第3章金属塑性变形的力学基础之屈服准则
- 格式:pdf
- 大小:737.40 KB
- 文档页数:48
第三章金属塑性变形的力学基础一应力的有关概念1.张量:定义:张量是矢量的推广,与矢量相类似,由若干个当坐标系改变时满足转换关的分量所组成的集合。
性质:(1)存在张量不变量(2)张量可以叠加和分解(3)张量可以分对称张量·非对称张量·反对称张量。
(4)二阶对称张量存在三个主轴和三个主值。
2.应力张量:表示点应力状态的九个应力分量构成一个二阶张量3.主应力:主平面上的正应力4.主应力简图:受力物体内一点的应力状态,可用作用在应力单元体上的主应力来描述,只用主应力的个数及符号来描述一点应力状态的简图。
5.应力张量不变量:虽然应力张量的各分量随坐标而变,但按式(3-14)的形式组成的函数值是不变的,所以将J1,J2,J3分别称为应力张量的第一,第二,第三不变量。
6.主切应力平面:切应力达到极值的平面。
7.主切应力:主切平面上作用的切应力8.最大切应力:三个主切应力中绝对值最大的一个,也就是一点所有方位切面上切应力的最大者。
9.八面体应力:由主轴坐标系空间八个象限中的等倾微分面构成的正八面体的每个平面上的应力。
10.八面体等效应力:定义:八面体切应力绝对值的3/√2倍所得之参量。
表达式为:特点:1)等效应力是一个不变量。
2)等效应力在数值上等于单向均匀(或压缩)时的拉伸(或压缩)应力3)等效应力并不代表某一实际平面上的应力,因而不能在某一特定的平面上表示出来。
4)等效应力可以理解为代表一点应力状态中应力张量的综合作用。
11.球张量物理意义:球张量表示球应力状态,也称静水应力状态。
它不能使物体产生形状变化,只能使物体产生体积变化。
12.应力偏张量的物理意义:应力偏张量只能使物体产生形状变化,而不能使物体产生体积变化。
13.平面应力状态:变形体内与某方向轴垂直的平面上无应力存在,并所有应力分量与该方向轴无关,则这种应力状态叫平面应力状态。
特点:1)变形体内各质点在与某方向轴垂直的平面上没应力作用。
《塑性力学及成形原理》知识点汇总第一章绪论1.塑性的基本概念2.了解塑性成形的特点第二章金属塑性变形的物理基础1.塑性和柔软性的区别和联系2.塑性指标的表示方法和测量方法3.磷、硫、氮、氢、氧等杂质元素对金属塑性的影响4.变形温度对塑性的影响;超低温脆区、蓝脆区、热脆区、高温脆区的温度范围补充扩展:1.随着变形程度的增加,金属的强度硬度增加,而塑性韧性降低的现象称为:加工硬化2.塑性指标是以材料开始破坏时的塑性变形量来表示,通过拉伸试验可以的两个塑性指标为:伸长率和断面收缩率3.影响金属塑性的因素主要有:化学成分和组织、变形温度、应变速率、应力状态(变形力学条件)4.晶粒度对于塑性的影响为:晶粒越细小,金属的塑性越好5.应力状态对于塑性的影响可描述为(静水压力越大):主应力状态下压应力个数越多,数值越大时,金属的塑性越好6.通过试验方法绘制的塑性——温度曲线,成为塑性图第三章金属塑性变形的力学基础第一节应力分析1.塑性力学的基本假设2.应力的概念和点的应力状态表示方法3.张量的基本性质4.应力张量的分解;应力球张量和应力偏张量的物理意义;应力偏张量与应变的关系5.主应力的概念和计算;主应力简图的画法公式(...3.-.14..)应力张量不变量的计算...........122222223()2() x y zx y y z z x xy yz zx x y z xy yz zx x yz y zx z xyJ J Jσσσσσσσσστττσσστττστστστ=++=-+++++=+-++公式(...3.-.15..)应力状态特征方程.........321230J J J σσσ---= (当已知一个面上的应力为主应力时,另外两个主应力可以采用简便计算公式(...3.-.35..).的形式计算)6.主切应力和最大切应力的概念计算公式..(.3.-.25..).最大切应力.....)(21min max max σστ-= 7.等效应力的概念、特点和计算主轴坐标系中......公式..(.3.-.31..).8σ=== 任意坐标系中......公式..(.3.-.31a ...).σ=8.单元体应力的标注;应力莫尔圆的基本概念、画法和微分面的标注 9.应力平衡微分方程 第二节 应变分析1.塑性变形时的应变张量和应变偏张量的关系及其原因 2.应变张量的分解,应变球张量和应变偏张量的物理意义 2.对数应变的定义、计算和特点,对数应变与相对线应变的关系 3.主应变简图的画法 3.体积不变条件公式(...3.-.55..).用线应变....0x y z θεεε=++=;用对数应变.....(主轴坐标系中)........0321=∈+∈+∈ 4.小应变几何方程公式(...3.-.66..).1;()21;()21;()2x xy yx y yzzy z zx xz u u v x y x v v w y z yw w u z x zεγγεγγεγγ∂∂∂===+∂∂∂∂∂∂===+∂∂∂∂∂∂===+∂∂∂ 第三节 平面问题和轴对称问题1.