1.金属物理基础
- 格式:ppt
- 大小:8.04 MB
- 文档页数:134
金属的物理性质1.金属光泽:(1)金属都具有一定的金属光泽,一般都呈银白色,而少量金属呈现特殊的颜色,如:金(Au)是黄色、铜(Cu)是红色或紫红色、铅(Pb)是灰蓝色、锌(Zn)是青白色等;(2)有些金属处于粉末状态时,就会呈现不同的颜色,如铁(Fe)和银(Ag)在通常情况下呈银白色,但是粉末状的银粉或铁粉都是呈黑色的,这主要是由于颗粒太小,光不容易反射。
(3)典型用途:利用铜的光泽,制作铜镜;黄金饰品的光泽也是选择的因素。
2.金属的导电性和导热性:(1)金属一般都是电和热的良好导体。
其中导电性的强弱次序:银(Ag)>铜(Cu)>铝(Al)(2)主要用途:用作输电线,炊具等3.金属的延展性:(1)大多数的金属有延性(抽丝)及展性(压薄片),其中金(Au)的延展性最好;也有少数金属的延展性很差,如锰(Mn)、锌(Zn)等;(2)典型用途:金属可以被扎制成各种不同的形状,金属金打成金箔贴在器物上4.金属的密度:(1)大多数金属的密度都比较大,但有些金属密度也比较小,如钠(Na)、钾(K)等能浮在水面上;密度最大的金属──锇,密度最小的金属──锂(2)典型用途:利用金属铝(Al)比较轻,工业上用来制造飞机等航天器5.金属的硬度:(1)有些金属比较硬,而有些金属比较质软,如铁(Fe)、铝(Al)、镁(Mg)等都比较质软;硬度最高的金属是铬(Cr);(2)典型用途:利用金属的硬度大,制造刀具,钢盔等。
6.金属的熔点:(1)有的金属熔点比较高,有的金属熔点比较低,熔点最低的金属是汞(Hg);熔点最高的金属是钨(W);(2)典型用途:利用金属锡(Sn)的熔点比较低,用来焊接金属金属的化学性质1.金属与氧气反应大多数金属在一定条件下,都能与氧气发生反应,生成对应的金属氧化物,也有少数金属很难与氧气发生化合反应。
如:“真金不怕火炼”,就是指黄金很难与氧气反应。
(1)金属镁与氧气发生反应实验现象:在空气中点燃镁带后,镁带剧烈燃烧,发出耀眼白光,放出白烟,生成一种白色固体。
第二章镁铝第一节金属的物理性质目标:1,了解金属的分类.2,理解金属晶体的结构特点,金属键的概念.并能解释金属单质的一些特性.3,比较四类晶体在结构,物性上的异同.重点:金属的物理性质.难点:金属键,金属晶体.引入:金属之重要性.新授:(一.)概述一.元素: 占4/5在已发现的一百多种元素里,大约有五分之四是金属元素。
这一章主要学习两种重要的轻金属镁和铝。
二.分类:金属有不同的分类方法。
在冶金工业上,人们常把金属分为黑色金属(包括铁、铬、锰)和有色金属(铁、铬、锰以外的金属)两大类。
人们也常按照密度大小来把金属分类,把密度小于4.5g/cm3的叫做轻金属(如钾、钠、钙、镁、铝等);把密度大于4.5g/cm3的叫做重金属(如铜、镍、锡、铅等)。
此外,还可把金属分为常见金属(如铁、铝等)和稀有金属(如锆、铪、铌、钼等)。
板书:黑色金属仅: 铁.钴.镍有色金属介绍:铁的外观颜色,(与命名有关)铁与人类历史的发展.轻金属以密度4.5为界重金属介绍:重金属及其盐的毒性,如:铜绿;汽油中的铅; 但注意BaSO4.BaCO3的差别.常见金属稀有金属介绍: 稀有金属元素及其应用前景;我国占有世界上的绝大部分资源.三.通性:金属有许多共同性质,像有金属光泽、不透明、容易导电、导热、有延展性等。
(二.)金属键.金属晶体.一.概念:怎样解释金属的这些共同性质呢?金属(除汞外)在常温下一般都是晶体。
