金属在冷和热塑性加工过程中组织与性能变化规律的异同
- 格式:ppt
- 大小:1.97 MB
- 文档页数:49
第七章金属在塑性变形中的组织结构与性能变化练习与思考题1 冷变形使金属的组织结构和性能发生什么变化?有何意义?(1)冷变形使金属的组织结构发生如下变化:1)单晶体塑性变形:时,随着变形量增加,位错密度增加,从而引起加工硬化;2)多晶体塑性变形时,,随着变形量增加,与单晶体变形一样,位错密度增加。
但多晶体各晶粒即相互阻碍又相互促进,变形量到一定程度出现位错胞状结构;3)冷塑性变形后自由能高;4)晶粒外形、夹杂物和第二相的分布发生变化;5)性能上具有方向性:带状组织和纤维组织;6)形成形变织构;7)晶体可能被破坏,可能产生微裂纹,甚至宏观裂纹等;变形是不均匀的;存在残余内应力。
(2)冷变形对金属性能的变化体现在:1)强度指标增加;塑性指标降低,韧性也降低了;产生力学性能的方向性。
2)物理性能变化:由于在晶间和晶内产生微观裂纹和空隙以及点阵缺陷,因而密度降低,导热、导电、导磁性能降低。
3)化学性能变化:化学稳定性降低,耐腐蚀性能降低,溶解性增加。
(3)生产上经常利用冷加工提高材料的强度,通过加工硬化(或称形变强化)来强化金属。
冷加工是通过塑性变形改变金属材料性能的重要手段之一。
2 回复退火处理可能使冷变形后的金属组织结构发生什么变化?有何实际意义?回复对组织结构的影响与形变后的组织以及回复的温度和时间有关:(1)回复温度较低时,由于塑性变形所产生的过量空位就会消失;(2)回复温度稍高一些时,同一个滑移面上的异号位错,会在塞积位错群的长程应力场作用下,汇聚而合并消失,降低位错密度;(3)回复温度较高时,不但同一滑移面上的异号位错可以汇聚抵消,而且不同滑移面上的位错也易于攀移和交滑移,从而互相抵消或重新排列成一种能量较低的结构。
回复退火在生产中主要作用:(1)去内应力退火,使冷加工的金属件,在基本上保持加工硬化的条件下降低其内应力,以避免变形和开裂,改善工件的耐蚀性。
(2)预先形变热处理工艺中,低温冷变形后进行的中间回火,也是一种回复性质的处理。
目录绪论 (3)1.1冷塑性变形对金属组织和性能的影响 (3)1.1.1金属组织的变化 (3)1.1.2金属性能的变化 (5)1.1.3冷塑性变形产生残余应力 (7)1.2冷变形金属在加热时组织和性能的变化 (7)2.1热加工变形对组织和性能的影响 (8)2.1.1热加工的变形特点 (8)2.1.2金属的组织性能的变化 (8)3.1影响塑性的因素 (10)3.1.1组织的影响 (10)3.1.2铸造组织的影响 (10)结束语 (1)冷加工和热加工时金属组织的变化及对金属性能的影响摘要:工业上使用的大部分金属制品,是在制成铸锭后在经压力加工形成半成品或成品的。
由于压力加工中,可借助塑性变形使金属获得一定的形状和尺寸,而且还可以使铸态金属的组织与性能得到改善。
因此,本文通过研究冷加工与热加工时金属组织与性能的变化,可改进金属加工工艺,提高质量,合理使用金属。
关键字:冷加工、热加工、组织、性能绪论:本文根据金属学及热处理,材料成型与控制技术,塑性变形与轧制原理等教材,综合阐述金属材料组织与性能在经过塑性变形时产生的变化和影响。
主要通过三个方面:冷加工、热加工、影响塑性的因素来分别介绍金属组织的变化与性能的影响,分析了金属材料组织结构与性能相对塑性变形的关系和变化规律,以及提高金属材料性能,充分发挥材料潜力的途径。
1.1 冷塑性变形对金属组织和性能的影响经过冷变形(如冷轧、拉拔和冷冲等)后的金属,由于组织结构的特征表现为加工硬化,随着变形程度的增加,加工硬化现象也将更加显著,其性能也将相应的发生变化。
1.1.1 金属组织的变化1.1.1.1 晶粒被拉长成纤维状在冷变形中,随着金属外形的改变,其内部晶粒的形状也大体上发生相应的变化,即均沿最大主变形方向被拉长、拉细或压扁,如图1-1所示。
图1-1 冷轧前后晶粒形状变化a-变形前的退火状态组织b-变形后的冷轧变形组织在晶粒被拉长的同时,京间夹杂物和第二相也跟着被拉长或拉碎呈点链状排列,这种组织称为纤维组织。
冷变形后金属的变化
金属在冷变形后,组织和性能会发生一系列变化。
具体来说,随着冷变形程度的增加,金属的强度和硬度会上升,而塑性和韧性会下降。
这是因为在冷变形过程中,金属内
部的晶格结构会发生扭曲,产生大量的晶体缺陷,如位错和畸变,这些缺陷会导致金
属的强化。
同时,由于冷变形过程中金属的晶粒被拉长、破碎和细化,导致金属的塑
性和韧性下降。
此外,冷变形后的金属在加热时,组织和性能也会发生变化。