平面应变状态的应力特点;纯切应力状态的应力特点、单元体及莫尔圆公式(...3.-.8.6.).12132()z m σσσσσ==+= 第四节 屈服准则1.四种材料的真实应力应变曲线 2.屈雷斯加屈服准则 公式(...3.-.96..).max 2s K στ== 3.米塞斯屈服准则公式(...3.-.10..1.).2222222262)(6)()()(K s zx yz xy x z z y y x ==+++-+-+-στττσσσσσσ 2221323222162)()()(K s ==-+-+-σσσσσσσ公式(...3.-.102...).s sσσσσ==== 4.两个屈服准则的相同点和差别点5.13s σσβσ-=,表达式中的系数β的取值范围 第五节 塑性变形时应力应变关系 1.塑性变形时应力应变关系特点 2.应变增量的概念,增量理论公式(...3.-.125...).'ij ij d d εσλ= 公式(...3.-.129...).)](21[z y x x d d σσσσεε+-=;xy xy d d τσεγ23= )](21[z x y y d d σσσσεε+-=;yz yz d d τσεγ23=)](21[y x z z d d σσσσεε+-=;zx zx d d τσεγ23=3.比例加载的定义及比例加载须满足的条件 第六节 塑性变形时应力应变关系 1.真实应力应变曲线的类型第四章 金属塑性成形中的摩擦1.塑性成形时摩擦的特点和分类;摩擦机理有哪些?影响摩擦系数的主要因素 2.两个摩擦条件的表达式3.塑性成形中对润滑剂的要求;塑性成形时常用的润滑方法 第五章 塑性成形件质量的定性分析 1.塑性成形件中的产生裂纹的两个方面2.晶粒度的概念;影响晶粒大小的主要因素及细化晶粒的主要途径 3.塑性成形件中折叠的特征 第六章 滑移线场理论简介1.滑移线与滑移线场的基本概念;滑移线的方向角和正、负号的确定 2.平面应变应力莫尔圆中应力的计算;公式(...7.-.1.).ωτωσσωσσ2cos 2sin 2sin K K K xy m y m x =+=-= 3.滑移线的主要特性;亨盖应力方程公式(...7.-.5.).2ma mb ab K σσω-=± 4.塑性区的应力边界条件;滑移线场的建立练习题一、应力1、绘制⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=410140002ij σ的单元体和应力莫尔圆,并标注微分面。
基本概念(2):屈服准则本期,给大家介绍一下有限元计算中经常遇到的一个概念:屈服准则。
上期讲的屈服强度属于材料特性。
屈服准则是一个计算概念。
一、屈服准则的含义屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。
屈服条件在主应力空间中为屈服方程。
物体力在外载荷(通常为外力)作用下发生的变形有二种形态:(1)弹性变形。
弹性变形是可逆的,当外载荷卸去后物体可以恢复到初始状态,物体中任何二个质点之间的距离都恢复到初始值,物体内无任何残余变形。
(2)塑性变形。
塑性变形是不可逆的,物体中任何二个质点之间的距离不可能全部恢复到初始值,从而使得变形永久地保留在物体中,一般说来,在外载荷的作用下,物体中的任一质点开始时都只发生弹性变形,但是随着外载荷的增大使得该质点处的应力张量达到某一临界值时,该质点才能发生塑性变形受力物体内质点处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。
受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。
在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。
简而言之,屈服准则,就是将实际结构的多轴应力状态与材料试验的单轴屈服应力等效转换的方法。
二、常用的屈服准则1.Tresca屈服准则当材料的最大剪应力达到材料屈服强度时,这判断材料在多轴应力状态下发生屈服。
换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。
或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。
所以Tresca 屈服准则又称为最大切应力不变条件。
这种模型与静水压力无关,也不考虑中间应力的影响。
在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。
Tresca 屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响优点:当知道主应力的大小顺序,应用简单方便缺点:(1)没有考虑正应力和静水压力对屈服的影响。