用X射线进行研究发现,在晶体中,金属原子好像硬球,一层一层地紧密堆积着。
数学方法可计算出,一定大小的原子,什么方式堆积是最紧密的堆积。
观察与计算一致.问题:金属原子之间为什么能.且都是紧密的结合在一起呢?假设:因为金属原子的最外层电子易失去,原子失去电子后就成为金属阳离子和很多的电子,称这些电子为自由电子,那么,在金属晶体中,其立体模型想像为:如图:金属离子浸在雾一样的自由电子之中.分析金属阳离子的受力情况,引出如下概念:金属键---------金属晶体中,金属阳离子与自由电子之间的强烈相互作用.金属晶体--------由金属键形成的晶体.二.解释金属的通性.1.导电. 关键词:电场中,自由电子定向运动.2.传热. 关键词:自由电子与金属离子碰撞而交换能量.3、可延展关键词:形变末破坏金属键。
金属材料性能的基础知识金属材料的性能决定着材料的适用范围及应用的合理性。
金属材料的性能主要分为四个方面,即:机械性能、化学性能、物理性能、工艺性能。
一.机械性能(一)应力的概念物体内部单位截面积上承受的力称为应力。
由外力作用引起的应力称为工作应力,在无外力作用条件下平衡于物体内部的应力称为内应力(例如组织应力、热应力、加工过程结束后留存下来的残余应力…等等)。
(二)机械性能金属在一定温度条件下承受外力(载荷)作用时,抵抗变形和断裂的能力称为金属材料的机械性能(也称为力学性能)。
金属材料承受的载荷有多种形式,它可以是静态载荷,也可以是动态载荷,包括单独或同时承受的拉伸应力、压应力、弯曲应力、剪切应力、扭转应力,以及摩擦、振动、冲击等等,因此衡量金属材料机械性能的指标主要有以下几项: 1.强度这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。
由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂,测定的强度指标主要有:(1)强度极限:材料在外力作用下能抵抗断裂的最大应力,一般指拉力作用下的抗拉强度极限,以σb表示,如拉伸试验曲线图中最高点b对应的强度极限,常用单位为兆帕(MPa),换算关系有:1MPa=1N/m2=-1Kgf/mm2或1Kgf/mm2= σb=P b/F o式中:P b–至材料断裂时的最大应力(或者说是试样能承受的最大载荷);F o–拉伸试样原来的横截面积。
(2)屈服强度极限:金属材料试样承受的外力超过材料的弹性极限时,虽然应力不再增加,但是试样仍发生明显的塑性变形,这种现象称为屈服,即材料承受外力到一定程度时,其变形不再与外力成正比而产生明显的塑性变形。
产生屈服时的应力称为屈服强度极限,用σs表示,金属材料的拉伸试验曲线相应于拉伸试验曲线图中的S点称为屈服点。
金属物理教案高中必修一
教学目标:
1. 了解金属的基本性质和金属结构;
2. 掌握金属的导电性、导热性和塑性等特性;
3. 了解金属熔化和凝固的过程;
4. 了解金属的相变和晶体缺陷;
5. 认识金属的应用领域和未来发展方向。
教学重点:
1. 金属的结构和性质;
2. 金属的导电性、导热性和塑性;
3. 金属的相变和晶体缺陷。
教学难点:
1. 金属的晶体结构;
2. 金属的晶体缺陷。
教学准备:
1. 教材:《物理》高中第一册;
2. 多媒体设备:投影仪;
3. 实验设备:金属样品、电热炉、显微镜等。
教学过程:
一、引入:
1. 通过展示金属制品,引导学生思考金属是什么,有什么特点;
2. 引导学生讨论金属的常见应用领域。
二、讲授金属的结构和性质:
1. 介绍金属的晶体结构和晶格;