具体来说,随着温度的
升高,原子扩散能力增加,金属将经历回复、再结晶和晶粒长大等过程。
在回复阶段,金属中的位错和空位等缺陷会重新排列,形成较为稳定的晶格结构,导致金属的力学
性能变化不大,但塑性略有提高。
当温度继续升高,金属将发生再结晶,形成新的等
轴晶粒组织。
在这个过程中,金属的强度和硬度会进一步上升,而塑性和韧性会明显
改善。
金属在冷变形后组织和性能会发生变化,具体变化程度取决于变形程度和加热温度等
因素。
了解这些变化对于材料的加工、选材和应用都具有重要意义。
塑性变形对金属组织性能的影响塑性变形是指金属在外力作用发生不可恢复的变形。
因为金属在变形过程中承受很大的外力,所以金属的组织和性能一定会发生变化。
由于金属发生塑性变形时的温度不同,所以金属塑性变形可以根据变形温度分为冷变形,温变形,热变形。
在不同的温度下,金属发生塑性变形时其组织和性能会发生不同的变化。
1.冷塑性变形对金属组织和性能的影响金属发生塑性变形时其变形机制主要有位错的滑移,孪生,扭折,高温下还有晶界滑动和扩散蠕变等方式。
在这些变形方式下,金属的组织会在晶粒形状尺寸,亚结构等方面产生变化,还会产生变形织构等。
在位错的运动过程中,位错之间,位错与溶质原子,间隙原子,空位之间,位错与第二相质点之间都会发生相互作用,引起位错数量,分布的变化。
从微观角度来看,这就是金属组织结构在塑性变形过程中发生的主要变化。
随着金属变形的进行及程度的增加,金属内部的位错密度开始增加,这是因为位错在运动到各种阻碍处如晶界,第二相质点等会受到阻碍,位错就会不断塞积和增值,直到可以使得相邻晶粒内的位错发动才能继续运动。
同时位错运动时所消耗的能量中会有一小部分没有转换成热能散发出去,反而会以弹性畸变能的形式存储在金属内部,使金属内部的点阵缺陷增加。
金属冷塑性变形后还会造成金属内部的亚结构发生细化,如原来在铸态金属中的亚结构直径约为0.01cm,经冷塑性变形后,亚结构的直径将细化至0.001-0.00001cm。
同样金属晶体在塑性变形过程中,随着变形程度的增大,各个晶粒的滑移面和滑移方向会逐渐向外力方向转动。
当变形量很大时,各晶粒的取向会大致趋向于一致,从而破坏了多晶体中各晶粒取向的无序性,也称为晶粒的择优取向,变形金属中这种组织状态则称为变形织构。
在塑性变形过程中随着金属内部组织的变化,金属的机械性能将产生明显的变化。
随着变形程度的增大,金属的硬度,强度显著升高,而塑性韧性则显著下降,这一变化称为加工硬化。
加工硬化认为是与位错的运动和交互作用有关。
目录绪论 (3)1.1冷塑性变形对金属组织和性能的影响 (3)1.1.1金属组织的变化 (3)1.1.2金属性能的变化 (5)1.1.3冷塑性变形产生残余应力 (7)1.2冷变形金属在加热时组织和性能的变化 (7)2.1热加工变形对组织和性能的影响 (8)2.1.1热加工的变形特点 (8)2.1.2金属的组织性能的变化 (8)3.1影响塑性的因素 (10)3.1.1组织的影响 (10)3.1.2铸造组织的影响 (10)结束语 (1)冷加工和热加工时金属组织的变化及对金属性能的影响摘要:工业上使用的大部分金属制品,是在制成铸锭后在经压力加工形成半成品或成品的。
由于压力加工中,可借助塑性变形使金属获得一定的形状和尺寸,而且还可以使铸态金属的组织与性能得到改善。
因此,本文通过研究冷加工与热加工时金属组织与性能的变化,可改进金属加工工艺,提高质量,合理使用金属。
关键字:冷加工、热加工、组织、性能绪论:本文根据金属学及热处理,材料成型与控制技术,塑性变形与轧制原理等教材,综合阐述金属材料组织与性能在经过塑性变形时产生的变化和影响。
主要通过三个方面:冷加工、热加工、影响塑性的因素来分别介绍金属组织的变化与性能的影响,分析了金属材料组织结构与性能相对塑性变形的关系和变化规律,以及提高金属材料性能,充分发挥材料潜力的途径。
1.1 冷塑性变形对金属组织和性能的影响经过冷变形(如冷轧、拉拔和冷冲等)后的金属,由于组织结构的特征表现为加工硬化,随着变形程度的增加,加工硬化现象也将更加显著,其性能也将相应的发生变化。
1.1.1 金属组织的变化1.1.1.1 晶粒被拉长成纤维状在冷变形中,随着金属外形的改变,其内部晶粒的形状也大体上发生相应的变化,即均沿最大主变形方向被拉长、拉细或压扁,如图1-1所示。
图1-1 冷轧前后晶粒形状变化a-变形前的退火状态组织b-变形后的冷轧变形组织在晶粒被拉长的同时,京间夹杂物和第二相也跟着被拉长或拉碎呈点链状排列,这种组织称为纤维组织。