成的直角三角形构造勾股定理求出母线长,进而借助扇形面积公式求出表面积;蚂蚁在圆锥表面上行走一圈,而圆锥侧面展开后为扇形,故可在展开图(扇形)上求点A’到M 的最短距离(即A’M 的长)。
解析:(1)圆锥的母线长SA=OA 2 + OS 2 = 40, 圆锥侧面展开图扇形的弧长l = 2π×OA =20π(cm),
∴S 侧 = 1
2
l ×SA = 400π(cm 2),S 底=π×OA 2 = 100(cm 2),
∴S 表= S 底+ S 侧= 500π(cm 2) 。
(2)沿母线SA 将圆锥的侧面展开,得圆锥的侧面展开图,则线段AM 的长就是蚂蚁所走的最短距离,由(1)知
SA = 40,弧AA ’=20π,∠AS A ’=
180°×20π
40π
= 90°,
又SA ’= SA=40,SM=3AM ,∴SM = 3
4
SA = 30,
∴在Rt △A ’SM 中, A ’M = SA' 2 + SM 2 = 402 + 302 =50,所以蚂蚁所走的最短距离是50cm.
三、通过轴对称来转化
9.桌上有一个圆柱形玻璃杯(无盖),高为12厘米,底面周长18厘米,在杯口内壁离杯口3厘米的A 处有一滴蜜糖,一只小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3厘米的B 处时,突然发现了蜜糖。
问小虫至少爬多少厘米才能到达蜜糖所在的位置。
析:展开图如图所示,作A 点关于杯口的对称点A ’。
则BA ’=92 + 122 =15厘米
A'A
B B
A A'A
S M
10.一只蚂蚁欲从圆柱形桶外的A 点爬到桶内的B 点处寻找食物,已知点A 到桶口的距离AC 为12cm ,点B 到桶口的距离BD 为8cm ,CD 的长为15cm ,那么蚂蚁爬行的最短路程是多少?
展开图如右图所示,作点B 关于CD 的对称点B ’,连接AB ’,交CD 于点P ,则蚂蚁爬行路线A →P →B 为最短,且AP+PB = AB+PB ’,
在直角△AEB ’中,AE = CD = 12,EB ’ = ED + DB ’ = AC + BD = 12 + 8 = 20 由勾股定理知,AB ’ = 25
所以,蚂蚁爬行的最短路程是25cm. 11.(1)如图①,一个无盖的长方体盒子的棱长分别为BC =3cm 、AB =4cm 、AA 1=5cm ,盒子的内部顶点C 1处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙(盒壁的厚度忽略不计).假设昆虫甲在顶点C 1处静止不动,请计算A 处的昆虫乙沿盒子内壁爬行到昆虫甲C 1处的最短路程.并画出其最短路径,简要说明画法。
(2)如果(1)问中的长方体的棱长分别为AB =BC =6cm ,AA 1=14cm ,如图②,假设昆虫甲从盒内顶点C 1以1厘米/秒的速度在盒子的内部沿棱C 1C 向下爬行,同时昆虫乙从盒内顶点A 以3厘米/秒的速度在盒壁的侧面上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?
(1)
如图二,将上表面展开,使上表面与前表面在同一平面内,即A 、A 1、D 1三点共线 AA 1+A 1D 1 = 5 + 3 = 8,D 1C 1 = 4
C D A
B
P A C D B
根据勾股定理得AC 1 = 80
如图三,将右侧面展开,使右侧面与下表面在同一平面内,即A 、B 、B 1三点共线 AB+BB 1 = 4 + 5 = 7,B 1C 1 = 3
根据勾股定理得AC 1 = 100
如图四,将右侧面展开,使右侧面与前表面在同一平面内,即A 、B 、C 三点共线 AB+BC = 4 + 3 = 7,CC 1 = 5 根据勾股定理得AC 1 = 74 ∵74 < 80 < 100 ∴最短路程是74 cm
在图四中,∵△ABE ∽△ACC 1,
∴BE CC 1 = AB AC ∴
BE 5 = 47 ,BE = 207
如图一,在BB 1上取一点E ,使BE =
20
7
,连接AE ,EC 1,A →E →C 1就是最短路径 (2)
如图五,设C 1F = x ,则AF = 3x ,CF = 5 – x , 在Rt △ACF 中,根据勾股定理得 AF 2 = AC 2 + CF 2
即:(3x)2 = (6 + 6)2 + (14 - x)2 解得:x 1 = 5,x 2 = - 172
∵x > 0,∴x = 5
5
图一C
B
1A
D A 53
图二B 1
C 1D
A 1A 3图三11
A 43
5
图四
1
A
B
A
14
图五
1
A
F
昆虫乙至少需要多长5秒才能捕捉到昆虫甲.
在长方体中,经过它的表面,从一个顶点到另一个与它相对的顶点的最短距离是:在长、宽、高中,以较短的两条边的和作为一条直角边,最长的边作为另一条直角边,斜边长即为最短路线长。