2. 讲解金属的导电性、导热性和塑性等特性。
三、探究金属的相变和晶体缺陷:
1. 进行实验,观察金属的熔化和凝固过程;
2. 探讨金属的相变现象和晶体缺陷对金属性质的影响。
四、总结金属的应用领域和未来发展:
1. 综合讨论金属在航空、汽车、电子等领域的应用;
2. 探讨金属在新能源领域和生物医学领域的发展前景。
五、作业布置:
1. 完成教材上相关的练习题;
2. 撰写关于金属性质和应用的小论文。
教学反思:
通过本节课的教学,学生能够深入了解金属的结构和性质,加深对金属的理解和认识,激发学生对金属物理的兴趣和求知欲。
在今后的教学中,可以结合实验和案例分析,进一步拓展学生对金属物理的认识。
金属的物理性质和化学性质
【教学目标】
1.认识金属的物理性质和化学性质。
2.通过科学探究,认识金属活动性顺序及其探究方法。
3.提高设计实验、动手操作、观察、交流和归纳的能力。
【实验准备】
物品准备:镁带、铝片(或铝丝)、锌片、铁钉(或铁丝、片)、铜片(或铜丝)、稀盐酸、稀硫酸、硫酸铜溶液、硫酸铝溶液、酒精灯、火柴、废液缸、污物杯、抹布。
【教学过程】
(2)金属与稀盐酸、稀硫酸的反应
在三支试管里分别放入经砂纸打磨过的铝片、铁片、铜片,分别加入约3ml
稀盐酸(稀硫酸)→ + 。
从上述探究实验现象,你得出的结论是:。
(3)金属与金属化合物溶液的反应
把经砂纸打磨过的铝片(或铝丝)、铁钉(或铁丝、片)分别浸入硫酸铜溶液中,把经砂纸打磨过的铜片(或铜丝)浸入硫酸铝溶液中,观察现象,并
较不活泼金属化合物溶液→ + 。
结论与解释:。
从上述探究实验的结果,你可以得出的结论:
上述金属的活动性顺序为。
金属的物理性质与化学性质金属是一类常见的物质,具有独特的物理性质和化学性质。
本文将从这两个方面来探讨金属的性质。
一、金属的物理性质1. 密度和重量金属具有相对较高的密度,例如铁和铜的密度分别为7.87g/cm³和8.96g/cm³。
因此,金属材料通常比较重。
2. 导电性金属是优良的导电体,能够自由传导电流。
这是由于金属内部的电子形成了“海洋模型”,电子可以自由地在金属中移动。
3. 导热性金属具有优良的导热性能。
当金属被加热时,内部的金属离子会迅速传递热量,使整个金属均匀地升温。
4. 可塑性和延展性金属可以通过加热和机械加工来改变其形状。
这是由于金属的结晶结构具有较强的连续性,金属离子可以轻松地重新排列。
5. 磁性一些金属具有磁性,例如铁、镍和钴。
它们可以被磁场吸引,并能够产生磁场。
二、金属的化学性质1. 与酸的反应大部分金属在与酸发生反应时会释放氢气。
例如,铜与酸反应会产生氢气和铜(II)盐。
2. 与氧的反应金属与氧气反应会生成金属氧化物。
不同金属的氧化物的性质不同,一些金属氧化物具有特殊的颜色。
3. 与水的反应一些金属在与水反应时会产生氢气,并且形成金属氢氧化物。
例如,钠与水反应会迅速起火放出氢气。
4. 与非金属元素的反应金属可以与非金属元素形成化合物,例如氧化物、硫化物等。
这些化合物往往具有不同于金属本身性质的特点。
总结:金属的物理性质和化学性质使其在日常生活和工业生产中发挥重要作用。
通过了解金属的这些特性,我们可以更好地理解金属的性质,应用于材料科学、能源产业和工程技术等领域,并推动科学技术的发展。
参考文献:- Callister, W. D., & Rethwisch, D. G. (2007). Fundamentals of materials science and engineering. Wiley.- Ashley, P. M. (2010). Introduction to mass spectrometry: Instrumentation, applications, and strategies for data interpretation. Wiley.注:上述文章仅供参考,具体撰写时还需根据实际情况进行修改和完善。
八年级物理四科材料知识点
在八年级物理学习中,材料知识点占据非常重要的位置。
通过
学习材料知识点,可以帮助我们更好地理解物理现象和实验结果。
下面将介绍八年级物理四科的材料知识点。
第一部分:固体材料
1. 金属材料
金属材料具有良好的导电性和热导性,可以被加工成各种形状,适用于制作电线、电器、汽车等产品。
金属材料的性质受到晶粒
大小、金属纯度等因素的影响。
2. 非金属材料
非金属材料具有较好的绝缘性能和耐腐蚀性能,适用于制作管道、容器、绝缘板等产品。
3. 合金
合金是由两种或两种以上金属元素混合而成的物质,具有更好的力学性能和耐腐蚀性能,适用于制作飞机、汽车、工具等。
第二部分:流体材料
1. 水
水是一种无色、无味、无臭的液体,具有较大的比热和热膨胀系数,适合作为冷却介质和加热介质。
2. 油
油具有较好的润滑性能和抗氧化性能,适用于制作机械设备和润滑油。
3. 气体
气体具有压缩性和黏度小的特点,可以被用于制作压缩空气工具和气体燃料。
第三部分:半导体材料
1. 硅
硅是一种半导体材料,由于其电阻率介于导体和绝缘体之间,可以被用于制作电子元器件,例如晶体管、集成电路等。
2. 锗
锗是一种半导体材料,与硅类似,可以用于制作电子元器件。
第四部分:纳米材料
纳米材料具有较大比表面积和量子尺寸效应,因此具有独特的电学、光学、力学等性质,可以被用于制作高性能电子器件、传感器、医疗材料等。
总之,材料知识点是八年级物理学习中不可缺少的部分。
通过认真学习和理解这些知识点,我们可以更深入地了解并应用于实际问题中。
教案一、学习目标:1.了解金属的物理性质与化学性质;2.理解金属的导电性、热传导性以及其他物理性质;3.掌握金属氧化反应、金属与非金属反应等基本化学性质。
二、课前预习:1.了解金属的格结构、电子结构及性质;2.了解金属的分类及其特点;3.了解金属的电子排布及导电性、热传导性;4.了解金属的化学反应性能及其与非金属反应。
三、教学过程:1.引入:教师介绍金属与非金属的区别,引出本节课的内容。
2.金属的物理性质:教师介绍金属的晶格结构、电子排布及导电性、热传导性等物理特性,引导学生深入了解金属的物理属性。
3.金属的化学性质:教师介绍金属的化学反应性能及其与非金属反应的特点,引导学生学习金属的化学特性。
4.实验操作:通过实验操作的方式,让学生亲身体验金属的性质。
如导电性、热传导性实验等。
5.讲解:通过教师对实验结果的讲解,帮助学生更加深入地理解金属的物理与化学性质。
6.提问:教师可以提问学生,帮助学生回顾课堂所学的知识点,帮助学生更好地巩固学习成果。
四、教学目标达成检验:通过课堂测验的方式,测试学生对金属物理与化学性质的理解程度。
五、课后作业:1.整理课堂笔记,巩固所学知识点;2.阅读相关文章,进一步了解金属物理及化学性质的相关知识;3.练习相关题目,检验自己在学习过程中的掌握程度。
六、教学总结:通过本节课的学习,学生了解了金属的物理与化学性质,掌握了金属的导电性、热传导性等物理特性,以及金属氧化反应、金属与非金属反应等基本化学性质。
通过实验操作等方式,帮助学生亲身感受金属的性质,强化了学生对知识点的掌握。